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A Brief History of MD

v'1957, 59 Alder-Wainwright, introduction of basic MD
- Of hard sphere particles.
v'1964 Rahman, study of liquid Ar (NVE-MD)
- First quantitative study reported.
v'1980, 81 Andersen, Parrinello-Rahman
- Constant Pressure (NPT) MD.
v'1984, 86 Nose, Hoover
- Constant Temperature (NVT) MD.
v'1985 Car-Parrinello, ab initio MD
- Based on Density Functional Theory (1960s)
* Hohenbrg-Sham
= Kohn-Sham
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System:

Na;Zr,Si,PO,,

A movie
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Three Atoms
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Newton’s I1" Law:




As Time Progress...
x(t) — xX(t+At)

2
@,
1 y() — y(t+AD)
~ z(t) — z(t+At)

3 3 At ~ 1-5fs (10-Psec)
Taylor Expansion:
£(t) too crude to
vt + At) = v(t)+ AtF use it as such!!
f(t)

I(t + At) = 1(t) + v(t)At + mAtZ \




A good Integrator

Verlet Scheme:

ft) ., A3
P T
Newton’s equations are time reversible,
f(t) At3

T(t — At) = r(t) — v(t)At + Z—At -3 T +0(AtY)

r(t + At) = r(t) + v(t)At + T +0(AtY)

Summing the two equations,

T(t+ At) = 2r(t) — r(t — At) + Ln:)Atz

Now we have to advanced our atoms to time t+At !!

T(t + At) — r(t — At)
2At

Velocity of the atoms: v(t) =




...Atoms move forward in time!

F:Z/’ 1. Calculate f(t + At) o
. alculate t+ At
IF23 1

2. Update v(t+2At)

1 ™ Y 3. Update  r(t +2At) ® P
Fi; 3 3
AL At ~ 1-5 fs (10" Psec) t+2At

2 MD Step 3rd MD Step

Continue this procedure for several lakhs of Steps.
Or as much as you can afford!

The main O/P of MD is the trajectory.




The missing ingredient... Forces?

ou(r)
0x

Force is the gradient of potential: fx(r) = -

Gravitational Potential: U= —Gmm, Z

r

too weak,
Neglect it!!

The predominant inter-atomic forces are Coulombic in arigid

1
y-_1 44

4re, 1 a

k- q2

However, this pure monopole interaction need not be present!
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Interatomic forces for simple systems
(non-bonded interactions)

1. Lennard-Jones Potential:

. 12 6
win =e[(5) - ()]
Gives an accurate description of inert gases

(Ar, Xe, Kr etc.)

2. Born-Mayer (Tosi-Fumi) Potential:

qi g Yy
M(Tij) =21 4 Aij e:ap(—ﬂj/ﬂz‘j) - éj '
rij ri.

Faithful in describing pure ionic solids
(NaCl, KCI, NaBr etc.)
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The Lennard-Jones Potential

w(r) (kp)

&— Pauli’s repulsion
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Length and Times of MD simulation

Typical experiment sample contains ~ 10?3 atoms!

Typical MD simulations (on a single CPU)
a) Can include 1000 — 10,000 atoms (~20-40 A in size)!
b) run length ~ 1 —10 ns (10 seconds)!

Consequence of system size:

Ns _4m’drplm _ dr

Larger fraction of atoms are on the surface, N4 5 3
3 r
—mrplm
3
&(Expt.) ~3BA) o7 NS wmpy ~ 3 GA) 45
N 10°A N 20A

Surface atoms have different environment than bulk atoms!




- The Simulation Cell

Insert the atoms in a perfectly porous box — simulation super-cell.

The length of the box is determined as, L’ = M/D,,,, = N*m/D,,,

Dexp = Expt. density; m = At. mass; N= No. of atoms;
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Periodic Boundary Condition

Construct Periodic Images:

In 3-D the simulation
simulation-super-cell is
surrounded by 26 image cells!

Image coordinates:

x’=x+n,L
y=y+n,L
Z=z+mL

X

nl, nz, Il3 e 0, 1, '1!

Now, there are no surface atoms!




Minimum Image Convention

Interactions between atoms
separated by a chosen cut-
off distance (Rc) or larger

(ie, I

ij > Ro) are neglected.

Rc is chosen such that U(Rc) ~ 0

A large enough system (ie,
bigger sim.-cell) is chosen
such that Re < L/2.

Thus particle 1 interact either

with particle j or one of its
images, but not both!




As|Time Progress...
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How to find the image of j that is nearest toi ?
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X 126" 60°
Force betweeni&j: Fj =de(———3 )(xl.—xj)




The three lines of code...

Define,
dx =x(j) — x(1)
dy =y() - y(@)
dz = z(j) — z(i)

dx = dx — box]I* ANINT(dx/boxl)
dy = dy — boxI* ANINT(dy/boxl)
dz = dz — box]* ANINT(dz/boxl)

rij_2 = (dx**2 + dy**2 + dz**2)
rij_8 = rij**8

rij_14 = rij**14

boxl =L

ANINT(3.49) = 3

ANINT(1.2) =1
ANINT(3.51) =4

ANINT(-11.50) = -11

1202
X _
Fij = 48(7r 13
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The structure of a simple MD code

program md

call init

t=0

do while (t.lt.tmax)
call force(f,en)
call integrate(f,en)
t=t+delt
call sample

enddo

stop

end

simple MD program
initialization

MD loop

determine the forces

integrate equations of motion

sample averages

e ¥
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Remarks on Statistical Ensemble

There is no energy coming in Or going out of our system of atoms:

micro-canonical (NVT) ensemble.

Thus the total energy (E) and total linear momentum of the system
should be conserved — through out our simulation!

3.0

. N,
Transient phase "™

——— total

1000

. N

fe— KT==§:n2v?
potential =
kinetic

< E=K+U

U lgiU

ik < U g
2000
Equilibrated state

(fluctuates)

remain const.

(fluctuates)
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Calculating Temperature

k5
. 3 1y 5
Equipartition theorem: NkT (1) = EZ m.y:
l
1 N
Instantaneous temperature: T(1)=——> m v’
11
M
Average temperature : <1 >=— > T

3Nk S
m=1

M — no. of MD steps performed

‘ 2 Even if we start with v, =0, the system picks up
non-zero v (hence some T) as time progress!

’ . 3 This some T(!) need not be what we want!

So how do we control T?




Controlling the Temperature ?

Velocity rescaling:

Actual temp. at some instant. 3 Nk Z

If T is out side the fluctuation window around T,: T —AT <T'>T +AT

T )2
Then scale all velocities: YV, = (_) v

This instantly bring the T=T, !

However to sustain the temp. around Tr we will need to do this
procedure several times at intervals.

Note: This phase of the simulation is should not used for averaging!




Calculating thermodynamic quantities

1 M
Average Energy, <U>=—>U.
g gy m QU

i=1

Average Pressure, (P} = N;EFT + % z <f;. . _f;>

Heat Capacity, Cv: (7% —(T)?] _ 2 (, 3ks
(T)2 3N 20,




Structural Characterization

2D L-Jftuid

v N
472 ArN? Z s (r, Ar)
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Radial Distribution Function (rdf)
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...Structural Properties: Site Occupancies

o-Agl T>420K

. I~ or Se2-

. Tetrahedral interstitial sites
(@ Trigonal interstitial sites

'. Octahedral intersititial sites

PRL 97, 166401 (2006)




Dynamical Properties: Diffusion Coefficient

Fick’s Law: j(7,t) = —DVp(F,t)
Continuity Eq.: ~ dp(F.t)/dt + V- j(F.t) =0

Diffusion Eq.: dp(r,t) /0t = D Vep (7, 1)

Einstein’s relation: ) — lim i(|r(t} —r(0)?) -Nr. MSD

t—oc OF

Nernst-Einstein’s relation: 0 = Ng D/ fk v




MSD
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... Diffusion Coefficient: CaF2

F_

0 200 400 600 At (8x10™)
time

o=Nq’D/ fk,T

oT (@ em'K)

10°

CaF2




...Dynamical Properties: Vibrational Spectrum

Velocity Autocorrelation
Spectrum,

Cov (T) - <Vz' (T)Vi(0)>

Water @300 K _

H atom velocity autocorrelation

200

Power Spectrum,

spectra density

OH stretch

I L
3000 4000




Remarks on Energy

* Energy conservation, AE 10 ¢  -good check on your code!
-time integrator!

-on time step (At) used!
* Start from the expt. crystal structure if available.
* Else? Start from good guess! (like, in bio-systems, polymers, liquids)

* And, perform an energy minimization!
(Routines available in standard packages.
Or, do an MD with constant velocity scaling.)

* Reaching a well equilibrated structure can be very very costly!

* Fluctuation of U(t) about a mean helps to identify equilibrated system.




Remarks on Interatomic Forces

Development of good force fields (FF) can be a tough task!

FF’s are developed by empirical methods or ab-initio calculations.

FF assume that electronic clouds around the nucleus of atoms is
intact irrespective of the environment around the atom!

This can be a poor assumption for highly polarizable atoms/ions!

Solution?
Develop a shell model of atoms/ions!

Or DFT-based ab-initio (Car-Parrinello) MD calculations !




- Comments on Classical MD

‘ Very powerful in studying a variety of physical phenomena and under
several external conditions (T & P).

Extensively employed to understand Physical processes at atomic resolution
Phase Transitions,

Diffusion and transport properties,

Local structural and short-time relaxation of
v’ crystalline and amorphous solids

v liquids

v'solid-fluid interfaces

v'nano-clusters

And, serves a very useful bridge between experiment and theory!

‘ Not useful in the study of electronic properties!
Not powerful enough to describe chemical reactions!




Thank you!




