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Microcanonical simulations have shown that Ar,, clusters have sharp but unequal melting and
freezing energies. Between these energies, a hot solid-like form and a cooler, liquid-like form
coexist in dynamic equilibrium. Monte Carlo and isothermal molecular dynamics simulations
confirm that this coexistence behavior persists under canonical conditions as well. Many
properties demonstrate the solid and liquid character of the two coexisting “phases.” One
previous result seemed to contradict this: Quirke and Sheng evaluated nearest neighbor
angular distribution function P(#); its nonzero value for 8 = 7/2 at 33 K was interpreted as
that of a hot solid in a “premelting expansion.” Actually, that result is the average of a bimodal
distribution, one mode for the solid and the other for the liquid. The average shifts smoothly
with 7, and each form’s P(6) changes slightly with temperature. The solid has tiny nonzero
probability for /2. The liquid has a minimum probability there, but far above zero. Mean-
square displacements and power spectra calculated at 33 K from the Nosé constant
temperature molecular dynamics method exhibit properties which are clearly distinguishable
and identifiable with two distinct phases, as they are under isoergic conditions. Hence our
results can be added to the evidence supporting the picture for finite systems of two phases

coexisting over a finite temperature and energy range.

I. INTRODUCTION AND MODEL

Computer simulations of Kristensen ez a/.,! Briant and
Burton,” Kaelberer and Etters,? and McGinty* have indicat-
ed that free, argon-like clusters can exist in both solid- and
liquid-like forms, and that the transition between these
forms is much more complicated than the gradual, expan-
sive type of phenomenon that might previously have been
expected for such small systems. Berry et al.>¢ have devel-
oped a quantum statistical model to provide insight into the
observed melting behavior of these systems and in so doing
have made some specific predictions. According to their
“two-phase” model, a small, Ar-like cluster will, under iso-
thermal isobaric conditions, exhibit sharp but unequal freez-
ing and melting temperatures, called 7, and 7,,,, respective-
ly; T; is the lower bound of the stability of the liquid form
and T, is the upper bound of the stability of the solid form.
For a system large enough to undergo a first-order phase
transition, these temperatures necessarily coincide, but for
small clusters, they bound a finite “coexistence region.” For
each temperature in this region, two stable forms of the clus-
ter—one nearly rigid and solid-like, the other nonrigid and
liquid-like—exist in stable equilibrium, in a temperature de-
pendent distribution.

Extensive isoergic molecular dynamics (MD) studies of
Jellinek, Beck, and Berry’ (JBB) and Amar and Berry® have
revealed that this type of coexistence behavior occurs for
Ar,; and several other small isoergic Ar, systems.’ In this
paper we report isothermal results for the Ar, ; cluster which

*) Present address: Chemistry Division, Argonne National Laboratory, Ar-
gonne, Illinois 60439.
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parallel those obtained by Jellinek, Beck, and Berry and pro-
vide the first direct evidence in support of the canonical two-
phase model for such systems. Doing so, we naturally ex-
plain an apparent discrepancy in the Monte Carlo
literature—namely that some structural data obtained by
Quirke and Sheng'® seemed to imply that the melting behav-
ior of Ar;; occurs not with the rapid onset of a liquid phase,
as suggested from the studies of Etters and Kaelberer® (and
MD studies?), but as the gradual transformation of a single
stable form with temperature. We will explicitly show that
the results of Quirke and Sheng (QS) and Etters and Kael-
berer (EK) are consistent and are consequences of a two-
phase coexistence phenomenon, but first we review the mi-
crocanonical results of Jellinek, Beck, and Berry’ for this
system.

In isoergic MD simulations at low total energies, the
Ary, cluster exhibits a single stable form having the struc-
tural and dynamical characteristics of a solid; at significant-
ly higher energies, only a liquid appears. For a finite range of
intermediate energies, two forms having different mean po-
tential energies appear in stable equilibrium. For every total
energy in this intermediate range, the cluster spends a long
enough part of the simulation time in each mean potential
region to establish a temperature and other relevant proper-
ties characteristic of that phase. Long-time averages of rela-
tive bond length fluctuations, mean-square displacements
and velocity autocorrelation functions indicate that the two
“temperature forms” are distinct; one is liquid-like, the oth-
er solid-like. Temperature distributions obtained in this co-
existence region are bimodal for Ar,, and other, but not all,
small Ar,, clusters.® For all species exhibiting bimodal distri-
butions, the probability of finding a cluster in a low tempera-
ture (high potential energy) form increases monotonically
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FIG. 1. The inverse equilibrium constant K ' = [solid]/[liquid] of Jel-
linek, Beck, and Berry given as a function of total energy. K, (E,) has
been calculated by counting the number of time steps spent in each tempera-
ture form and taking the ratio of time spent in a liquid- to solid-like form.
Values have converged to 3%. A discussion of this function’s behavior near
the end points is given in the text.

as a function ot total energy. (See Figs. 1 and 2.)

Il. METHODS

We have employed both a Metropolis Monte Carlo algo-
rithm'! and the Nosé constant temperature MD method '>13
for our simulations. The latter technique couples our phys-
ical system to a “bath” by adding an extra degree of freedom
(more precisely, one pair of canonical variables) to Hamil-
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FIG. 2. Calorid curve produced from the isoergic study of Jellinek, Beck,
and Berry. We have converted their kinetic energy values to those of tem-
perature with the approximation 7= 2E/[ (3N — 6)k] so that their re-
sults may more easily be compared to ours. Circles represent data obtained
over an entire MD simulation. For energies outside the coexistence region,
open circles are used. Triangles represent temperatures calculated separate-
ly over each phase inside the “two-phase” region.

ton’s equations in a manner which is guaranteed under the
quasiergodic hypothesis to give canonical averages of static
properties. It affords the additional opportunity of calculat-
ing some dynamical properties. These may be useful in dis-
tinguishing different potential energy forms as disparate
phases and not simply different solid isomers.

The Monte Carlo calculations were performed under
the guidelines of Etters and Kaelberer.'* A Lennard-Jones
potential was used with the same parameters
(0 =3.4X10"%cm, € = 1.67X 10~ '* erg) chosen by EK,
QS, and JBB to simulate the interatomic potential of Ar. All
runs consisted of at least 10° configurations; as many as 107
were used in some cases. For T <26 K and T'> 37 K, simula-
tions were extended until final averages of the potential ener-
gy approached convergence to within 1%. For each interme-
diate temperature, a coexistence of two phases of the cluster
was observed, and the potential energy, when averaged sepa-
rately over each phase, also approached convergence to
within 19%. Obtaining such a level of convergence for the
potential energy fully averaged over both phases proved
much more difficult than over single phases because it re-
quired not only that the potential energy calculated for each
phase reach its equilibrium value to the desired degree of
accuracy but also that the distribution of coexisting phases
approach equilibrium as well. For most of our calculations,
the expectation value of the fully averaged potential energy
has only been obtained to within 2%.

Before presenting our results, it is worth mentioning a
problem inherent to all Lennard-Jones, free boundary MC
calculations; namely, the average potential energy of the en-
tire system

SX2 Us(r)e
(U>=Z — Uy(r)/k
ici f§rre """"Tadr
vanishes in the limit of an infinite number of configurations.
This problem corresponds physically to evaporation of
atoms from the surface and is not unexpected. However, for
most of our calculations—all started in configurations of the
bound cluster—expectation values of physical properties
could be obtained to within the desired degree of accuracy
while the cluster remained in its “metastable” bound state.'?
At T>37 K, combining the results of several “short” runs
became necessary to obtain reasonable averages prior to
evaporation.'®

— Uy (r)/kT
WO gy

(1

Hll. CALCULATIONS AND RESULTS

A caloric curve (Fig. 3) has been generated for the Ar,,
system by plotting the total energy per atom, as obtained
from each of our MC simulations, against temperature. For
a range of temperatures 26<T<37 K, the potential energy
and the total energy are two-valued functions of tempera-
ture. We demonstrate in a later section that this range of
temperatures comprises a coexistence region, like that pre-
dicted from the two-phase model of Berry et al. and observed
during recent MD simulations of this system.”®

The configurational heat capacity C is calculated as

J. Chem. Phys., Vol. 86, No. 11, 1 June 1987

Downloaded 13 Feb 2004 to 128.135.233.75. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6458 Davis, Jellinek, and Berry: Melting and freezing in clusters

-3.0 LB T T
€ -“35F 7
: i o
2 4.0 4
. 45 ad
- L
= M
= 50F e 2 T
5 o8
P oss| o © -
) :
- 1 1 - 1

0
0.0 10.0 20.0 30.0 40.0 50.0
Tk

FIG. 3. To the potential energy derived from each MC simulation, we have
added a kinetic energy (calculated from a direct scaling of temperature) to
produce a caloric curve of total energy as a function of temperature. The
coexistence end points have not yet been determined precisely. See caption
under Fig. 2 for key.
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where ( ) represents the averaging over an entire MC simu-
lation. C is given as a function of temperature in Fig. 4. For
temperatures near 20 K, the value of the configurational
heat capacity is approximately 3 10~ ergs/K. Near 26
K, this function begins to increase steeply, reaching roughly
five times its former value at a temperature of 35 K. Our
curve of C(T) is much like that obtained for this system by
Quirke and Sheng.'® Its smooth, broad shape led Quirke and
Sheng to argue that no familiar, abrupt phase transition was
occurring for this system. However its broad peak is consis-
tent with the finite coexistence range observed for this sys-
tem and predicted from the model of Berry et al.>®

For a system as small as 13 particles, the correlation
between results obtained from microcanonical and canoni-
cal ensembles is not necessarily trivial. However, our caloric
curve is very closely the inverse of that obtained from the
isoergic studies of JBB. Figure 5 compares our results.

Extending the two-phase model and its notation to the
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FIG. 4. Configurational heat capacity given as a function of temperature,
expressed in units of 10~ % ergs/K.
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FIG. 5. Our total energy values (A) superimposed onto the caloric curve of
Jellinek, Beck, and Berry (O). All points represent averages over entire
simulations; for darkened points this implies a combined average over coex-
isting forms.

microcanonical ensemble, one would expect the caloric
curve of JBB to jump or at least change slope abruptly at the
freezing E, and melting E,, total energies, reflecting discon-
tinuities in the equilibrium constant K (E) at these
points.%’ Given the numerical limitations on the resolving
power of these calculations and the fact that the predicted
discontinuity in the equilibrium constant could be extremely
small, the shape of the caloric curve is not unreasonable; the
general differences between the coexistence and single-phase
regions in their curve are evident.

It is straightforward to observe coexistence using either
constant energy or isothermal MD calculations. For con-
stant temperature calculations, short-time averages of the
potential energy can be obtained over a few of the cluster’s
breathing periods; when plotted against time, these separate
into distinct bands, each of which is easily distinguished by
eye and usually shows the cluster staying in a particular po-
tential energy region for times long, relative to its character-
istic breathing period. (See Fig. 6.)
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FIG. 6. Short-time potential energy averages vs time for a typical Nosé type
simulation of coexistence behavior. Each point represents an average over
1800 steps, each of which is 0.003 ps so that each point represents roughly
three of the cluster’s characteristic breathing periods. Energy is in units of
10~ ergs. Here, Q = 200 A amu®. Points in region (a) represent the solid-
like form of the cluster; those in region (b) are U obtained over the liquid-
like “phase.”
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A more systematic means of separation is obtained by
calculating a distribution for these short-time averages of
potential energy (U). For temperatures in the coexistence
region, such a U distribution appears bimodal. In fact, the
bimodality of the distribution provides a practical criterion
for distinguishing coexistence, as Fig. 7 shows. The mini-
mum of this distribution is chosen as the separation value of
T, or separatrix.'” When the calculation is repeated a mean
potential energy and various other physical properties are
averaged over each short-time interval. The value of U for
each interval is compared to the separatrix. If less, averages
of the properties calculated over this interval are stored in
the low potential energy “bin;” otherwise, calculated prop-
erties are stored in the high potential energy bin. At the end
of the simulation, the short-time averages for each property
are averaged over each bin separately, allowing both parts of
the distribution to be characterized individually.

The MC calculations do not provide the dynamics
which yield such a convenient separation of time scales
(especially with the magic number clusters) in the MD sim-
ulations. In the MC scheme, the short-time potential energy
averages are really averages over a few thousand configura-
tions, unrelated by any dynamics, and although some diffuse
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FIG. 7. Distributions of T values which have been averaged over a small
number of configurations (typically 3500) using MC sampling. The solid
line represents a “best fit” curve to the sum of two Gaussians, except for
temperatures of 20 and 43 K, where the curve represents a fit to a single
Gaussian. For each temperature, the center(s) of the “fit” Gaussian(s)
compares well to the final potential energy average(s) calculated directly
from the program (as the arithmetic mean over a given phase); see Table I.
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bands do emerge when these are plotted sequentially, the
coexisting forms are difficult to distinguish unambiguously
until one invokes a more precisely defined separation scheme
like the abovementioned. For our calculations, the short in-
tervals typically consist of 3500 configurations. However,
for the coexistence temperatures studied, changing this in-
terval to 2000 or 5000 configurations does change the mean
potential energy associated with each mode of the distribu-
tion or the relative areas of the two peaks. When the value of
the short interval is chosen much less than 3500, the calcu-
lated U are widely dispersed, and it becomes difficult or im-
possible to observe any banding in plots of sequential values
of T. If too large an interval is chosen, the calculated U are
likely to contain contributions from each of the coexisting
forms of the cluster, resulting in an inefficient separation of
data. It is then not surprising that previous researchers have
overlooked the coexistence or two-phase phenomenon.

Without the idea of coexisting phases, the competing
data of EK and QS are difficult to reconcile. The results of
EK are presented in terms of a single melting temperature,
occurring for this system near 29 K. If, indeed, there is a
transition from pure solid to pure liquid at this temperature,
QS emphasize that structural data, in particular the angular
distribution function, obtained at higher temperatures
should be indicative of a liquid.'°

The angular distribution function (adf) gives the aver-
age probability of finding nearest neighbors at a given angle
about the center particle; this distribution provides a par-
ticularly good structural probe of the 13-particle cluster. In
its most rigid, icosahedral form, the cluster produces sharp
maxima in the adf for 60° and 120° nearest neighbor angles
but is even better characterized by an absence of probability
for the angle of 90°. A hot, liquid cluster exhibits a more
uniform angular distribution, although peaks at 60° and 120°
still appear.

We obtained results for 33 K, shown in Fig. 8, that are
essentially identical to those of Quirke and Sheng.'® Not re-
alizing this temperature falls within a ”coexistence” region,
QS inferred from the adf that this distribution is one of a
“hot” solid, occurring with the (smooth) onset of a “pre-
melting expansion.” Certainly, it is not representative of a
pure liquid.

What the fully averaged adf shows at this temperature is
the combination of contributions from the two potential en-
ergy forms. When the data for these forms are separated,
very different angular distribution functions emerge. The
high-potential energy form produces less dramatic peaks in
the adf at 60° and 120° and a significantly higher probability
at 90° than does the more rigid low-potential energy form.
Similar results are obtained for each temperature in the co-
existence range. The 90° probability for the combined angu-
lar distribution function P, (90) increases, as one expects, as
the temperature dependent equilibrium constant K, (7)) in-
creases. Looking at the separated distributions at each tem-
perature, we find some mode softening occurring with the
melting phenomenon which also contributes to P (90). Be-
cause the two Gaussians approximating our U distributions
in the coexistence range are typically overlapping, some of
this softening is a numerical artifact of our imperfect separa-
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FIG. 8. (a) The angular distribution function (adf) calculated over all con-
figurations during a 33 K MC simulation. (b) The adf data obtained sepa-
rately over each of the low- and high-potential energy forms; the dashed
curve represents the distribution of the higher potential energy (liquid)
form. (c); (d) adf functions obtained over separate phases for coexistence
temperatures of 30 and 37 K, respectively. (¢); (f) Angular distribution
functions of a pure liquid (dashed curve) at 43 K and a pure solid at 20 K.

tion scheme, but there are other indications that much of this
effect is real.

We have taken “snapshots” of our cluster by extracting
and plotting the coordinates at random points during both
the MC and MD simulations. Snapshots taken at tempera-
tures of 15, 20, and 22 K reveal a very rigid, solid cluster with
near icosahedral symmetry, like that shown in Fig. 9(a). At
very high temperatures, an amorphous cluster is obtained
whose particles frequently interchange. Within the coexis-
tence range, an analog to the solid cluster is observed in the
low potential energy regions; it displays some symmetry, but
is no longer a regular icosahedron and is more expanded
than the pure solid form. The high-potential energy forms
are much less rigid; however, they do not undergo particle
interchange as often or appear as structureless as the clusters
do at pure-liquid temperatures.

Looking at the relative bond length fluctuation as a
function of temperature points up the sharpness of the coex-
istence boundaries for this system. The rms bond length fluc-
tuation 8, which indicates the mobility of atoms in the clus-
ter, is calculated as

2 (r}) — (r.-l)2>“2
6= Y Y , 3
NN -1 %( (6s) (3

FIG. 9. “Snapshots” obtained from Nosé type MD simulations of the 13-
particle Ar cluster. (a) and (b) are clusters obtained from the regions anal-
ogous to those labeled in Fig. 6, at 33 K. Compared to (¢), which has been
obtained from a 20 K simulation and is near the potential energy minimum,
(a) has lost some of its icosahedral symmetry. (b) bears little resemblance
to the clusters obtained at temperatures below 7. The cluster labeled (d) is

typical of that observed at 43 K; no underlying icosahedral symmetry is
present. Similar observations are made from the MC data.

where ( ) denotes, respectively, an ensemble or time aver-
age over either an entire MC or MD simulation. Our results,
given in Fig. 10 as a function of temperature, are similar to
those obtained by EK* and JBB.” Although our curve is
somewhat incomplete, it clearly displays a dramatic change
in the dynamics of the cluster occurring over a narrow range
of temperatures. The sharp increase in § occurs remarkably
close to the 0.1 value corresponding to the Lindemann crite-
rion for melting.'®

Our 5(T) curve appears shifted to lower temperatures
relative to those of EK and JBB. The discrepancy between
our results and those of Etters and Kaelberer is most likely
due to their running much shorter simulations below 29 K.
K., (T) is sufficiently small near 7 to require simulations of
very many configurations (107 and greater) for the liquid-
like phase to be adequately reflected in the 5(7") data. (See
Table 1.)

That the §(T) curve of Jellinek, Beck, and Berry differs
from ours is a direct consequence of the two studies sampling
different ensembles. In the microcanonical study, 6(T) is
plotted against a temperature T(E) which has been aver-
aged over an entire simulation. The lowest temperature at
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which JBB observe the largest increase in the curvature of
8(T) is roughly 33 K. This agrees well with the fully aver-
aged temperature T(E;) corresponding to their reported
freezing energy. However, it is Ty, (E), the average tem-
perature of the nonrigid (higher potential energy) form at
this energy, which should be compared with the temperature
at which the curvature increases most rapidly (presumably,
T;) in the canonical study. This difference in temperatures
[T(E,) — Ty, (E;)] is approximately 7 K and comparable
in magnitude to the observed shift in our §(7") results.

Figure 11 shows the equilibrium constant as a function
of temperature inside the coexistence region. As mentioned
earlier, very long simulations are required to calculate
K, (T) to a high degree of accuracy. The “final” values of
K, given in Fig. 11 agree within 5%. A rough estimate of
K., can be calculated for each coexistence temperature from
the relative areas of each Gaussian in thebimodal U distribu-
tion. The agreement between the values of X (T') averaged
directly from the simulations and the approximate values
obtained from the MC U distributions is quite good, as Table
I indicates.

IV. NOSE’S METHOD AND RESULTS

A description of our isothermal MD calculations is giv-
en in the Appendix. The remarkable feature of Nosé’s meth-
od is that it is capable (in principle) of producing canonical
ensemble averages of physical quantities from time averages
calculated along continuous, deterministic trajectories.
More precisely, one can obtain these averages for equilibri-

TABLE I. Equilibrium constants K, = (liquid)/(solid) obtained directly
from MC simulations compared to those calculated from the U distribution
results.

Keq
T(K) Simulation Distribution
30 1.8x107! 1.7x107!
33 5.7x107! 4.9x107!
35 1.9 1.5
37 5.7 5.3

16.0 20.0 30.0 40.0 50.0

TEMPERATURE
(b}

um quantities, as shown by the comparison in Table II
between our MC and constant temperature MD calculations
of mean potential energy.

The applicability of Nosé’s method for the calculation of
time-dependent functions is not as straightforward. On a
very short time scale, the dynamics induced by this method
are directly related to an arbitrary “pumping” variable Q
which controls the rate of heat exchange between the phys-
ical system and bath. However, some dynamic quantities
seem fairly insensitive to Q. Nosé has found this to be the
case for a system of (108) Ar-like particles at ¥ = 29.88
cm® mol~! and a bath temperature (7, ) of 150 K.'? For
fairly short runs, variation of Q induced differences in the
“noise” associated with the mean-square displacement func-
tion but yielded the basically the same underlying curve of
displacements. Diffusion coefficients calculated for Q’s
ranging from 1 to 100 agreed to within 20%.

Nosé has pointed out that velocity autocorrelation func-
tions obtained from this method with different values of Q
are identical to those calculated from isoergic MD methods
to within statistical errors.'> Evans and Holian have since
shown that the effect of the constant temperature bath on the
physical system produces deviations from the microcanoni-

6.0 T r T
4.5 .
g 3.0 t 1
X~
1.5 r . 1
0.0 ( 1 !
10.0 20.0 30.0 40.0 50.0

T

FIG.11.K, (T) = [liquid}/ [solid] from our MC simulations. T'is in units
of Kelvin. K, (26) has been obtained only to within 10%. Otherwise, data
is reliable to within 5%.
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TABLE II. Comparison of potential energy averages obtained directly from
MC and MD* programs and those derived from the maxima of U distribu-
tions."

Potential energy (10~'2 ergs)

Solid Liquid
T(K) Udistr. MC MD Tdistr. MC MD

15 —0.701 —0.702 —0.702

20 —0.687 —0.687 —0.687

30 —0.651 —0.649 —0.606 —0.585

33 —0.644 —0.634 —0.635 —0.574 —0.568 —0.569
35 —0.628 —0.625 —0.560 —0.567

37 —0.621 —0.620 —0.544 —0542

43 —0.500 —0.497

*MD data represent averages over the results from trajectories with @ = 2,
Q@ =50, and Q =200 amu A? although average potential energies ob-
tained at all values of Q were very similar. See Table III.

v T distributions were generated from MC calculations, as described in the
text.

cal correlation functions of the order O(1/N),%° so that the
response functions for the linear region are well represented
in the large-V (i.e., “thermodynamic”) limit. However, this
theorem is not strong enough to justify assuming, prior to
the calculations, that our results for Ar,; or other small clus-
ters would be within fluctuations of those predicted from
isoergic MD calculations of Jellinek, Beck, and Berry, nor
was it obvious that, for our purposes, our results would be
sufficiently insensitive to Q. As we shall see below, the corre-
lation functions from isoergic and isothermal MD simula-
tions are entirely consistent, suggesting that the Evans-Ho-
lian result for infinite systems is also a useful approximation
even for N as small as 13.

Because dynamical results were to be validated by com-
parison with several values of Q at each temperature, the
method became costly. Therefore, we performed Nosé simu-
lations only at 20 and 33 K; the latter provided a typical
coexistence simulation and was adequate to show that the
coexisting forms exhibit dynamics and structural properties
which are substantially different.

As seen in Table 11, potential energy averages obtained
from this method and from the MC calculations are in good
agreement. Table III shows that the calculated potential en-
ergy values are fairly insensitive to changes in the parameter
Q.

For T, =20 K, the power spectra (calculated as the

TABLE III. Average potential energy values obtained over respective
phases during Nosé MD calculations with T, = 33 K and various values of

Q.

Potential energy (10~ '2 ergs)

40.0 . : :

> 30.0f 20K 1

I._

D)

Z 20.0 t .

LiJ

'—

=z

— 10.0 f :
O'%.O 501.0 106.0 156.0 200.0

FREQUENCY

FIG. 12. Power spectrum obtained using the Nosé MD method with
T, = 20 K. Data shown have been obtained for Q = 100 amu A% Frequen-

cy is in units of 10'!/s; intensity has units of 10~ '4s.

Fourier transforms of the respective velocity autocorrelation
functions) obtained for simulations with @ = 1and Q = 100
amu A2 are in close agreement with each other and with the
typically solid spectrum obtained for this system under mi-
crocanonical conditions. As seen in Fig. 12, there is only a
slight intensity at zero frequency, and a well-defined peak at
o = 40X 10"!/s. The diffusion constant (D) for this system
is likewise typical of a solid system. The values of D calculat-
ed using @ =1 and Q = 100 amu A? are 6.0X10~° and
6.2 X 10~ cm?/s, respectively.

A coexistence of two potential energy forms of the clus-
ter could be observed at 33 K. Figure 6 shows the short-time
potential energy averages as a function of time for Q@ = 200
amu A2 As Q is changed the rate of “jumping” between
potential energy forms changes, but again, the average val-
ues of potential energy do not. Because the value of the fully
averaged potential energy is rigorously independent of Q, the
ratio of time spent in the different potential energy forms
must also be independent of this parameter. As Table IV
illustrates, the agreement between K, values obtained at
different Q ’s is somewhat poor, as is the agreement between
these values and the MC result for K, oq (33). The Nosé simu-
lations have not been carried long enough in this case for the

distribution of the two coexisting forms to reach its equilibri-

um value.

Calculations at T, = 33 K have been performed for
Q =2, 50, 200, and 1000 amu A2 If a value much less than 2
amu A? is entered into the MD program, the system be-

TABLEIV. X, obtained from the Nosé MD method with 7, = 33 K and
various values of Q. The respective K, from MC calculationsis 5.7 x 10~*.

amu A? Solid Liquid Total Q (amu &%) K,
2 —0.635 —0.569 —~0.617 2 3.6x107!
50 —0.636 —0.570 —0.614 50 441071
200 ~0.635 —0.569 —0.616 200 40x10"!
1000 ~0.637 — 0573 —0.621 1000 3.4x107!
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comes unstable, and the integration step size must be re-
duced to maintain a constant level of accuracy; for O on the
order of 1000 amu A? or larger, coupling between the “heat
reservoir” and the system is inefficient, and the coexisting
forms exhibit significantly different temperatures. (See Ta-
ble II1.) The power spectra are virtually identical for all the
tested values of Q. Those calculated for the low potential
energy, rigid form of the cluster display few low frequency
modes. The spectra of the high-potential form show more
diffusive motion, as expected for a liquid. (See Figs. 13 and
14.)

At 33 K, the mean-square displacement functions,
shown in Fig. 15, appear sensitive to the parameter Q. It is
plausible that the differences in these curves arise because
the efficiency of the calculational scheme used to separate
the data for the two coexisting forms is itself a function of Q.
Nonetheless, for each Q considered, D calculated for the
lower potential energy form D% is significantly greater
than D ™", (See Table V.)

For each value of Q, the temperature associated with the
system quickly equilibrates to that of the bath. Such a thor-
ough equilibration is not always achieved (separately) for
each coexisting form of the cluster at 33 K, as seen in Table
ITI. Nosé has shown that the frequency (@) of heat exchange
between the physical system and the bath is proportional to

T/yJQ . Thus, for a given temperature, & increases with de-
creasing Q. That the high potential energy form attains an
average temperature greater than 33 K for Q= 1000
amu A?is an indication that it is exchanging energy with the
bath better than is the low potential energy form. Similarly,
the low potential energy form exchanges heat with the reser-
voir more readily for lower values of Q. This observation is
consistent with the high potential energy form undergoing
softer, lower frequency vibrations than the low potential en-
ergy form and provides further suggestion that what we are
observing at this temperature is the coexistence of two dis-
tinct phases of the 13-particle Ar cluster.

20.0

15.0

INTENSITY

10.0

5.0

0.0 —

" 1
0.0 50.0 150.0 200.0 250.0

1
100.0

FREQUENCY

FIG. 13. Power spectra form the Nosé MD calculations with T, = 33 K;
Q=2 (solid curve) and 200 ( + ) amu AZ Frequency is in units of
10''s. ™! Data represents the low-potential energy form of the cluster exclu-
sively.

33K

15.0 | .. -
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10.0 F -

5.0 4

1
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1 L
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1.
0'00.0 50.0
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FIG. 14. Power spectrum calculated for the high-potential energy form of
the cluster at 33 K. See Fig. 13 for key.

V.CONCLUSION

The objective of this paper has been to test whether the
coexistence behavior observed in microcanonical studies for
several small Ar, systems does occur under canonical condi-
tions, at least for the 13-particle system. Doing s0, we have
provided a necessary assay of the two-phase melting and
freezing model proposed by Berry et al. However, several
important questions remain. It is of particular interest to
obtain a better estimate of how sharp the coexistence end-
points really are. Although many very long simulations
would be necessary to calculate accurately the temperature
boundaries of the coexistence region, knowing this tempera-
ture width to within a degree or less is very important for
both a comparison between the microcanonical and canoni-
cal results for this system and for the understanding of the

3.00 T T T
Y
2.90 /' 1
33K R
g
2.00 ST T
s
o o
73 1.50 | pa .
o
7 -
1.00 s
/’/’
0.50 - e .
) I 1 L
0.00, 3 400.0 800.0  1200.0  1600.0
TIME STEPS

FIG. 15. Mean-square displacement (RSQ) as a function of time calculated
for each of the coexisting forms of the cluster at 7, = 33 K and various
values of Q. The RSQ function indicates the mobility of the cluster. Its long-
time slope, which is consistently larger for the liquid-like cluster than for the
solid, is directly proportional to the diffusion constant. Data for @ = 50
amu A? are indicated by the dashed curve. Otherwise, notation is as in Fig.
13. Units for RSQ are .{2; length of time step is 0.003 ps.
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TABLE V. Diffusion constants and temperatures averaged over each phase
for several values of Q, with 7, = 33 K.

T(K) D (1073 cm®/s)
Q
amu A? Solid Liquid Solid Liquid
2 33.00 33.00 4.4 6.9x107!
50 33.02 32.99 6.5 2.0
200 33.13 32.95 4.1 7.2x107!
1000 32.76 33.69 5.9 2.4

size dependence of the two-phase melting phenomenon.

Although one expects the temperature width (AT, ) of
the coexistence region to decrease as the number of particles
in the cluster increases,®’ the variation of AT, (N) need not
be monotonic with . Recent isoergic studies by Beck, Jel-
linek, and Berry suggest that the behavior of corresponding
energy width AE_ (N) is quite complicated.®'® AE, for the
13-particle cluster is large compared to AE, for other small
clusters. The exceptional width of the coexistence region for
the 13-particle system can be rationalized by the special sta-
bility of the icosahedral ground state with respect to struc-
tural rearrangements. The shapes of the potential surfaces of
Ar,; and some other small clusters allow for a clean separa-
tion of time scales between the interval required for estab-
lishing the properties of the cluster within the region asso-
ciated with one phase and the mean time to pass from one
phase to the other, either during a coexistence simulation or,
presumably, the real world.

For other clusters, where this separation of time scales is
not so clear, we must better understand the dynamics of the
systems before we can draw conclusions about their melting
and freezing properties. For this reason, isoergic MD simu-
lations, based on well-understood Hamiltonians, seem to be
the tool of choice for further research on phenomena involv-
ing rate processes.
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APPENDIX

The Nosé constant temperature MD method has been
extensively reviewed.?>?> We note here that we have em-
ployed the ‘“‘real variable” version of this method. The equa-
tions of motion in this formalism are:

S Ly odad + 20

H., = — + d({q; > T, In(s),

1 i;} 2mi + ( q ) + 2Q +fk b n(s)

(A1)

dq; p;
— =, A2
dt m; (A2)
dp; )
__l.’L= _Qg___spsp, , (A3)
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ds_ps (Ad)
dt Q

dp, _, X (p? ) sp?

aps _ L % A P R AS
ar s .';1 m, JkT, ) (A5)

where the scalar, dimensionless variable s and its conjugate
momentum p, represent a thermal bath. Q can be thought of
as a mass for the degree of freedom s and is in fact a free
parameter; f = 3N — 6in our case, where N is the number of
particles in the physical system. T, is an external parameter
which is interpreted as the temperature of the bath.

With a Hamming’s fourth-order predictor—corrector
program, time steps as small as 0.003 ps were typically re-
quired to conserve H_,,, the linear momentum and the angu-
lar momentum (in the center of mass of the physical system)
to within five significant decimal places.
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