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1 Introduction:

Markov chain models have been the most widely used ones in the study of ran-
dom �uctuations in the genetics compositions of populations over generations.
Besides being a convenient theoretical tool, markov chains have provided rather
satisfactory theoretical explanations to some observed long run phenomena re-
lated to the genetic structure of populations.

Here we shall discuss some of the fundamental and classical research done in
this area with emphasis on the most pioneering classical work done by S.Wright

and R.A.Fisher, presently known as the �Wright-Fisher Model�. We shall
�rst discuss two relatively simple models, namely sel�ng and sibmating.

2 Sel�ng:

For an autosomal gene with two alleles A and a we have three genotypes AA,
Aa and aa. Let us name the states as 1, 2, 3. Let us consider sel�ng and
follow a lone of descent. Thus, if an individual is in state 1 or 3 then all his
descendants will be in the same state. If on the other hand, an individual is in
state 2 then his descendant in the next generation will be in the states 1 or 3
with the probability 1/4 each or in state 2 with the probability 1/2. Thus we
have a Markov chain (Xn) with three states 1, 2 3. Its transition matrix is given
as follows,

P =

 1 0 0
1/4 1/2 1/4
0 0 1


In this entire analysis, we assume that there are no mutations or �tness con-
straints. The states 1 and 3 are absorbing while state 2 is transient. This matrix
is simple enough to allow a full analysis as follows. The matrix has eigenvalues 1,
1 and 1/2. The corresponding right eigenvectors are (1, 1, 1),(1, 2, 3) and (0, 1, 0)
while the left eigenvectors are (3/2, 0,−1/2),(−1/2, 0, 1/2) and (−1/2, 1,−1/2).
Thus, P can be diagonalized as follows,
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P =

 1 1 1
1 2 1
1 3 0

  1 0 0
0 1 0
0 0 1/2

  3/2 0 −1/2
−1/2 0 1/2
−1/2 1 1/2

 = ΛDΛ−1

This makes it possible to explicitly calculate the n-step transition matrix Pn =
ΛDnΛ−1 from which it easily follows that,

p
(n)
21 =

1
2
[1− 2−n], p

(n)
22 = 2−n and p

(n)
23 =

1
2
[1− 2−n]

p
(n)
11 = p

(n)
33 = 1;

b12 = P (Xnis eventually 1|X0 = 2) =
1
2
,

b32 = P (Xnis eventually 3|X0 = 2) =
1
2
.

One can of course get all these by direct probabilistic calculations without
bringing the matrix P or Pn. Thus starting from state 2, the absorption
probabilities to the two states 1 and 3 are 1/2 each as is expected from sym-
metry. Let T be the absorption time that is, T=n i� Xn = AA or aa but
Xn−1 = Aa.Then P (T = n|X0 = 2) = (1/2)n−1 − (1/2)n = (1/2)n. One eas-
ily has E(T |X0 = 2) = 2.That is starting from state 2, the system takes two
generations on an average to get absorbed in one of the two states 1 or 3.

The above Markov Chain (Xn)models the genotype sequence of a line of
descent under sel�ng.

3 Sibmating:

In case of sel�ng an individual has only one parent and the transition from
the genotype of the father to the genotype of the o�spring is modeled by a
Markov chain. But in sibmating each of the o�spring has two parents and
hence the genotype of an individual depends on those of both its parents. It is
therefore evident that simply the individual genotype changes from generation
to generation can not form a Markov chain. To build a markovian model, we
consider the evolution of genotypic pairs of sibs. In other words, we look at the
line of descent of sibs as follows. Consider two sibs of a generation; form their
o�springs select two sibs at random; form their o�springs again select two sibs
at random and so on. For instance if the present sibs are (Aa, Aa) then their
o�springs consists of 1

4AA + 1
2Aa + 1

4aa in both males and females, so that if
two independent choices are made one from males and one from females then
the sibs so formed will be of type (AA,AA) with chance 1/16, of type (AA,Aa)
with chance 1/4 etc. While considering genotypic pairs of sibs, we do not attach
any importance to which on e of the pairs is a male member and which one is
female.
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Thus the state space of the Markov chain is {(AA, AA), (aa, aa), (AA, aA),
(aa, aA), (aA, aA), (aa, AA)} numbered as 1,2,3,4,5 and 6. The transition
matrix is

P =


1 0 0 0 0 0
0 1 0 0 0 0

1/4 0 1/2 0 0 1/4
0 1/4 0 1/2 0 1/4
0 0 0 0 0 1

1/16 1/16 1/4 1/4 1/8 1/4


A direct calculation shows that P has eigenvalues λ1 = λ2 = 1,λ3 = 1+

√
5

4 ,λ4 =
1
2 ,λ5 = 1

4 and λ6 = 1−
√

5
4 . Thus we conclude that the rate of absorption is given

by 1+
√

5
4 .

4 The Wright-Fisher Model:

All the previous analysis before the Wright-Fisher Model failed to capture the
phenomena of genetic evolution in �nite populations, where the sampling �uc-
tuations play a central role. This suggests adapting models that capture this
component of randomness in evolution. This was already realized by Pear-
son, Yule and Fisher himself earlier. Since then this model, now known as the
Wright-Fisher Model, has occupied the centre stage in the mathematical models
of genetics. We proceed to describe this model.

Let us consider, as usual an autosomal gene with two alleles A and a, so that
there are three genotypes AA, Aa and aa. We wish to study the evolution of
genotypic frequencies in a given population. Ideally what we wish to do is the
following. Suppose that initially there are N1males with composition N11AA +
N12Aa+N13aa and N2females with composition N21AA+N22Aa+N23aa. Let
us assume random mating. For the k-th generation we want to a�ect some
simpli�cations.

Let us assume that for all k, Nk
1i = Nk

2i for i=1,2,3, that is in all generations
the genotypic frequencies are the same for both the sexes. Of course, this will
imply that Nk

1 = Nk
2 = Nk,say. To put it di�erently, we consider unisex

population, as for example, plants. Then the problem simpli�es to describing
the 3-tuple (Nk

1 , N
k
2 , Nk

3 ). As a further simpli�cation we assume that Nk = N for
all k, that is variation in the total population size is also ruled out. This may
look like a gross over simpli�cation, far removed from reality. However, it can
be given the following interpretation. Imagine a �real� population evolving in
time with possibly changing size. But to facilitate calculations we concentrate
on N individuals randomly chosen from each generation. The cautious reader
would of course realise that this is not completely truthful interpretation. Truely
speaking, the population is constrained to have N individuals neither more or
less, in each generation where N is �xed in advance. Under this simpli�cation
it su�ce to know how many AA and how many aa are there. Thus the problem
is reduced to describing the evolution of the pair (Nk

1 , NK
2 ) only.
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Even after all these simpli�cations, the problem still remains quite intractable.
Therefore, we are going to simplify it further. However, in the subsequent sec-
tions, we shall return to the problems described above. For the time being we
decide to concentrate only on the variations in the gene frequencies rather than
the genotypic frequencies. In an generation, the N individuals carry a total of
2N genes, some of which A and the rest are a. Let Xk be the number of A genes
in the k-th generation so that 2N −Xk is the number of a genes. We are going
to study the evolution of Xk.Of course, this would have been perfectly alright
if, to start with we had a haploid population of 2N individuals in which case
there are only two genotypes A and a.

We now come to the speci�c hypothesis concerning how a generation gives
rise to the next generation. We assume that the 2N genes of a generation are
obtained by simply taking a random sample of size 2N with replacement from
the 2N genes of the parent generation. This is the classical Wright-Fisher Model.
It is clear, that for each n, Xn the number of A genes in the n-th generation is
a random variable taking values 0,1,...,2N. The above assumption really means
�rstly, that the conditional distribution of Xn+1 given X0, X1, ..., Xn depends
only on Xnand secondly given Xn = j, Xn+1is distributed as the binomial
variable B(2N, j

2N ).In other words, the process (Xn) n ≥ 0forms a Markov
Chain with the state space {0,1,...,2N} and transition probabilities

pkj =
(

2N
k

)
θk

j (1− θj)2N−k for 0 ≤ j, k ≤ 2N, where θj =
j

2N
.

For this chain it is clear that the states 0 and 2N are absorbing while others
are transient. Thus, no matter where we start, the chain eventually gets ab-
sorbed in one of the two absorbing states. Thus X∞ = limn→∞Xnexists and
takes the two values 0 and 2N with probability one.

The �rst important question that we would like to address is the following.
Given that the number of A genes is i to start with (that is X0 = i),what are
the probabilities b0(i) and b2N (i)of the chain to be absorbed in the states ) and
2N respectively. Note that b0(i) = and b2N (i)=P (X∞ = 2N |X0 = i). Here is a
beautiful alternative due to Feller.

Observe that the process, (Xn)has the property that,

E(Xn+1|Xn) = Xn for every n.

Indeed, since the conditional distribution of Xn+1 given Xn = j, is binomial
(2N, j

2N ). We have E(XN+1|XN = j) = 2N. j
2N = j.Because of the Markov

property the above equation is the same as,

E(Xn+1|X0, X1, ..., Xn) = Xn for every n.

In particular for all n, E(Xn|X0 = i) = i. Since the random variables are
uniformly bounded it follows that E(Xn|X0 = i) = i.But of course E(X∞ =
0|X0 = i) = 0.b0(i) + 2N.b2N (i). This yields,

b2n(i) = i
2N and b0(i) = 1− i

2N .
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Thus initially there are i many A genes then eventually the number of A
genes would be 0 with probability 1− i

2N .
Having thus obtained the absorption probabilities, we now turn to the rate

at which the absorption takes place. We recall that it su�ce to know the largest
eigenvalue of the transition matrix which is smaller than one in modulous.

We de�ne,
λ0 = 1and for a ≤ r ≤ 2N, λr = 1(1− 1

2N )...(1− r−1
2N ) or equivalently, λr =(

2N
2

)
r!

(2n)r for 0 ≤ r ≤ 2N. Note that λ0 = λ1 = 1 > λ2 > λ3 > ... > λ2N . It

can be shown that these are precisely the eigenvalues of P from which it would
follow that convergence takes place geometrically at the rate λ2 = (1− 1

2N ).
We have discussed the simplest case of the Wright-Fisher Model here. A

realistic model would also take into account the mutations that happen in nature
all the time.
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