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The IEEE has standardized the 802.11 protocol for Wireless Local Area Networks. The
primary medium access control (MAC) technique of 802.11 is called distributed
coordination function (DCF). DCF is a carrier sense multiple access with collision avoidance
(CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple,
but nevertheless extremely accurate, analytical model to compute the 802.11 DCF
throughput, in the assumption of finite number of terminals and ideal channel conditions.
The proposed analysis applies to both the packet transmission schemes employed by DCF,
namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to
a combination of the two schemes, in which packets longer than a given threshold are
transmitted according to the RTS/CTS mechanism.

DCF adopts a discrete exponential backoff scheme. At each packet transmission, the backoff
time is uniformly chosen in the range (0, w-1). The value ‘W’ is called contention window,
and depends on the number of transmissions failed for the packet. At the first transmission
attempt, ‘w’ is set equal to a value CWni, called minimum contention window. After each
unsuccessful transmission, ‘w’ is doubled, up to a maximum value CWpnax = 22CWpin. The
values of CWmnin and CWmax gre physical layer specific.

The backoff time counter is decremented as long as the channel is sensed idle, “frozen”
when a transmission is detected on the channel, and reactivated when the channel is
sensed idle again for more than a DIFS. The station transmits when the backoff time
reaches zero.

Fig. 1 illustrates this operation. Two stations A and B share the same wireless channel. At
the end of the packet transmission, station B waits for a DIFS and then chooses a backoff
time equal to 8, before transmitting the next packet. We assume that the first packet of
station A arrives at the time indicated with an arrow in the figure. After a DIFS, the packet
is transmitted. Note that the transmission of packet A occurs in the middle of the Slot Time
corresponding to a backoff value, for station B, equal to 5 As a consequence of the channel
sensed busy, the backoff time is frozen to its value 5, and the backoff counter decrements
again only when the channel is sensed idle for a DIFS.

Since the CSMA/CA does not rely on the capability of the stations to detect a collision by
hearing their own transmission, an ACK is transmitted by the destination station to signal
the successful packet reception. The ACK is immediately transmitted at the end of the
packet, after a period of time called short interframe space (SIFS). As the SIFS (plus the
propagation delay) is shorter than a DIFS, no other station is able to detect the channel idle



for a DIFS until the end of the ACK. If the transmitting station does not receive the ACK
within a specified ACK_Timeout, or it detects the transmission of a different packet on the
channel, it reschedules the packet transmission according to the given backoff rules. The
above described two-way handshaking technique for the packet transmission is called
basic access mechanism.
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Figure 1: Basic DCF mechanism of 802.11 MAC layer

In order to evaluate the saturation throughput in the assumption of ideal channel
conditions, we operate in saturation conditions, i.e., the transmission queue of each station
is assumed to be always nonempty.

The behavior of a single station with a Markov model, and we obtain the stationary
probability that the station transmits a packet in a generic (i.e., randomly chosen) slot time.
Consider a fixed number of contending stations. In saturation conditions, each station has
immediately a packet available for transmission, after the completion of each successful
transmission. Moreover, being all packets “consecutive,” each packet needs to wait for a
random backoff time before transmitting. Let be the stochastic process representing the
backoff time counter for a given station. A discrete and integer time scale is adopted: and
correspond to the beginning of two consecutive slot times, and the backoff time counter of
each station decrements at the beginning of each slot time.

Since the value of the backoff counter of each station depends also on its transmission
history (e.g., how many retransmission the head-of-line packet has suffered), the stochastic
process b(t) is non-Markovian. However, define for convenience W=CWn;n. Let ‘m’,
“maximum backoff stage,” be the value such that CWnax=2mW, and let us adopt the



notation, Wi=2iW where i € (0,m) is called “backoff stage.” Let be the stochastic process
representing the backoff stage (0,1,2,...,m) of the station at time t.
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Figure 2: Discrete Markov chain representation of "backoff stages"

We make a key approximation in our model is that, at each transmission attempt, and
regardless of the number of retransmissions suffered, each packet collides with constant and
independent probability p. Once independence is assumed, and is supposed to be a constant
value, it is possible to model the bidimensional process {s(t),b(t)} with the discrete-time Markov
chain depicted in Fig. 2. In this Markov chain, the only non null one-step transition probabilities
are:

Plik |ik+1}=1 ke ©W:=2) ie(0,m)
POk | 4,0}=(1=p)/Wy ke(0.Wo=1) &e(0ym)
Plik|i— L0y =p/W; Ee(0.W;—=1) z=(l,m)
Pl k| my 0= p/Wo, ke (0,W,,—1).

Due to chain regularities, by simplification we obtain the probability that a station transmits in a
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randomly chosen time as i=o T=p~ (I=2p)(W + 1)+ pW(1=(2p)")

The uniqueness of the solution is then proved and the result obtained above by using queueing
theory is used to analyze the saturation throughput for different access mechanisms and the
results are validated by simulation.



