

Molecular DynamicsPreliminaries

P. K. Padmanabhan Dept. of Physics IIT Guwahati

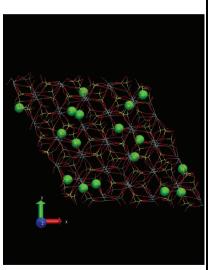
A Brief History of MD

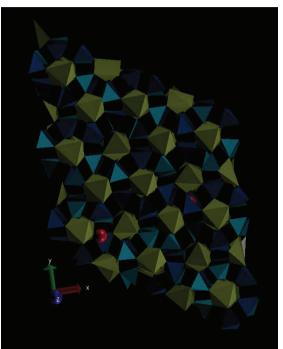
- ✓ 1957, 59 Alder-Wainwright, introduction of basic MD
 - Of hard sphere particles.
- ✓1964 Rahman, study of liquid Ar (NVE-MD)
 - First quantitative study reported.
- ✓ 1980, 81 Andersen, Parrinello-Rahman
 - Constant Pressure (NPT) MD.
- **✓** 1984, 86 **Nose, Hoover**
- Constant Temperature (NVT) MD.
- ✓1985 Car-Parrinello, ab initio MD
 - Based on Density Functional Theory (1960s)
 - Hohenbrg-Sham
 - Kohn-Sham

A movie

System:

 $Na_3Zr_2Si_2PO_{12}$





Two excellent Books

Computer Simulation of Liquids

M. P. ALLEN

H. H. Wills Physics Laboratory University of Bristol

and

D. J. TILDESLEY

Department of Chemistry The University, Southampton

Understanding Molecular Simulation

From Algorithms to Applications

Daan Frenkel

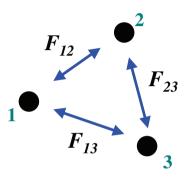
FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands

> Department of Chemical Engineering, Faculty of Sciences University of Amsterdam Amsterdam, The Netherlands

Berend Smit

Department of Chemical Engineering Faculty of Sciences University of Amsterdam Amsterdam, The Netherlands

Three Atoms



$$F_i = \sum_{j \neq i} F_{ij}$$

$$F_{1} = F_{12} + F_{13}$$
 $F_{2} = F_{21} + F_{23}$
 $F_{3} = F_{31} + F_{32}$

Newton's IInd Law:

$$a_i = F_i / m_i$$

As Time Progress...

$$x(t) \rightarrow x(t+\Delta t)$$

$$y(t) \rightarrow y(t+\Delta t)$$

$$z(t) \rightarrow z(t+\Delta t)$$

$$\Delta t \sim 1-5 \text{ fs } (10^{-15} \text{sec})$$

Taylor Expansion:

$$v(t + \Delta t) = v(t) + \Delta t \frac{f(t)}{m}$$

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2m}\Delta t^{2}$$

too crude to use it as such!!

A good Integrator

Verlet Scheme:

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{f(t)}{2m}\Delta t^2 + \frac{\Delta t^3}{3!} \ddot{r} + \mathcal{O}(\Delta t^4)$$

Newton's equations are time reversible,

$$r(t - \Delta t) = r(t) - v(t)\Delta t + \frac{f(t)}{2m}\Delta t^2 - \frac{\Delta t^3}{3!} \ddot{r} + \mathcal{O}(\Delta t^4)$$

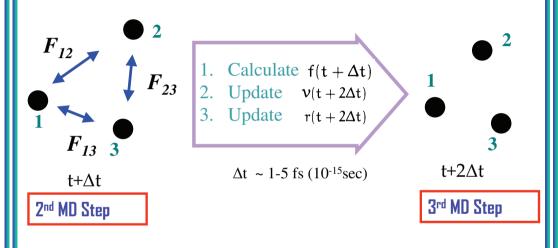
Summing the two equations,

$$r(t + \Delta t) \approx 2r(t) - r(t - \Delta t) + \frac{f(t)}{m} \Delta t^2$$

Now we have to advanced our atoms to time $t+\Delta t$!

Velocity of the atoms:
$$v(t) = \frac{r(t + \Delta t) - r(t - \Delta t)}{2\Delta t}$$

...Atoms move forward in time!



Continue this procedure for several lakhs of Steps. Or as much as you can afford!

The main O/P of MD is the **trajectory**.

The missing ingredient... Forces?

Force is the gradient of potential:
$$f_x(r) = -\frac{\partial u(r)}{\partial x}$$

$$U = \frac{-Gm_1m_2}{r}$$
 too weak,
Neglect it!!

The predominant inter-atomic forces are Coulombic in origin.

$$U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

However, this pure monopole interaction need not be present!

Interatomic forces for simple systems

(non-bonded interactions)

1. Lennard-Jones Potential:

$$u^{lj}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Gives an accurate description of *inert gases* (Ar, Xe, Kr etc.)

2. Born-Mayer (Tosi-Fumi) Potential:

$$\mathcal{U}(r_{ij}) = \frac{q_i \, q_j}{r_{ij}} + A_{ij} \exp(-r_{ij}/\rho_{ij}) - \frac{C_{ij}}{r_{ij}^6}$$

Faithful in describing *pure* ionic solids (NaCl, KCl, NaBr etc.)

The Lennard-Jones Potential

$$u^{lj}(\mathbf{r}) = 4\epsilon \left[\left(\frac{\sigma}{\mathbf{r}} \right)^{12} - \left(\frac{\sigma}{\mathbf{r}} \right)^{6} \right] \quad \text{for } A\mathbf{r} : \quad \epsilon/k_{\mathrm{B}} = 119.8 \text{ K}, \quad \sigma = 3.405 \text{ Å}$$

$$U^{lj}(\mathbf{r}) (k_{\mathrm{B}})$$

$$\leftarrow \quad Pauli's \ repulsion$$

$$F_{ij} = -\nabla U_{ij}$$

$$F_{ij}^{x} = -\frac{\partial U}{\partial x_{i}} = -\frac{\partial U}{\partial r_{i}} \frac{\partial r}{\partial x_{i}}$$

$$\mathbf{r}(\mathbf{n}\mathbf{m})$$

$$\mathbf{r}_{ij}^{x} = 4\epsilon \left(\frac{12\sigma^{12}}{r^{14}} - \frac{6\sigma^{6}}{r^{8}} \right) (x_{i} - x_{j})$$

$$\mathbf{r}_{\min} = 2^{1/6}\sigma.$$

Length and Times of MD simulation

Typical experiment sample contains $\sim 10^{23}$ atoms!

Typical MD simulations (on a single CPU)

- a) <u>Can include 1000 10,000 atoms (~20-40 Å in size)!</u>
- b) run length $\sim 1 10 \, ns \, (10^{-9} \, \text{seconds})!$

Consequence of system size:

Larger fraction of atoms are on the surface, $\frac{Ns}{N} = \frac{4\pi r^2 dr \rho/m}{\frac{4}{3}\pi r^3 \rho/m} = 3\frac{dr}{r}$

$$\frac{Ns}{N}(Expt.) \sim 3\frac{(3A)}{10^8 A} \sim 10^{-7}$$

$$\frac{Ns}{N}(MD) \sim 3\frac{(3A)}{20A} \sim 0.45$$

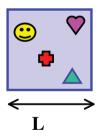
Surface atoms have different environment than bulk atoms!

The Simulation Cell

Insert the atoms in a perfectly **porous** box – simulation super-cell.

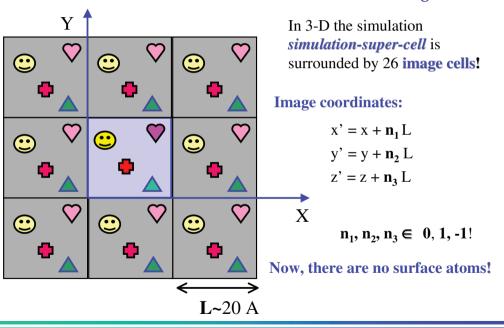
The length of the box is determined as, $L^3 = M/D_{exp} = N*m/D_{exp}$

 D_{exp} = Expt. density; m = At. mass; N= No. of atoms;

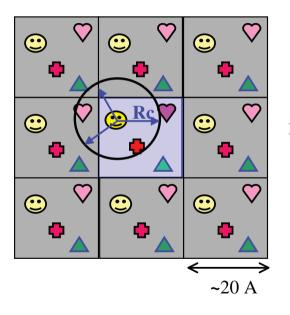


Periodic Boundary Condition

Construct Periodic Images:



Minimum Image Convention



Interactions between atoms separated by a chosen cutoff distance (Rc) or larger (ie, $\mathbf{r_{ii}} > \mathbf{Rc}$) are neglected.

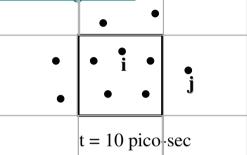
Rc is chosen such that $U(\mathbf{Rc}) \sim 0$

A large enough system (ie, bigger *sim.-cell*) is chosen such that $Rc \le L/2$.

Thus particle **i** interact either with particle **j** or one of its images, **but not both**!

$$t = 0$$

As Time Progress...



Force between **i** & **j**:
$$F_{ij}^{x} = 4\varepsilon (\frac{12\sigma^{12}}{r_{ij}^{14}} - \frac{6\sigma^{6}}{r_{ij}^{8}})(x_{i} - x_{j})$$

How to find the image of **j** that is nearest to **i**?

The three lines of code...

Define,

$$dx = x(j) - x(i)$$

$$dy = y(j) - y(i)$$

$$dz = z(j) - z(i)$$

$$dx = dx - boxl*ANINT(dx/boxl)$$

 $dy = dy - boxl*ANINT(dy/boxl)$
 $dz = dz - boxl*ANINT(dz/boxl)$

$$rij_2 = (dx^*2 + dy^*2 + dz^*2)$$

 $rij_8 = rij^*8$
 $rij_14 = rij^*14$

$$boxl \equiv L$$

$$F_{ij}^{x} = 4\varepsilon \left(\frac{12\sigma^{12}}{r_{ij}^{14}} - \frac{6\sigma^{6}}{r_{ij}^{8}}\right)(x_{i} - x_{j})$$

The structure of a simple MD code

```
program md

call init
t=0
do while (t.lt.tmax)
    call force(f,en)
    call integrate(f,en)
    t=t+delt
    call sample
enddo
stop
end
```

simple MD program

initialization

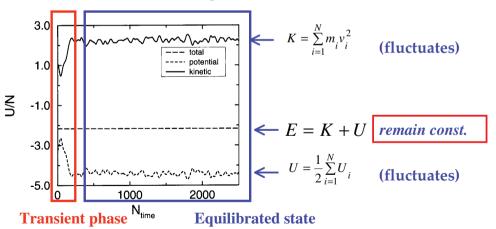
MD loop determine the forces integrate equations of motion

sample averages

Remarks on Statistical Ensemble

There is no energy coming in Or going out of our system of atoms: micro-canonical (NVT) ensemble.

Thus the **total energy (E)** and total linear momentum of the system should be conserved – through out our simulation!



Calculating Temperature

Equipartition theorem:
$$\frac{3}{2}NkT(t) = \frac{1}{2}\sum_{i}^{N}m_{i}v_{i}^{2}$$

Instantaneous temperature:
$$T(t) = \frac{1}{3Nk} \sum_{i}^{N} m_i v_i^2$$

Average temperature :
$$\langle T \rangle = \frac{1}{M} \sum_{m=1}^{M} T_m$$

M – no. of MD steps performed

Even if we start with $v_i = 0$, the system picks up non-zero v (hence **some T**) as time progress!

1

D 3

This **some T(!)** need not be what we want!

So how do we **control T**?

Controlling the Temperature?

Velocity rescaling:

Actual temp. at some instant.

$$T = \frac{1}{3Nk} \sum_{i}^{N} m_i v_i^2$$

If T is out side the fluctuation window around T_r : $T_r - \Delta T < T > T_r + \Delta T$

Then **scale** all velocities: $v_r = \left(\frac{T_r}{T}\right)^{\frac{1}{2}} v$

This instantly bring the $T = T_r$!

However to sustain the temp. around **Tr** we will need to do this procedure several times at intervals.

Note: This phase of the simulation is should not used for averaging!

Calculating thermodynamic quantities

Average Energy,
$$\langle U \rangle = \frac{1}{M} \sum_{i=1}^{M} U_i$$

Average Pressure,
$$\langle \mathcal{P} \rangle = \frac{Nk_BT}{V} + \frac{1}{3V} \sum_{i=1}^{N} \left\langle \vec{r_i} \cdot \vec{f_i} \right\rangle$$

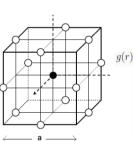
Heat Capacity, Cv:
$$\frac{\left[\langle T^2 \rangle - \langle T \rangle^2\right]}{\langle T \rangle^2} = \frac{2}{3N} \left(1 - \frac{3k_B}{2C_v} \right)$$

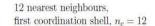
Structural Characterization

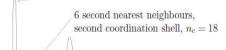
Radial Distribution Function (rdf)

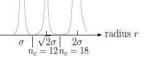
$$g(r) = \frac{V}{4\pi r^2 \Delta r N^2} \sum_{i}^{N} n_i (r, \Delta r)$$

$$n_c = 4\pi\rho \int_0^{r_c} dr \, r^2 g(r)$$

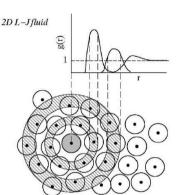




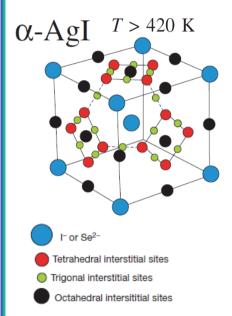


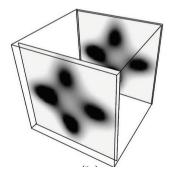


Rdf of fcc-solid



...Structural Properties: Site Occupancies





PRL 97, 166401 (2006)

Dynamical Properties: Diffusion Coefficient

Fick's Law:
$$\vec{j}(\vec{r},t) = -D\nabla \rho(\vec{r},t)$$

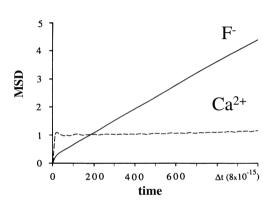
Continuity Eq.:
$$\partial \rho(\vec{r},t)/\partial t + \nabla \cdot \vec{j}(\vec{r},t) = 0$$

Diffusion Eq.:
$$\partial \rho(\vec{r},t)/\partial t = D\nabla^2 \rho(\vec{r},t)$$

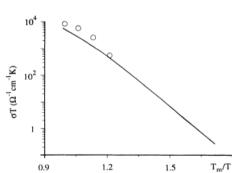
Einstein's relation:
$$D = \lim_{t \to \infty} \frac{1}{6t} \langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle$$
 $\sim Nr.$ MSD

Nernst-Einstein's relation:
$$\sigma = Nq^2D / fk_BT$$

...Diffusion Coefficient: CaF2



$$\sigma = Nq^2 D / fk_B T$$



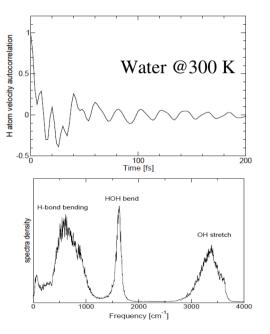
...Dynamical Properties: Vibrational Spectrum

Velocity Autocorrelation Spectrum,

$$c_{vv}(\tau) = \langle \mathbf{v}_i(\tau)\mathbf{v}_i(0)\rangle$$

Power Spectrum,

$$= \int_{-\infty}^{\infty} d\tau \, e^{-i\omega\tau} c_{vv}(\tau)$$



Remarks on Energy

- Energy conservation, $\frac{\Delta E}{E} \sim 10^{-6}$ -good check on your code! -time integrator! -on time step (Δt) used!
- Start from the expt. crystal structure if available.
- Else? Start from good guess! (like, in bio-systems, polymers, liquids)
 - And, perform an energy minimization!
 (Routines available in standard packages.
 Or, do an MD with constant velocity scaling.)
 - Reaching a well equilibrated structure can be very very costly!
- Fluctuation of U(t) about a mean helps to identify equilibrated system.

Remarks on Interatomic Forces

- Development of good force fields (FF) can be a tough task!
 FF's are developed by empirical methods or ab-initio calculations.
- FF assume that electronic clouds around the nucleus of atoms is intact irrespective of the environment around the atom!

This can be a poor assumption for highly polarizable atoms/ions!

Solution?

Develop a shell model of atoms/ions!

Or DFT-based ab-initio (Car-Parrinello) MD calculations!

Comments on Classical MD

Very powerful in studying a variety of physical phenomena and under several external conditions (T & P).

Extensively employed to understand Physical processes at atomic resolution Phase Transitions,

Diffusion and transport properties,

Local structural and short-time relaxation of

- ✓ crystalline and amorphous solids
- ✓ liquids
- ✓ solid-fluid interfaces
- ✓ nano-clusters

And, serves a very useful bridge between experiment and theory!

Not useful in the study of electronic properties!

Not powerful enough to describe chemical reactions!

