
University of Illinois
at Urbana-Champaign

Lecture	1
Jan	1-5st 2018

Sayan	Mitra1 and	Purandar Bhaduri2
1University	of	Illinois	at	Urbana-Champaign
2Indian	Institute	of	Technology	Guwahati

mitras@Illinois.edu

Modeling	and	verification	of	
cyber-physical	systems	

Plan	for	the	lecture	1

• Course	administration
• Motivation
–What	are	cyber-physical	systems?
–Why	care	about	verification	of	CPS?

• Modeling	Discrete	Systems	
• Invariance	and	safety

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Algorithms	make	decisions	for	us	
everyday

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Increasingly,	algorithms	control	our	
physical	environment	and	social	

institutions

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Software	- physics	in	closed	loop

Cyber-physical	Systems

Control	Software

Physical	Plant

ActuatorSensor

CPS:	software	monitoring	
and	controlling	a	dynamical	
system

We	will	take	a	rigorous view	
of	modeling,	analyzing,	and	
designing	engineering	
systems

Why?	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Autonomous	systems

Internet	Of	Things	(IOT)

Cyber-physical	System	

Industry	4.0

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Is	the	algorithm safe	?secure	?private?fair?

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Advanced	Driving	Assist	features	
(ADAS)	to	Driverless	cars

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

2004	DARPA	Grand	challenge	I:	
no	car	drives	more	than	7	miles	in	

desert
2005	DARPA	challenge	II:	

Stanford	car	wins	driving	131	miles
2007	DARPA	Urban	challenge*	

Many	successes,	CMU	wins

Google,	Uber,	Tesla,	GM,	Nissan,	Toyota,	Ford,	…

2016:	Public	tests	at	Singapore	(nuTonomy),	
Pittsburgh	(Uber),	Boston
Verification	of	Periodic	Hybrid	Systems:	Application	to	An	Autonomous	Vehicle	
Wongpiromsarn,	Mitra,	Lamperski and	Murray	2009

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Algorithms	for	predictive	policing

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Crime	records	+	Surveillance	->	
Predictions

2008:	LAPD	starts	explorations	on	forecasting	crime	using	data
2013:	Better	prediction	of	crime	hotspots	in	Santa	Cruz		evaluation
2016:	Used	in	50+	police	department

Zach	Friend.	"Predictive	Policing:	Using	Technology	to	
Reduce	Crime".	Federal	Bureau	of	Investigation.	Dec.	
2013.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Technology	is	neither	good	nor	
bad; nor	is	it	neutral.	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Driverless	cars	will	be	good	for
Productivity:	Americans	spend	300	hours	driving	each	year	

Real	estate:	40	%	of	city	surface	is	parking

Environment:	Better	fuel	efficiency,	scheduling,	charging

Safety:	32,675	vehicle	fatalities	in	2014	in	the	US
10%	increase	in	first	half	of	2016	!!	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

NYTimes,	July	12	2016

Achieving	safety	is	a	very	hard	
problem

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

A	Record	22	Million	Cars	Recalled	in	2013

Cost	in	Billions	
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

2	Million	Device	Recalled	over	the	Decade

24%	for	Design	Bugs		.
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

ZA002	Incident.
EVERETT, Wash., Nov. 10, 2010-- During approach
to Laredo, Texas, yesterday, airplane ZA002 lost
primary electrical power as a result of an onboard
electrical fire. Backup systems, including the
deployment of the Ram Air Turbine (RAT),
functioned as expected and allowed the crew to
complete a safe landing. The cause of the fire is
still under investigation by Boeing.

Initial inspection appears to indicate that a power
control panel in the aft electronics bay will need
to be replaced on ZA002. We are inspecting the
power panel and surrounding area near that panel
to determine if other repairs will be necessary.

Boeing:	Changes	to	Power	Panel	Design	Nov.	24,	
2010	
Boeing	has	acknowledged	the	rumors	circulating	
around	that	it	was	indeed FOD (foreign	object	
damage)	that	had	caused	a	short	circuit	that	led	to	
the	fire	in	the	P100	power	panel.

As	a	consequence	Boeing	will	undertake	a	minor	
redesign	of	the	power	panel	to	reduce	the	chance	
of FOD creating	and	electrical	arc	or	short	circuit.	
Boeing	will	also	implement	software	changes	to	
make	sure	that	power	distribution	is	improved.
This	appears	to	be	an	acknowledgement	that	the	
electrical	power	redundancies	failed	as	well.

New	in	DO178C	standard

Formal	Methods		.
Model	Based	Development

Object	Oriented	Techniques

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Overflow	results	in	the	flight	computer	crash	(2005)
• Unlike	“one-shot”	function	

computations,	computations	of	
embedded	systems	are	infinite	
streams
– Example:	Rudder	positions		

computed	by	an	autopilot	program:	
L,	R,	R,	R,	C,	L,	…		

• Testing	and	simulations	(at	least	
their	naïve	applications)	can	check	
for	only	finitely	many	behaviors

• Not	sufficient	for	covering all	
behaviors	of	the	program	and	its	
physical	environment

“June 4, 1996 -- Ariane 5 Flight 501. Working code for
the Ariane 4 rocket is reused in the Ariane 5, but the
Ariane 5's faster engines trigger a bug in an arithmetic
routine inside the rocket's flight computer. The error is
in the code that converts a 64-bit floating-point
number to a 16-bit signed integer. The faster engines
cause the 64-bit numbers to be larger in the Ariane 5
than in the Ariane 4, triggering an overflow condition
that results in the flight computer crashing.”

History's Worst Software Bugs, Simson
Garfinkel, Wired 2005

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

How	many	miles	must	an	autonomous	car	drive	
before	we	call	it	safe?	

200	million	miles?

0.07	fatalities	per	billion	passenger	miles	
(commercial	flight)

Probability	of	fatal	failure	per	hour	of	driving	
10#$ [Amnon Shashua,	CTO	Mobileye]

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

How	is	air-travel	so	safe?

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Dev.Assuranc
e Level	(DAL)

Hazard	
Classification

Objectives

A Catastrophic 71

B Hazardous 69

C Major 62

D Minor 26

E No	Effect 0

Regulations	and	Audits

DO178C

Primary	document	by	which	FAA	
&	EASA	approves	software-
based	aerospace	systems.

DAL	establishes	the	rigor	
necessary	to	demonstrate	
compliance

Statement	Coverage:	Every	
statement	of	the	source	
code	must	be	covered	by	a	
test	case
Condition	Coverage:	Every	
condition	within	a	branch		
statement	must	be	covered	
by	a	test	case

What	fraction	of	the	cost	of	
developing	a	new	aircraft	is	in	
SW?

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Verification	of	CPS:
We	need	standards,	processes,	
tools,	and	trained	individuals	to	

ensure	that	cyber-physical	systems	
meet	the	standards

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

An	earlier	instance:	microprocessor	industry	

Electronic	design	automation	industry

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Defects	become	more	expensive	with	time

time

co
st
	o
f	b

ug

How to Cut Software-Related Medical Device Failures and Recalls, Lisa Weeks

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Audit	algorithms	with	Algorithms	and	
find	problems	early	

certificate

algorithm	/	
system	model bug	trace	Our	verification	

tool
requirements

Relevant	courses:	Theory	of	computation,	Program	Verification,	Formal	System	Development,
Automated	Deduction,	Control	theory,	Embedded	System	Verification

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Example	requirements
Safety:	“For	all	nominal	behaviors	of	the	car,	the	
separation	between	the	cars	must	be	always	>	1	m”	

Efficiency:	“For	all	nominal	driver	inputs,	the	air-fuel	ratio	
must	be	in	the	range	[1,4]”	

Privacy:	“Using	GPS	does	not	compromise	user’s	
location”		

Fairness:	“Similar	people	are	treated	similarly”	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Example	modeling	frameworks

Discrete	transition	
systems,	automata

Dynamical	systems
Differential	inclusions

Hybrid	systems

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Markov	chains

Probabilistic	automata,	
Markov	decision	processes	
(MDP)

Continuous	time,	
continuous	state	MDPs

Stochastic	Hybrid	systems

Young	&	promising	area	with	rich	problems
or	why	you	should	stop	worrying	and	love	this	course

• Intersection	of	CS	and	control	theory
– Discrete	and	continuous	math,	different	analysis	techniques

• Formal	analysis	gaining	traction	in	industry
– Hardware	verification	is	engineering	practice	in	the	industry
– Many	tools	used	in	software,	avionics,	automotive	industries.	e.g.	SDV	

(Microsoft),	ESTEREL,		ASTREE.
– Mars	Code:	Gerard	Holzman,	JPL	(see	video)

• Big	and	small	commercial	enterprises	support	above	customers
– Synopsis,	Mentor	Graphics,	Cadence,	Jasper,	Coverity,	Galois,	SRI,	

• Vibrant	academic	research	activities
– Related	Turing	Awards:	Lamport (2014),	Clarke,	Sifakis &	Emerson	(2008),	Pnueli

(1997),	Lampson	(1992),	Milner	(1991),	Hoare	(1980),	Dijkstra (1972)	…
– Conferences:	HSCC,	EMSoft,	ICCPS,	CAV,	TACAS,	RTSS…	
– Alums	from	this	course now	faculty	at	U.	Conn,	UT	Arlington,	U.	Minnesota,	

Kansas	State,	Air	Force	Research	Lab,	Toyota	Research	Center,	…	
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Learning	Objectives

• Techniques	for	modeling	systems	with	dynamics,	
computation,	and	communication

• Techniques	for	rigorously	reasoning	about	
correctness	of	systems	

• Exposure	to	using	verification	tools and	libraries
– model	checkers,	SMT	solvers,	simulation-driven	
verifiers	and	theorem	provers

• Understand	deep	and	influential	ideas	in	CS	and	
Control	theory	(from	the	last	20	years)

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

University of Illinois
at Urbana-Champaign

DISCRETE	SYSTEMS
Modeling	Computation

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Outline

• An	Example:	Token	Ring
• Specification	language	(syntax)
• Automata	(semantics)
• Invariants

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

An	example:	Informal	description

A	token-basedmutual	exclusion	algorithm	on	a	ring	
network

Collection	of	processes	send	and	receive	bits	over	a	ring	
network	so	that	only	one	of	them	has	a	“token”

Discrete
Each	process	has	variables	that	take	only	discrete	values	
Time	elapses	in	discrete	steps	(This	is	a	modeling	choice)

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Token	ring: Informal	problem	specification

1. There	is	always	at	least	one	token
2. Legal	configuration	=	exactly	one	“token”	in	the	ring
3. Single	token	circulates	in	the	ring
4. Even	if	multiple	tokens	somehow	arise,	e.g.	with	failures,	if	the	

algorithm	continues	to	work	correctly,	then	eventually	there	is	
a	single	token

Legal Illegal

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Properties	can	be	stated	as	Invariants

• Invariant (informal	def.):	A	property	of	the	system	that	
always*	holds

• Examples:
– “Always	at	least	one	process	has	a	token”
– “Always	exactly	one	process	has	the	token”
– “Always	all	processes	have	values	at	most		k-1”
– “Even	if	there	are	multiple	tokens,	eventually there	is	
exactly	one	token”	(not	strictly	an	invariant)

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Dijkstra’s Algorithm	[Dijkstra 1982]

n processes	with	indices	0,	1,	…,	n-1
state	of	process	j	is	x[j]	Î {0,	1,	2,	k-1},	where	k	>	n
p0 if	x[0]	=	x[N-1]	then x[0]	:=	x[0]	+	1	mod	k
pj j	>	0,	if x[j]	≠	x[j	-1]	then x[j]	:=	x[j-1]	

(pi has	TOKEN	if	and	only	if	the	conditional is	true)
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

A	Specification Language:	HIOA
auto DijkstraTR (n:natural,k:natural)
type indices:	[0,…,n-1]
type values:	[0,…,k-1]
signature	

internal step(i:indices)
variables

𝑥:[indices->values]	initially	∀𝒊 ∈ indices,	𝑥 𝑖 = 0
transitions

internal step(i:indices)
pre i =	0	/\ x[i]	=	x[n-1]
eff x[i]	:=	x[i]	+	1	mod	k;

internal step(i:indices)
pre i ≠ 0	/\ x[i]	≠x[i-1]
eff x[i]	:=	x[i-1];

trajectories
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

Discrete	Transition	System	or	Automaton

An	automaton is	a	tuple	𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉 where
1. 𝑋 is	a	set	of	names	of	variables;	each	variable	𝑥 ∈

𝑋	is	associated	with	a	type,	𝑡𝑦𝑝𝑒(𝑥)
• A	valuation for	𝑋 maps	each	variable	in	X	to	its	type
• Set	of	all	valuations:𝑣𝑎𝑙 𝑋 = 𝑄 this	is	sometimes	identified	
as	the	state	space	of	the	automaton

2. Θ ⊆ 𝑣𝑎𝑙(𝑋) is	the	set	of	initial or	start	states
3. 𝐴 is	a	set	of	names	of	actions or	labels
4. 𝒟 ⊆ 𝑣𝑎𝑙 𝑋 ×𝐴×𝑣𝑎𝑙 𝑋 is	the	set	of	transitions

• a	transition	is	a	triple	(𝑢, 𝑎, 𝑢’)
• We	write	 𝑢, 𝑎, 𝑢’ ∈ 𝒟 in	short	as	𝑢

G
→𝑢′

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

HIOA	Specs	to	Automata:	variables
variables s,	v:	Reals;	a:	Bools
𝑋	 = 	 {𝑠, 𝑣, 𝑎}
Example	valuations	also	called	states:
• 𝑢M = 𝑠 ↦ 0, 𝑣 ↦ 5.5, 𝑎 ↦ 0
• 𝑢P = 𝑠 ↦ 10, 𝑣 ↦ −2.5, 𝑎 ↦ 1
𝑣𝑎𝑙 𝑋 =	{ 𝑠 ↦ 𝑐M, 𝑣 ↦ 𝑐P, 𝑎 ↦ 𝑐S |	𝑐M, 𝑐P ∈ 𝑅, 𝑐S ∈ {0,1}}

type indices:	[0,…,n-1]
variables	x:	[indices->values]
• Fix	n	=	6,	k	=	8
• x:	[{0,…,5} ->	{0,…,7}]
• Example	valuations:

– 𝑢 = 	 〈𝑥 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0	 〉
– 𝑣 = 	 〈𝑥 ↦ 0 ↦ 7, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0	 〉
– Notation:	𝒖. 𝑥, 𝒖. 𝑥[4]	=0

𝑣𝑎𝑙(𝑥) =	 𝑥 ↦ 𝑖 ↦ 𝑐Y YZ[…] 𝑐Y ∈ {0, … , 7}}
Lecture	Slides	by	Sayan	Mitra

mitras@illinois.edu

States	and	predicates
A	predicate over	a	set	of	variables	X	is	a	formula	involving	the	variables	
in	X.	For	example:	

• 𝜙M:	x 1 = 0
• 𝜙P: ∀𝑖 ∈ 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑥 𝑖 = 0
A	valuation	u satisfies		predicate	𝝓 if	substituting	the	values	of	the	
variables	in	u	in	𝜙 makes	it	evaluate	to	True.	We	write	u⊨ 𝝓
• 𝒖 ⊨ 𝜙M, 𝒖 ⊨ 𝜙P,	𝒗 ⊨ 𝝓𝟏 and	𝒗	 ⊭ 𝝓𝟐
𝝓 = 𝑢 ∈ 𝑣𝑎𝑙 𝑥 	𝑢 ⊨ 𝜙}.	 Examples

• 𝜙M = 	 𝑥 ↦ 1 ↦ 0, 𝑖 ↦ 𝑐Y YZ[,P,…,] 𝑐Y ∈ {0, … , 7}}

• 𝜙P = {〈𝑥 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0	 〉}

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Initial	state	and	invariant	assertions

• Θ ⊆ 𝑣𝑎𝑙(𝑥) initial	states
– Often	specified	by	a	predicate
– 𝝓𝟎 = (Initially	∀𝒊 ∈ indices,	𝑥 𝑖 = 0)
– Θ = 𝜙[= 〈𝑥 ↦ 𝑖 ↦ 0 YZ[,…,]〉

• Invariant	properties
– “At	least	one	process	has	the	token”.
– 𝑰𝟏 = 𝑥 0 = 𝑥 5 ∨ ∃	𝑖 ∈ 1, …5 : 𝑥 𝑖 ≠ 𝑥 𝑖 − 1
– 𝐼M = 0,… , 0 , 1,0, … , 0 , … , 〈𝑘 − 1,… , 𝑘 − 1〉 = 𝑣𝑎𝑙 𝑥 (?)
– 	“Exactly	one	process	has	the	token”
– 𝑰𝟐 = 𝑥 0 = 𝑥 5 	⊕ 𝑥 1 ≠ 𝑥 0 ⊕ 𝑥 2 ≠ 𝑥 1 …

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Actions

• signature	defines	the	set	of	Actions
• Examples
– internal step(i:indices)
– 𝐴 = {𝑠𝑡𝑒𝑝 0 ,… , 𝑠𝑡𝑒𝑝 5 }
– internal	brakeOn,	brakeOff
– 𝐴 = {𝑏𝑟𝑎𝑘𝑒𝑂𝑛, 𝑏𝑟𝑎𝑘𝑒𝑂𝑓𝑓}

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Transitions
𝒟 ⊆ 𝑣𝑎𝑙 𝑋 ×𝐴×𝑣𝑎𝑙 𝑋 is	the	set	of	transitions

internal step(i:indices)
pre i =	0	/\ x[i]	=	x[n-1]
eff x[i]	:=	x[i]	+	1	mod	k;

internal step(i:indices)
pre i ≠ 0	/\ x[i]	≠x[i-1]
eff x[i]	:=	x[i-1];

𝑢, 𝑎, 𝑢t ∈ 𝒟 iff	𝑢 ⊨ 𝑃𝑟𝑒G and	 𝑢, 𝑢t ∈ 𝐸𝑓𝑓G

𝑢, 𝑠𝑡𝑒𝑝 𝑖 , 𝑢t ∈ 𝒟iff

(a)	(𝑖 = 0 ∧ 𝑢. 𝑥 0 = 𝑢. 𝑥 5

∧ 𝑢t. 𝑥 0 = 𝑢. 𝑥[0] + 1	𝑚𝑜𝑑	6)	∨
(b)(𝑖 ≠ 0 ∧ 𝑢. 𝑥 𝑖 ≠ 𝑢. 𝑥 𝑖 − 1

∧ 𝑢t. 𝑥 𝑖 = 𝑢. 𝑥[𝑖 − 1])

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Nondeterminism
• For	an	action	𝑎 ∈ 𝐴,	Pre(a)	is	the	formula	defining	its	

precondition,	and	Eff(a)	is	the	relation	defining	the	effect.

• States	satisfying	precondition	are	said	to	enable the	action

• In	general	Eff(a)	could	be	a	relation,	but	for	this	example	it	is	a	
function

• Nondeterminism
– Multiple	actions	may	be	enabled	from	the	same	state
– There	may	be	multiple	post-states	from	the	same	action

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Executions,	Reachability,	&	Invariants	

An	execution of	𝒜 is	an	alternating	(possibly	infinite)	
sequence	of	states	and	actions	

𝛼 = 𝑢[𝑎M𝑢M𝑎P𝑢S …such	that:
– 𝑢[∈ Θ

– ∀	𝑖	in	the	sequence,	𝑢Y
G��� 𝑢Y�M

A	state	𝑢 is	reachable if	there	exists	an	execution	that	ends	at	
𝑢.	The	set	of	reachable	states	is	denoted	by	𝑅𝑒𝑎𝑐ℎ�.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Invariants	(Formal)
What	does	it	mean	for	𝐼 to	hold	“always”	for	𝒜?

– 𝐼 holds	at	all	states	along	any	execution	𝑢[𝑎M𝑢M𝑎P𝑢S
– 𝐼 holds	in	all	reachable	states	of	𝒜
– 𝑹𝒆𝒂𝒄𝒉𝓐 ⊆ [𝑰]

Invariants	capture	most	properties	that	you	will	encounter	in	
practice

– safety:	“aircraft	alwaysmaintain	separation”
– bounded	reaction	time:	“within	15	seconds	of	press,	light	must	

turn	to	walk”

How	to	verify if	𝐼 is	an	invariant?	
– Does	there	exist	reachable	state	𝑢	such	that	𝑢 ⊭ 𝐼 ?	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Reachability	Problem

• Given	a	directed	graph	𝐺 = (𝑉, 𝐸),	and	two	sets	of	
vertices	𝑆, 𝑇 ⊆ 𝑉,	𝑇 is	reachable	from	𝑆 if	there	is	a	
path	from	𝑆 to	𝑇.	

• Reachability	Problem	(𝐺, 𝑆, 𝑇) ∶	decide	if	𝑇 is	
reachable	from 𝑆 in	𝐺.	

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Algorithm	for	deciding	Reachability	G,S,	T

Set	Marked	:= {}
Queue	Q	:=	S
Marked	:=	Marked	∪	S	
while Q	is	not	empty

t	←	Q.dequeue()
if t	∈ 𝑇 return “yes”
for each (t,u)	∈ E

if u	∉Marked	then
Marked	:=	Marked	∪ {u}
Q	:=	enqueue(Q,	u)

return “no”

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Verifying	Invariants	by	solving	
Reachability

Given	𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉	and	a	candidate	invariant	𝐼,	how	to	check	
that	𝐼	is	indeed	an	invariant	of	𝒜?

Define	a	graph	G = 〈𝑉, 𝐸〉 where	
𝑉 = 𝑣𝑎𝑙 𝑋

𝐸 = 𝑢, 𝑢t ∃	𝑎 ∈ 𝐴, 𝑢
G
→𝑢t}

Claim. 𝐼 �
is	not	reachable	from	Θ in	𝐺 iff 𝐼 is	an	invariant	of	𝒜.

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

Summary

• Well-formed	specifications	in	the	HIOA	
language	define	automata

• Invariants:	Properties	that	hold	at	all	reachable	
states.	𝑹𝒆𝒂𝒄𝒉𝓐 ⊆ [𝑰]

• BFS	to	verify	invariants	automatically	for	
(finite)	automata

Lecture	Slides	by	Sayan	Mitra
mitras@illinois.edu

