
SEMI-FLOWER AUTOMATA

SHUBH NARAYAN SINGH

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

GUWAHATI - 781039, INDIA

AUGUST 2012

Semi-Flower Automata

By

Shubh Narayan Singh

Department of Mathematics

Submitted in fulfillment of the requirements

of the degree of Doctor of Philosophy

to the

Indian Institute of Technology Guwahati

Guwahati - 781039, India

August 2012

To

My Parents

Certificate

This is to certify that the thesis entitled Semi-Flower Automata submitted by

Mr. Shubh Narayan Singh to the Indian Institute of Technology Guwahati, for the

award of the Degree of Doctor of Philosophy, is a record of the original bona fide

research work carried out by him under my supervision and guidance. The thesis

has reached the standards fulfilling the requirements of the regulations relating to

the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree or diploma.

Guwahati Dr. K. V. Krishna

August 2012 Supervisor

i

Acknowledgements

This section is compulsory in any thesis, this is due purely for politeness. However, in my case, writing

this section is almost as important as writing the rest of the contents. The main reason for this is

that, from my point of view, a thesis is not only a collection of research results that you have obtained

by working really hard along the years, but also a source that has allowed you to acquire a really big

personal enrichment. Thus, I feel the necessity to thank some of the people who have contributed into

making this thesis possible.

In the first place I would like to express my deepest gratitude to my Ph.D Supervisor,

Dr. K. V. Krishna, for his extreme support, meticulous supervision and keeping immense patience

throughout my research work. His tireless working capacity, devotion towards his work as well as

his clarity of presentation have strongly motivated me. I will be always indebted to him for his un-

flinching encouragement and support in various ways. Thank you sir for your extraordinary support

and inspiration, and for all those interesting discussions that have helped me look at things, both

mathematically and personally, in a new way.

I want to convey my sincere thanks to the doctoral committee of members Dr. Anupam Saikia,

Dr. Purandar Bhaduri, Dr. Vinay Wagh for reviewing my research work and giving valuable sugges-

tions for the improvements of my research work. I sincerely acknowledge Indian Institute of Technol-

ogy Guwahati for providing me with the various facilities necessary to carry out my research. I am

most grateful to Ministry of Human and Resource Development, Government of India, for providing

me financial assistance for the completion of my thesis work.

iii

iv Acknowledgements

I would like to thank my friends with whom I spent the magic moments during the last five

years at IIT Guwahati. I am also thankful to all my research scholar friends of the Department of

Mathematics, IIT Guwahati for their love and company during my stay in the IIT campus. Especially,

I want to thank those my friends who have kept me away from the mathematics and helped to make

my life enjoyable.

I do not have enough room to adequately thank my parents for everything they have done to enable

me to be as ambitious as I wanted. Thanks for being proud of me even without knowing very well in

what I have been working on during these years. At the same time, I have to thank all my relatives

for their support and for respecting that this is the work that I love and tolerating the long periods of

being neglected because of my thesis.

Finally, I want to use this opportunity to thank the almighty God for his strange favour in my

life.

IIT Guwahati Shubh Narayan Singh

Abstract

The thesis aims at a further study on semi-flower automata – the concept intro-

duced by Giambruno and Restivo to study finitely generated submonoids of free

monoids. The material of the thesis is an interplay between automata and algebraic

structures. In fact, using semi-flower automata we study the intersection problem

of submonoids of free monoids. Further, we study certain structural properties of

semi-flower automata using algebraic structures.

Contributing to the intersection problem of submonoids of free monoids, in this

thesis, we obtain a sufficient condition for the Hanna Neumann property of the sub-

monoids which are generated by finite prefix sets of words. In this connection, we

obtain a general rank formula for the submonoids accepted by SFA. In order to study

structural properties of semi-flower automata, we choose to study holonomy decom-

position and on syntactic complexity. We ascertain holonomy decomposition and

syntactic complexity of certain subclasses of circular semi-flower automata. Further,

we count the number of primitive and generalized primitive words in the submonoids

accepted by semi-flower automata.

v

Contents

Certificate i

Acknowledgements iii

Abstract v

Introduction 1

1 Automata and Monoids 7

1.1 Free monoids . 8

1.2 Automata . 9

1.3 Semi-flower automata . 12

1.4 Monoids of automata and languages 15

2 Hanna Neumann Property 19

2.1 State of the art . 20

2.2 BPR of semi-flower automata . 23

2.3 Rank of submonoids . 27

2.4 A sufficient condition . 30

2.5 Some Examples . 34

2.6 Conclusion . 37

vii

viii Contents

3 Holonomy Decomposition 39

3.1 Transformation monoids . 40

3.2 Circular SFA . 43

3.3 CSFA with at most one bpi . 46

3.4 CSFA with two bpis . 48

3.5 Conclusion . 52

4 Syntactic Complexity 53

4.1 The monoid of CSFA . 54

4.2 CSFA with at most one bpi . 56

4.3 CSFA with two bpis . 58

4.3.1 Idempotents . 59

4.3.2 Elements of rank two . 63

4.3.3 Representation of M(A) . 66

4.3.4 An example . 67

4.3.5 Proof of Theorem 4.3.2 . 69

4.4 Conclusion . 70

5 L-Primitive Words 71

5.1 Primitive words in submonoids . 72

5.2 L-primitive words . 73

5.3 L-primitive words in L . 74

5.4 L-primitive words in submonoids . 77

5.5 Conclusion . 79

Bibliography 81

Index 87

Bio-Data 91

Introduction

The present thesis is in the area of algebraic automata theory. The thesis concen-

trates on using automata to study certain properties of algebraic structures and vice

versa. In fact, using automata-theoretic techniques we study the intersection prob-

lem of submonoids of free monoids. Further, we study certain structural properties

of automata in algebraic approach.

The study of free monoids plays an important role in the combinatorics on words

and formal language theory. Automata-theoretic tools have been deeply utilized in

the literature for studying free monoids. There exists a lot of literature concerning

automata accepting submonoids (cf. [Berstel and Perrin, 1985; Berstel et al., 2010]).

Recently, Giambruno and Restivo [2008] introduced the concept called semi-flower

automata to study finitely generated submonoids of a free monoid. A semi-flower

automaton (in short, SFA) is a trim automaton with a unique initial state that is

also a unique final state such that all the cycles in the automaton pass through the

initial-final state. An SFA accepts a finitely generated submonoid of the free monoid

over the underlying alphabet, and vice versa. Moreover, if an SFA is deterministic,

it accepts the submonoid generated by a finite prefix set. Conversely, the submonoid

generated by a finite prefix set is accepted by a deterministic SFA with at most one

‘branch point going in’ (in short, bpi). The notion of SFA has been an important tool

in studying intersection problem for finitely generated submonoids of a free monoid.

1

2 Introduction

In fact, Giambruno and Restivo have obtained the Hanna Neumann property for a

class of submonoids generated by finite prefix sets of words.

The present thesis aims at further investigations on semi-flower automata. In

this connection, we obtain a general rank formula pertaining to an SFA. Using the

rank formula, we study the Hanna Neumann property. In order to study certain

structural properties of SFA, we choose to investigate holonomy decomposition and

syntactic complexity of certain types of SFA. Further, we count the primitive and

generalized primitive words in the submonoids accepted by SFA.

After presenting the necessary fundamentals in Chapter 1, the main work of the

thesis has been organized into four chapters as described below:

Chapter 2: The Hanna Neumann property

Chapter 3: Holonomy Decomposition

Chapter 4: Syntactic Complexity

Chapter 5: L-Primitive Words

Chapter 2. Howson [1954] proved that the intersection of two finitely generated

subgroups of a free group is finitely generated. In 1956, Hanna Neumann improved

the result that if H and K are finite rank subgroups of a free group, then

r̃k(H ∩K) ≤ 2r̃k(H)r̃k(K),

where r̃k(N) = max(0, rk(N)− 1) for a subgroup N of rank rk(N). Further, Neu-

mann conjectured that

r̃k(H ∩K) ≤ r̃k(H)r̃k(K), (?)

which is known as Hanna Neumann conjecture [Neumann, 1956]. In 1990, Walter

Neumann proposed a stronger form of the conjecture called the strengthened Hanna

Neumann conjecture (SHNC) [Neumann, 1990]. Meakin and Weil [2002] proved

SHNC for the class of positively generated subgroups of a free group. The conjecture

has recently been settled by Mineyev (cf. Mineyev [2011, 2012]) and announced

3

independently by Friedman (cf. Friedman [2011a,b]).

In contrast, it is not always true that the intersection of two finitely generated

submonoids of a free monoid is finitely generated. It appears that the intersection

problem for submonoids of free monoids is much more complex than the analogous

problem for subgroups of free groups. In particular, the Hanna Neumann property

for submonoids of a free monoid is of special interest. Two finitely generated sub-

monoids H and K of a free monoid are said to satisfy the Hanna Neumann property

(in short, HNP), if H and K satisfy the inequality (?). There are several contri-

butions in the literature that study the intersection of two submonoids of a free

monoid.

Tilson [1972] proved that the intersection of free submonoids of the free monoid

over a finite alphabet is free. In connection with the HNP, Karhumäki obtained

a result for submonoids of rank two of the free monoid over a finite alphabet. In

fact, Karhumäki [1984] proved that the intersection of two submonoids of rank two

is generated by either a set of at most two words or a regular language of a special

form. Using SFA, Giambruno and Restivo [2008] have initiated the investigations

on the intersection of two submonoids. They have obtained the HNP for a special

class of submonoids generated by finite prefix sets of words.

We continue the work of Giambruno and Restivo in Chapter 2. Here, we present

a sufficient condition for the HNP of the entire class of submonoids generated by

finite prefix sets. In this connection, we also obtain a general rank formula for the

submonoids which are accepted by SFA.

Chapter 3. The primary decomposition theorem due to Krohn and Rhodes [1965] is

one of the fundamental results in the theory of automata and monoids. Eilenberg’s

holonomy decomposition theorem for transformation monoids is a sophisticated ver-

sion of the Krohn-Rhodes decomposition theorem [Eilenberg, 1976]. The holonomy

4 Introduction

decomposition theorem ascertains that every finite transformation monoid is cov-

ered by a wreath product of holonomy permutation-reset transformation monoids.

The holonomy method appears to be relatively efficient and has been implemented

computationally by Egri-Nagy and Nehaniv [2010]. The holonomy decomposition of

the monoid of an automaton looks for groups induced by the elements of the monoid

which permute certain subsets of the state set. These groups are called holonomy

groups, which are building blocks for the components of the decomposition. Egri-

Nagy and Nehaniv [2005] have proved that an automaton is algebraically cycle-free

if and only if its holonomy groups are trivial. As circular automaton is algebraically

cycle-free, it is a nontrivial problem to estimate the holonomy groups for a circular

automaton.

In the direction of understanding some structural properties of SFA, we inves-

tigate the holonomy decomposition of SFA in Chapter 3. Here, we consider the

decompositions of circular semi-flower automata (CSFA) classified by the number

of bpis. We prove that the decomposition of a CSFA with at most one bpi has only

one component determined by a cyclic group. Further, we obtain the holonomy

decomposition of CSFA with two bpis.

Chapter 4. The syntactic complexity of a recognizable language is the cardinality

of its syntactic monoid. Further, the syntactic complexity of a subclass of the

class of recognizable languages is the maximal syntactic complexity of languages

in that subclass, taken as a function of the state complexity of these languages.

The syntactic complexity of a recognizable language provides a measure for the

complexity of the recognizable language. The syntactic complexity of recognizable

languages has received more attention in recent years (cf. [Beaudry and Holzer,

2011; Brzozowski and Li, 2012; Brzozowski and Liu, 2012; Brzozowski et al., 2012;

Brzozowski and Ye, 2011]).

5

Holzer and König [2004] have studied the syntactic complexity of recognizable

languages, in general. For instance, they showed that the syntactic complexity of

unary recognizable languages is linear. If the size of the alphabet is at least three,

then they also proved that the syntactic complexity is reached to the maximal size

nn. It turns out that the most crucial case is to determine the syntactic complexity of

recognizable languages over a binary alphabet. In the binary alphabet case, Holzer

and König have investigated the syntactic complexity of the monoids generated by

two transformations, where one is a permutation with a single cycle and the other

is not a permutation.

In Chapter 4 of the thesis, we focus on the syntactic complexity of the monoids

generated by two transformations in which one is a circular permutation and the

other is a special type of non-permutation. In fact, we investigate the syntactic

complexity of the submonoids accepted by CSFA. We pursue this with respect to

the number of bpis of CSFA. Here, we show that the syntactic complexity of the

submonoids accepted by CSFA with at most one bpi is linear. Further, we prove

that the syntactic complexity of the submonoids accepted by CSFA with two bpis

over a binary alphabet is 2n(n + 1).

Chapter 5. A nonempty word which is not a power of any other word is called a

primitive word. It is well known that every word can be uniquely expressed as a

power of primitive word [Lyndon and Schützenberger, 1962]. The concept of prim-

itive words plays an important role in the algebraic theory of languages. Ito et al.

[1988] have investigated the number of primitive words in the languages accepted by

automata. Shyr and Tseng [1984] have proved that any noncommutative submonoid

of a free monoid contains infinitely many primitive words. In the literature, there

are various types of generalizations/extensions of the classic definition of primitive

words [Czeizler et al., 2010; Domaratzki, 2004; Hsiao et al., 2002; Kari and Thierrin,

6 Introduction

1998]. Given a language L, L-primitive words is yet another generalization of prim-

itive words introduced by Krishna [2011]. A nonempty word which is not a proper

power of any word in L is an L-primitive word.

In this chapter, we focus on the number of primitive words and L-primitive words

in the languages of SFA. Indeed, we count the number in the submonoids of a free

monoid. We observe that the number of primitive words in the submonoids is either

at most one or infinite. Further, given a finite language L, we prove that the number

of L-primitive words in submonoids is also either at most one or infinite.

Epilogue. In the present thesis, we study semi-flower automata in various aspects.

In all the aspects under consideration, the thesis shows a lot of scope for further

studies in the present topic. Some details on the further study have been provided

with a concluding section at the end of each contributory chapter.

1
Automata and Monoids

In this chapter, we present certain fundamentals on automata and monoids con-

cerning the thesis. Other than the material presented in section 1.3, rest of the

material of the chapter is very standard in the present thesis area – algebraic au-

tomata theory. However, in order to fix the notation for the thesis, we state the

necessary material. In this context, we present the notions of languages, automata,

and their respective monoids, in sections 1.1, 1.2, and 1.4, respectively. One may

refer to [Berstel and Perrin, 1985; Lawson, 2004] for more details of the material

presented in these sections. Section 1.3 is devoted to the concept of semi-flower

automata introduced by Giambruno and Restivo [2008], and review their relation

with submonoids of free monoids.

7

8 Automata and Monoids

1.1 Free monoids

In this section, we present the notions of languages and free monoids. We review

the result concerning generators of submonoids of free monoids. Accordingly, we

provide the notion of the rank of submonoids of free monoids.

Definition 1.1.1. Let A be a nonempty finite set called an alphabet and its elements

are called letters/symbols. A word over A is a finite sequence of letters written by

juxtaposing them. The set of all words over A forms a monoid with respect to

concatenation of words, called the free monoid over A and it is denoted by A∗. The

identity of A∗ is the empty word (the empty sequence of letters), which is denoted

by ε. The set of all nonempty words over A is denoted by A+.

In what follows, A always denotes an alphabet.

Definition 1.1.2. A language over A is a subset of the free monoid A∗.

Definition 1.1.3. Let w be a word over A. For a ∈ A, the number of occurrences

of a in w is denoted by |w|a. Further, the length of w, denoted by |w|, is defined as

|w| =
∑
a∈A

|w|a. Clearly, the length of the empty word is zero.

Definition 1.1.4. Let u,w be words over A. The word u is called a prefix (or

suffix) of w, if there exists a word v such that w = uv (or w = vu, respectively).

The prefix (or the suffix) u is said to be proper prefix (or proper suffix, respectively)

of w, if v is nonempty. A subset X of A∗ is called a prefix set if no word of X is a

proper prefix of another word of X.

Remark 1.1.5. If X is a prefix set and ε ∈ X, then X = {ε}.

Notation 1.1.6. For a subset X of A∗, we denote by X∗ the submonoid generated

by X, i.e.

X∗ = {x1x2 · · ·xk | xi ∈ X and k ≥ 0}.

1.2 Automata 9

Theorem 1.1.7. Any submonoid H of A∗ has a unique minimal set of generators

given by

(H \ {ε}) \ (H \ {ε})2.

Here, X \ Y = {x ∈ X | x /∈ Y }, the set difference.

Definition 1.1.8. Let H be a submonoid of A∗. The rank of H, denoted by

rk(H), is defined as the cardinality of the minimal set of generators X of H, i.e.

rk(H) = |X|. If X is finite, then we say that H is a finitely generated submonoid.

Further, the reduced rank of H, denoted by r̃k(H), is defined as

r̃k(H) = max(0, rk(H)− 1).

Remark 1.1.9 ([Karhumäki, 1984]). The intersection of two finitely generated sub-

monoids of A∗ is not necessarily finitely generated. For instance, consider the finitely

generated submonoids H = {aab, aba}∗ and K = {a, baaba}∗ over the alphabet

A = {a, b}. The intersection H ∩ K = {a(abaaba)nbaaba | n ≥ 0}∗ is not finitely

generated submonoid of A∗.

1.2 Automata

In this section, we present the notion of an automaton and its digraph representation.

Using the digraph representation, we discuss various notions related to automata.

Further, we provide certain types and constructions in automata. Though the ma-

terial of this section can be found in any standard book on automata, we would

particularly refer to [Berstel and Perrin, 1985].

Definition 1.2.1. An automaton is a quintuple A = (Q,A, I, T,F), where Q is a

nonempty finite set called the set of states, A is an alphabet called the input alphabet,

I and T are subsets of Q, called the set of initial states and the set of final states,

respectively, and F ⊆ Q×A×Q called the set of transitions. Clearly, by denoting

10 Automata and Monoids

the states as vertices/nodes and the transitions as labeled arcs, an automaton can

be represented by a directed graph (digraph) in which initial and final states shall

be distinguished appropriately.

Definition 1.2.2. Let A = (Q,A, I, T,F) be an automaton and q ∈ Q.

(i) The state q is said to be a branch point going in, in short bpi, if the number of

transitions coming into q (i.e. the indegree of q – the number of arcs coming

into q – in the digraph of A) is at least two. The set of all bpis of A is denoted

by BPI(A).

(ii) The state q is said to be a branch point going out, in short bpo, if the number

of transitions going out from q (i.e. the outdegree of q – the number of arcs

going out from q – in the digraph of A) is at least two. The set of all bpos of

A is denoted by BPO(A).

Definition 1.2.3. Let A = (Q,A, I, T,F) be an automaton. A path in A is a finite

sequence of consecutive arcs in its digraph. For pi ∈ Q (0 ≤ i ≤ k) and aj ∈ A

(1 ≤ j ≤ k), let

p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−→ pk−1

ak−→ pk

be a path, say P , in A that is starting at p0 and ending at pk. In this case, we write

s(P) = p0 and e(P) = pk. The word a1 · · · ak ∈ A∗ is the label of P , and the integer

k is the length of P . A null path is a path from a state to itself labeled by ε, which

is of length zero.

Definition 1.2.4. Let A be an automaton.

(i) A path in A is called simple if all the states on the path are distinct.

(ii) A path in A that starts and ends at the same state is called a cycle in A, if it

is not a null path.

1.2 Automata 11

(iii) A cycle in A that passes through the state q is called simple in q if q appears

for exactly once in the cycle.

(iv) A cycle in A with all its states are distinct is called a simple cycle. That is, a

simple cycle is simple in all its states.

Definition 1.2.5. Let A be an automaton and P a simple path in A.

(i) A subpath of P is a subsequence of consecutive arcs in P .

(ii) A subpath of P is called a prefix path of P if both start at the same state.

(ii) A subpath of P is called a suffix path of P if both end at the same state.

Definition 1.2.6. Let A be an automaton. The language accepted/recognized by

A, denoted by L(A), is the set of words that are the labels of the paths from an

initial state to a final state. A language is called recognizable if it is accepted by an

automaton.

Definition 1.2.7. Let A = (Q,A, I, T,F) be an automaton and q ∈ Q.

(i) The state q is said to be accessible if there is a path from an initial state to q.

(ii) The state q is said to be coaccessible if there is a path from q to a final state.

(iii) The trim part of A, denoted by AT , is the automaton obtained from A by

considering only the accessible and coaccessible states, and the respective tran-

sitions between them.

(iv) If A = AT , then the automaton A is called a trim automaton.

Remark 1.2.8. If A is an automaton, then L(A) = L(AT).

Definition 1.2.9.

(i) An automaton is said to be complete if there is at least one transition defined

for each pair of a state and a letter.

12 Automata and Monoids

(ii) An automaton is said to be deterministic if it has a unique initial state and

there is at most one transition defined for for each pair of a state and a letter.

Definition 1.2.10. Let A1 = (Q1, A, I1, T1,F1) and A2 = (Q2, A, I2, T2,F2) be two

automata. The product automaton is the automaton

A1 ×A2 = (Q1 ×Q2, A, I1 × I2, T1 × T2,F)

such that for all p, q ∈ Q1, p′, q′ ∈ Q2 and a ∈ A,

((p, p′), a, (q, q′)) ∈ F ⇐⇒ (p, a, q) ∈ F1 and (p′, a, q′) ∈ F2.

Proposition 1.2.11. If A1 and A2 are two automata, then

L(A1 ×A2) = L((A1 ×A2)
T) = L(A1) ∩ L(A2).

1.3 Semi-flower automata

In this section, we formally present the notion of semi-flower automata introduced by

Giambruno and Restivo [2008]. Further, we review certain fundamental properties

of semi-flower automata from [Giambruno, 2007].

Definition 1.3.1. An automaton is called a monoidal automaton if it is a trim

automaton with a unique initial state that is equal to a unique final state.

Notation 1.3.2. IfA = (Q,A, I, T,F) is a monoidal automaton, we denote the initial-

final state by q0. In which case, we simply write A = (Q,A, q0, q0,F). Further, let

us denote by CA the set of cycles in A that are simple in q0, and by YA the set of

their labels. Moreover, the unique initial-final state of A is distinguished by double

outerlines in the digraph of A.

Theorem 1.3.3. Let A be a monoidal automaton; then, A accepts the submonoid

generated by YA.

1.3 Semi-flower automata 13

GFED@ABC?>=<89:;q0

a
))

a
··

GFED@ABCq1

bssGFED@ABCq2
b

TT a
33

Figure 1.1: A monoidal automaton

Example 1.3.4. The automaton A given in Figure 1.1 is a monoidal automaton.

Here, the set YA = {a} ∪ {a(ba)nb | n ≥ 0} is infinite.

In the following propositions, we review some properties of monoidal automata

with respect to their bpis.

Proposition 1.3.5. If A is a monoidal automaton, then

BPI(A) = ∅ if and only if BPO(A) = ∅.

Proposition 1.3.6. Let A be a monoidal automaton. If BPI(A) = ∅, then the

submonoid L(A) is cyclic. In addition, if A is deterministic, then the converse is

also true.

The monoidal automata accepting finitely generated submonoids have special

shape. Accordingly, for this purpose, the concept of semi-flower automata has been

introduced.

Definition 1.3.7. A monoidal automaton A = (Q, A, q0, q0,F) is called a semi-

flower automaton (in short, SFA) if all the cycles in A visit the unique initial-final

state q0.

Remark 1.3.8. In an SFA, every cycle that is simple in q0 is a simple cycle.

Theorem 1.3.9. If A is an SFA, then the submonoid accepted by A is finitely

generated. In fact, the generating set YA is finite.

14 Automata and Monoids

Remark 1.3.10. The set YA in an SFA is not necessarily a minimal set of generators

of the submonoid L(A). For instance, the automaton A given in Figure 1.2, is an

SFA with YA = {a, ba, aba}. Clearly, the word aba ∈ YA can be written as a

concatenation of other two words.

GFED@ABC?>=<89:;q0

a
··

a //

b
²²

GFED@ABCq1
b // GFED@ABCq2

a

bb

GFED@ABCq3

a

EE

Figure 1.2: A semi-flower automaton

Theorem 1.3.11. If A is a deterministic SFA, then YA is a prefix set and it is the

minimal set of generators of the submonoid accepted by A.

Theorem 1.3.12. Let X be a finite subset of A∗ and H the submonoid generated

by X. There exists an SFA with at most one bpi accepting H. Moreover, if X is a

prefix set, then there exists a deterministic SFA with at most one bpi accepting H.

In the following proposition, we present some properties of automata which are

maintained by their product automaton.

Proposition 1.3.13. Let A1 and A2 be two automata.

(i) If A1 and A2 are deterministic, then so is A1 ×A2.

(ii) If A1 and A2 are monoidal, then so is (A1 ×A2)
T .

Remark 1.3.14. The product of two SFA is not necessarily an SFA. For instance,

the automata AH and AK given in Figure 1.3 are deterministic SFA accepting

the submonoids H = {aab, aba}∗ and K = {a, baaba}∗, respectively. Their product

automaton AH ×AK is given in Figure 1.4. Clearly, AH ×AK has a cycle that is

not passing through its initial-final state, so that AH ×AK is not an SFA.

1.4 Monoids of automata and languages 15

GFED@ABCq2

b

yysssssssssssss

GFED@ABC?>=<89:;q0
a // GFED@ABCq1

b
²²

a

OO

GFED@ABCq3

a

eeKKKKKKKKKKKKK

GFED@ABC?>=<89:;q′0
b //

a
ºº

GFED@ABCq′1
a // GFED@ABCq′2

a

²²

GFED@ABCq′4

a

^>̂>>>>>>>>
GFED@ABCq′3b

oo

Figure 1.3: The deterministic SFA AH (in the left) and AK (in the right)

º¹ ¸·
³´ µ¶(q0, q

′
0)

a //
º¹ ¸·
³´ µ¶(q1, q

′
0)

a //

b

²²

º¹ ¸·
³´ µ¶(q2, q

′
0)

b //
º¹ ¸·
³´ µ¶(q0, q

′
1)

a

$$JJJJJJJJJJ

º¹ ¸·
³´ µ¶(q3, q

′
4)

a

OO

º¹ ¸·
³´ µ¶(q3, q

′
1)

a

²²

º¹ ¸·
³´ µ¶(q0, q

′
4)

a

ddJJJJJJJJJJ º¹ ¸·
³´ µ¶(q2, q

′
3)b

oo
º¹ ¸·
³´ µ¶(q1, q

′
2)a

oo

º¹ ¸·
³´ µ¶(q1, q

′
3)

b

OO

º¹ ¸·
³´ µ¶(q0, q

′
2)a

oo

Figure 1.4: The automaton (AH ×AK)T

1.4 Monoids of automata and languages

The fundamental notions in algebraic automata theory are monoids of automata

and the syntactic monoids of languages. This section is devoted to introduce these

notions and review a relation between them. For more details, one may refer to

[Lawson, 2004; Pin, 1986].

We first fix the notation regarding functions. We write the argument of a function

f on the left of f so that xf is the value of f at the argument x. The composition

of functions is designated by concatenation, with the leftmost function understood

to apply first so that xfg = (xf)g.

Let A = (Q,A, I, T,F) be a complete and deterministic automaton. As there

is a unique transition defined over a state and a letter in A, each a ∈ A induces a

function

a : Q −→ Q

16 Automata and Monoids

defined by qa = p, where (q, a, p) ∈ F . This phenomenon can naturally be extended

to the words in A∗. For x ∈ A∗, the function induced by x, written x : Q −→ Q, is

defined inductively as follows. For q ∈ Q,

(i) if x = ε, the function ε is the identity function given by qε = q;

(ii) if x = ya, for some a ∈ A, then qx = (qy)a.

Definition 1.4.1. Let A be a complete and deterministic automaton. The set of

functions {x | x ∈ A∗} forms a monoid under the composition of functions called

the monoid of the automaton A, and it is denoted by M(A).

Remark 1.4.2. The monoid M(A) is finite and generated by the functions induced

by the letters of A.

Now, we recall two types of automata, viz. circular automata and permutation

automata, which are studied in this thesis. These automata are defined relating to

the features of functions induced by their input letters. We need the concept of

circular permutation to define circular automata.

Definition 1.4.3. Let X = {p1, . . . , pm} be a nonempty finite set. A function,

say f , on X is said to be a circular permutation on X if there is a cyclic ordering

pi1 , . . . , pim on X such that, for 1 ≤ j < m,

pijf = pij+1
and pimf = pi1 .

Definition 1.4.4. Let A be a complete and deterministic automaton.

(i) The automaton A is called a circular automaton if there exists an input letter

which induces a circular permutation on the state set.

(ii) The automaton A is called a permutation automaton if the function induced

by each input letter is a permutation on the state set.

1.4 Monoids of automata and languages 17

Remark 1.4.5.

(i) If A is a circular automaton, then M(A) has a cyclic subgroup generated by

the circular permutation.

(ii) A is permutation automaton if and only if M(A) is a group.

Definition 1.4.6. Let A be a complete and deterministic automaton. A is said to

be minimal if the number of states of A is less than or equal to the number of states

of any other complete and deterministic automaton accepting L(A).

Theorem 1.4.7. Let A be a complete and deterministic automaton. A is minimal

if and only if A is accessible and the equivalence relation ∼A on the state set Q

defined by

p ∼A q if and only if ∀x ∈ A∗(px ∈ T ⇐⇒ qx ∈ T)

is the diagonal relation.

Theorem 1.4.8. A minimal automaton accepting a recognizable language is unique

up to isomorphism.

Definition 1.4.9. Let L be a language over A. The syntactic congruence of L,

denoted by ∼L, is the equivalence relation on A∗ defined by

u ∼L v if and only if ∀x, y ∈ A∗(xuy ∈ L ⇐⇒ xvy ∈ L).

The quotient monoid A∗/∼L
is called the syntactic monoid of L.

Theorem 1.4.10. Let L be a language over A. The language L is recognizable if

and only if the syntactic monoid of L is finite.

Theorem 1.4.11. Let L be a recognizable language over A. The syntactic monoid

of L is isomorphic to the monoid of the minimal automaton accepting L.

2
Hanna Neumann Property

The intersection problem for submonoids of free monoids is much more complex

than the analogous problem for subgroups of free groups. In particular, the Hanna

Neumann property for submonoids of a free monoid is of special interest. Using

an automata-theoretic approach, Giambruno and Restivo [2008] have obtained the

Hanna Neumann property for a special class of submonoids generated by finite prefix

sets of words. This chapter continues the work of Giambruno and Restivo and

obtains a sufficient condition for the Hanna Neumann property for the entire class

of submonoids generated by finite prefix sets of words. In this connection, a general

rank formula for the submonoids which are accepted by semi-flower automata is also

obtained.

19

20 Hanna Neumann Property

2.1 State of the art

This section provides the state of the art on the Hanna Neumann property for

submonoids of a free monoid.

Definition 2.1.1. Two finitely generated submonoids H and K of a free monoid

are said to satisfy the Hanna Neumann property (in short, HNP), if H and K satisfy

the inequality

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

There are several contributions in the literature to study the intersection of two

submonoids of a free monoid. Tilson [1972] proved that the intersection of free sub-

monoids of the free monoid over a finite alphabet is free. In connection to the HNP,

Karhumäki obtained a result for submonoids of rank two of the free monoid over a

finite alphabet. In fact, Karhumäki [1984] proved that the intersection of two sub-

monoids of rank two is generated either by a set of at most two words or by a regular

language of a special form. Using an automata-theoretic approach, Giambruno and

Restivo [2008] have obtained the HNP for a special class of submonoids of a free

monoid, as stated below.

Theorem 2.1.2 ([Giambruno and Restivo, 2008]). Let AH and AK be deterministic

SFA each with a unique bpi accepting submonoids H and K, respectively. If the

automaton (AH ×AK)T is an SFA with at most one bpi, then

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

Further, we observe the following theorem in the context of SFA with no bpis.

Theorem 2.1.3. Let AH and AK be deterministic SFA accepting submonoids H

and K, respectively. If AH or AK has no bpis, then

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

2.1 State of the art 21

Proof. We prove that the monoidal automaton (AH × AK)T has no bpis. Conse-

quently, by Proposition 1.3.6, the submonoid H ∩ K is cyclic so that the result

follows. Without loss of generality, assume that BPI(AH) = ∅. By Proposition

1.3.5, we have BPO(AH) = ∅.

We claim that BPO((AH ×AK)T) = ∅. Let (p, q) ∈ BPO((AH ×AK)T). Since

(AH × AK)T is deterministic, there exist two distinct input letters a1, a2 ∈ A such

that the transitions
(
(p, q), a1, (p1, q1)

)
and

(
(p, q), a2, (p2, q2)

)
are in (AH × AK)T ,

for some states (p1, q1) and (p2, q2). Thus, the transitions (p, a1, p1) and (p, a2, p2)

are in AH . But, since a1 6= a2, we have BPO(AH) 6= ∅; a contradiction.

Now, we summarize the state of the art on the HNP of submonoids generated

by finite prefix sets of words.

Let H and K be submonoids generated by finite prefix sets of words over A.

In view of Theorem 1.3.12, suppose AH and AK are deterministic SFA over A

with at most one bpi accepting H and K, respectively. Clearly, (AH × AK)T is a

deterministic monoidal automaton accepting H ∩K. In order to consider the case

that H ∩K is finitely generated, one could restrict (AH ×AK)T to be semi-flower.

With this hypothesis, we discuss the HNP of H and K as follows.

Case 1. AH or AK has no bpis: In this case, by Theorem 2.1.3, the submonoids

H and K satisfy the HNP.

Case 2. AH and AK have unique bpi: In this case, (AH × AK)T can have ar-

bitrary number of bpis. But, if (AH × AK)T has at most one bpi, then by

Theorem 2.1.2, the submonoids H and K satisfy the HNP.

In general, if (AH × AK)T has more than one bpi, there are several examples

of H and K which fail to satisfy the HNP (cf. [Giambruno, 2007; Giambruno and

Restivo, 2008]). For instance, in Example 2.1.4, we give H and K which do not

satisfy the HNP, where (AH ×AK)T has two bpis.

22 Hanna Neumann Property

Example 2.1.4. Consider the submonoids H = {aa, aba, ba, bb}∗ and K = {a, bab}∗

of the free monoid {a, b}∗. We give the automata AH and AK which accept H and

K, respectively, in Figure 2.1. Note that AH and AK are deterministic semi-flower

automata, each with unique bpi. The (trim part of) product automaton AH ×AK

is shown in Figure 2.2. Clearly, AH ×AK is semi-flower with two bpis, viz. (q0, q
′
0)

and (q0, q
′
2). One can observe that the rk(H ∩ K) = 5; whereas, rk(H) = 4 and

rk(K) = 2. Thus, H and K do not satisfy the HNP, i.e.

r̃k(H ∩K) > r̃k(H)r̃k(K).

GFED@ABC?>=<89:;q0

a
~~}}

}}
}}

}}
}

b
ÃÃ

AA
AA

AA
AA

A

GFED@ABCq1

a
33

b
²²

GFED@ABCq2

a, b
kk

GFED@ABCq3

a

00 GFED@ABC?>=<89:;q′0

b
²²

a
¨¨

GFED@ABCq′1

a

²²

GFED@ABCq′2

b

[[

Figure 2.1: AH (in the left) and AK (in the right) of Example 2.1.4

º¹ ¸·
³´ µ¶(q2, q

′
1) a

((º¹ ¸·
³´ µ¶
¨§ ¦¥
¡¢ £¤(q0, q

′
0)

b

OO

a //
º¹ ¸·
³´ µ¶(q1, q

′
0)

a{{
b //
º¹ ¸·
³´ µ¶(q3, q

′
1)

a //
º¹ ¸·
³´ µ¶(q0, q

′
2)

b

²²º¹ ¸·
³´ µ¶(q3, q

′
0)

a

OO

º¹ ¸·
³´ µ¶(q1, q

′
2)b

oo
º¹ ¸·
³´ µ¶(q0, q

′
1)a

oo
º¹ ¸·
³´ µ¶(q2, q

′
0)

a

kkXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

b
oo

Figure 2.2: AH ×AK of Example 2.1.4

Thus, if (AH × AK)T has an arbitrary number of bpis, in this work, we would

investigate certain conditions so that H and K satisfy the HNP. For that purpose,

2.2 BPR of semi-flower automata 23

we would require the following supplementary results from [Giambruno and Restivo,

2008]. For i ≥ 0, we write

BPOi(A) = {q ∈ Q | the number of transitions defined on q is equal to i},

i.e. the set of states whose outdegree – the number of arcs going out of the state –

in the digraph of A is i.

Proposition 2.1.5. Let A be an alphabet of cardinality n. If A = (Q,A, q0, q0,F)

is a deterministic SFA, then

|F| − |Q| =
n∑

i=2

|BPOi(A)|(i− 1).

Proposition 2.1.6. Let A be an alphabet of cardinality n and let A1 and A2 be two

deterministic automata over A. If ci = |BPOi(A1)| and di = |BPOi(A2)|, for each

i ∈ {1, . . . , n}, then

|BPOt(A1 ×A2)| ≤
∑

t≤r,s≤n

crds.

Proposition 2.1.7. Let 〈c1, . . . , cn〉 and 〈d1, . . . , dn〉 be two finite sequences of nat-

ural numbers; then

n∑
t=2

(t− 1)

(∑
t≤r≤n

cr

∑
t≤s≤n

ds

)
≤

(
n∑

i=2

(i− 1)ci

) (
n∑

j=2

(j − 1)dj

)
.

2.2 BPR of semi-flower automata

In this section, we introduce a concise notation for an SFA in which only the initial-

final state, bpis and the respective paths between them will be considered along

with their labels. We call this as bpi’s and paths representation, in short BPR, of

the semi-flower automaton.

Definition 2.2.1. Let A = (Q,A, q0, q0,F) be an SFA; the BPR of A is a quintuple

A′ = (Q′, A, q0, q0,F ′), where

24 Hanna Neumann Property

/.-,()*+
a

~~~~
~~

~~
~~

~~

b

²²

GFED@ABC?>=<89:;q0
a //boo /.-,()*+

b

ÃÃ
@@

@@
@@

@@
@@

a

¨±̈±
±±
±±
±±
±±
±±
±±
±

/.-,()*+

b

²²

a

ÃÃ@
@@

@@
@@

@@
/.-,()*+
a

OO

/.-,()*+

b
²²

a

!!/.-,()*+
b

//

a

ÁÁ
==

==
==

==
==

GFED@ABCp1 a
// GFED@ABCp2

b

OO

/.-,()*+boo

a
¡¡¢¢

¢¢
¢¢

¢¢
¢

GFED@ABCp3

a

¡¡¢¢
¢¢

¢¢
¢¢

¢b
oo

/.-,()*+
b

// GFED@ABCp4

b

OO

/.-,()*+
b

oo

Figure 2.3: A semi-flower automaton

(i) Q′ = BPI(A) ∪ {q0}, and

(ii) F ′ is the finite subset of Q′×A∗×Q′ defined by (p0 = p, x, q = pk) ∈ F ′ if and

only if there exist distinct p1, . . . , pk−1 ∈ Q \Q′ and x = a1 · · · ak, for ai ∈ A,

such that (pi−1, ai, pi) ∈ F for all 1 ≤ i ≤ k, i.e.

p = p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−→ pk−1

ak−→ pk = q

is a simple path from p to q (or simple cycle, when p = q) labeled by x in

which the intermediate nodes, if any, are outside Q′.

Remark 2.2.2. By adopting the digraph representation of an automaton, we can

draw a digraph for the BPR of an SFA. Here, the arcs are labeled by the labels

(words) of respective simple paths (or simple cycles) of the SFA.

Example 2.2.3. The BPR of the SFA given in Figure 2.3 is shown in Figure

2.4.

Remark 2.2.4. Let A = (Q,A, q0, q0,F) be an SFA and let A′ = (Q′, A, q0, q0,F ′)

be the BPR of A.

(i) Every cycle in A′ passes through the state q0.

(ii) The number of simple cycles in A is equal to the number of simple cycles in

A′.



2.2 BPR of semi-flower automata 25

GFED@ABC?>=<89:;q0

aba

##HHHHHHHHHHHHHHHHHHH
abb

··babab

¹¹
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

bb

{{vvvvvvvvvvvvvvvvvvvbaa

­­

babb

³³
aa

~~

GFED@ABCp1

a
ÃÃA

AA
AA

AA
AA

GFED@ABCp3

ab
~~}}

}}
}}

}}
}ba

°°

bb

bb

GFED@ABCp2

ba

HHµµµµµµµµµµµµµµµµµµµµµ
GFED@ABCp4

b
oo

Figure 2.4: The BPR of the SFA given in Figure 2.3

(iii) For any p, q ∈ Q′, the number of simple paths from p to q in A is equal to the

number of simple paths from p to q in A′.

Proposition 2.2.5. Let A be an SFA and let A′ be the BPR of A. There is a linear

ordering 4 on the states of A′ such that

(i) the initial-final state q0 is the least element, and

(ii) for j 6= 0, if qj 4 qi, then there is no arc from qj to qi in A′.

Proof. Construct the digraph G from the digraph of A′ by removing the arcs which

are leaving out of the initial-final state q0. By Remark 2.2.4(i), G is a directed acyclic

graph. Define a relation ≤ on the nodes of G by

p ≤ q if and only if there is a simple path from q to p in G.

As the null path is a simple path from a node to itself in G, clearly ≤ is reflexive.

Since there are no cycles in G, it can be observed that ≤ is anti-symmetric and

transitive. Thus, the relation ≤ is a partial ordering on the nodes of G. Since every

state in A is coaccessible, the initial-final state q0 is the least element with respect

to ≤.



26 Hanna Neumann Property

As every partial ordering can be extended to a linear ordering, consider a linear

ordering 4 of the nodes of G which is an extension of ≤. Thus, the obtained linear

ordering 4 is a desired one.

Remark 2.2.6. By applying a topological sort algorithm (e.g. refer [Cormen et al.,

2001]) on the directed acyclic graph G, one can get a linear ordering as described in

Proposition 2.2.5.

In what follows, by a topological ordering of the bpis of an SFA is meant a

linear ordering on the states (possibly, except the initial-final state) of its BPR as

in Proposition 2.2.5.

Example 2.2.7. Let A be the SFA given in Figure 2.3. A topological ordering of

the bpis of A is

p2, p4, p3, p1.

Notice that there is no arc from p3 or p4 to p1 in the BPR of A (cf. Figure

2.4). Hence, in a topological ordering of the bpis of A, the bpi p1 can come at any

position after p2. Thus, the possible other topological orderings are p2, p1, p4, p3 and

p2, p4, p1, p3.

Notation 2.2.8. Let A be an SFA and let A′ be the BPR of A. In this chapter, if

we say that A has m bpis, we always assume that q1, q2, . . . , qm are the bpis of A,

which are considered in a topological ordering, i.e.

q1 4 q2 4 · · · 4 qm.

As per the ordering, we also fix the following numbers in the BPR A′.

(i) For 1 ≤ i ≤ m, κi always refer to the number of arcs from the state q0 to the

bpi qi in A′.

(ii) For 1 ≤ i, j ≤ m, κij always refer to the number of arcs from the bpi qi to the

bpi qj in A′.



2.3 Rank of submonoids 27

Remark 2.2.9. As per the topological ordering of the bpis of A, we have κij = 0

for all j ≥ i > 1. If the initial-final state q0 of A is a bpi, then clearly q1 = q0 so

that, for j ≥ 1, κ1j = κj; otherwise, κ1j = 0.

Remark 2.2.10. In the digraph of A (as well as in A′), the indegree of a bpi qj,

1 ≤ j ≤ m, is given by the expression

κj +
m∑

i=j+1

κij.

2.3 Rank of submonoids

In this section, we obtain the rank of the submonoid of a free monoid that is accepted

by an SFA. The following lemma is useful in obtaining the rank of an SFA.

Lemma 2.3.1. Let A be an SFA and let p be the first bpi in a topological ordering

of the bpis of A, i.e. p 4 q, for all bpis q; then

(i) there is a unique simple path from p to the initial-final state q0, and

(ii) every cycle in A visits p.

Proof. If the initial-final state q0 is a bpi, then clearly p = q0. In which case, the

null path is the unique simple path from p to q0. And, since A is semi-flower, every

cycle in A visits p. If q0 is not a bpi, we proceed as follows.

(i) Since p is coaccessible, there is a path from p to the state q0. Now suppose

there are two different paths P1 and P2 with labels u and v, respectively, from

p to the state q0. Let w be the label of longest suffix path P ′ which is in

common between the paths P1 and P2. As the state q0 is not a bpi, w 6= ε.

But then s(P ′) will be a bpi different from p. This is a contradiction to the

choice of p. Thus, there is a unique simple path from p to q0.



28 Hanna Neumann Property

(ii) Suppose there is a cycle that is not visiting p. Also, from above (i), there is a

simple path from p to the state q0. Let P be the longest common suffix path

of these two paths ending at q0. Clearly, s(P ) is a bpi and s(P ) 6= p. Since

there is a path from p to s(P ), we have s(P ) 4 p. This is a contradiction to

the choice of p. Hence, every cycle in A visits p.

Corollary 2.3.2. Let A be an SFA. If p is the first bpi in a topological ordering of

the bpis of A, then p is the first bpi in any topological ordering of the bpis of A.

Let A be an SFA. Now we are ready to present the result on the rank of the

submonoid L(A). The rank of L(A) can be characterized using the bpis of A. Note

that, if there is no bpi in A, then clearly the rank of L(A) is either 0 or 1. If A has

at least one bpi, we have the following theorem.

Theorem 2.3.3. Let A be an SFA and m ≥ 1. If A has m bpis, then

rk(L(A)) ≤
m∑

i=1

κiκi0, (#)

where κi0 is the number of simple paths from the bpi qi to the initial-final state q0.

The number κi0 can be given by the recursive formula

κ10 = 1 and κi0 =
i−1∑
j=1

κijκj0, for i > 1.

Moreover, if A is deterministic, then the equality holds in (#).

Proof. Let q1 4 q2 4 · · · 4 qm be the bpis of A. It is known from Theorem 1.3.9

that

rk(L(A)) ≤ |YA| ≤ |CA|.



2.3 Rank of submonoids 29

We prove the result by showing that |CA|, the number of simple cycles in A passing

through the state q0, is equal to the righthand side of (#), i.e. we show that

|CA| =
m∑

i=1

κiκi0.

By Remark 2.2.4(ii), |CA| = |CA′|, where CA′ is the number of simple cycles in the

BPR A′ of A.

For 1 ≤ i ≤ m, let νi be the number of simple cycles in A′ that are passing

through the bpi qi but not through any bpi qj with j > i. Clearly,

|CA′| =
m∑

i=1

νi.

We conclude the result by arguing that νi = κiκi0, for 1 ≤ i ≤ m.

In case i = 1, ν1 is the number of simple cycles in A′ that are passing through

the bpi q1 but not through any other bpi. First note that, by Lemma 2.3.1 there

is a unique simple path from q1 to q0 so that κ10 = 1. Now, each simple cycle that

is counted in ν1 is merely an arc from q0 to q1 followed by the unique simple path

from q1 to q0. Thus, the number of simple cycles counted in ν1 is the number of arcs

from q0 to q1, i.e. κ1. Hence, we have

ν1 = κ1 = κ1κ10.

For i > 1, as per the topological ordering, νi is clearly obtained by multiplying

the number of arcs from q0 to the bpi qi and the number of simple paths from qi to

q0. That is,

νi = κiκi0

as desired. Now, we obtain the recursive formula for κi0. For 1 ≤ t < i, let µit be

the number of simple paths in A′ from the bpi qi to q0 that are passing through the

bpi qt but not through any other bpi qj with j > t. Clearly, κi0 =
i−1∑
t=1

µit. But, for

1 ≤ t < i, the number µit is nothing else but the product of the number of arcs from



30 Hanna Neumann Property

qi to qt and the number of simple paths from qt to q0, i.e. µit = κitκt0. Hence, we

have the recursive formula

κi0 =
i−1∑
t=1

κitκt0.

If A is deterministic, then by Theorem 1.3.11, we have

rk(L(A)) = |CA| =
m∑

i=1

κiκi0.

Now, Theorem 2.10 of [Giambruno and Restivo, 2008] is an immediate corollary

as stated below. We will use this corollary in one of our main results.

Corollary 2.3.4. If A = (Q,A, q0, q0,F) is an SFA with a unique bpi, then

rk(L(A)) ≤ κ1 = |F| − |Q|+ 1.

Moreover, if A is deterministic, then the equality holds.

Example 2.3.5. Let us consider the topological ordering

p2 4 p4 4 p3 4 p1

of the bpis of the SFA A given in Figure 2.3. That is, q1 = p2, q2 = p4, q3 = p3

and q4 = p1. Accordingly, κ1 = 1, κ2 = 1, κ3 = 2 and κ4 = 3. Also, κ41 = 1, κ42 =

0, κ43 = 0, κ31 = 1, κ32 = 2 and κ21 = 1. Since A is deterministic, we have

rk(L(A)) = κ1 + κ2(κ21) + κ3(κ31 + κ32κ21) +

κ4(κ41 + κ42κ21 + κ43κ31 + κ43κ32κ21)

= 11.

2.4 A sufficient condition

In this section, we obtain a sufficient condition for the HNP of two submonoids

which are accepted by deterministic SFA with a unique bpi. The following lemma

is useful in obtaining the proposed result.



2.4 A sufficient condition 31

Lemma 2.4.1. Let A = (Q, A, q0, q0,F) be an SFA and m ≥ 1. If A has m bpis,

then

|F| − |Q|+ 1 ≥ rk(L(A))−
m∑

i=2

(
(κi − 1)(κi1 − 1) +

i−1∑
j=2

κij(κiκj0 − 1)

)
.

Moreover, if A is deterministic, then the equality holds.

Proof. Since the number of transitions |F| of A is the total indegree (i.e. the sum

of indegrees of all the states) of the digraph of A, by Remark 2.2.10, we have

|F| = |Q| −m +
m∑

j=1

(
κj +

m∑
i=j+1

κij

)
.

Consequently,

|F| − |Q|+ 1 = κ1 +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij

= κ1 +
m∑

i=2

κiκi0 +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij −
m∑

i=2

κiκi0.

Now, by Theorem 2.3.3 and simple algebraic manipulations, we have

|F| − |Q|+ 1

≥ rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij −
m∑

i=2

κiκi0

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij −
m∑

i=2

κi

(
i−1∑
j=1

κijκj0

)

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij −
m∑

i=2

κi

(
κi1 +

i−1∑
j=2

κijκj0

)

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑
i=j+1

κij −
m∑

i=2

κiκi1 −
m∑

i=2

i−1∑
j=2

κiκijκj0

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

i=2

κi1 +
m∑

j=2

m∑
i=j+1

κij −
m∑

i=2

κiκi1 −
m∑

i=2

i−1∑
j=2

κiκijκj0

= rk(L(A)) +
m∑

j=2

(κj − 1)−
m∑

i=2

κi1(κi − 1) +
m∑

j=2

m∑
i=j+1

κij −
m∑

i=2

i−1∑
j=2

κiκijκj0



32 Hanna Neumann Property

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1) +
m∑

j=2

m∑
i=j+1

κij −
m∑

i=2

i−1∑
j=2

κiκijκj0

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1) +
m∑

j=2

m∑
i=2

κij −
m∑

i=2

m∑
j=2

κiκijκj0,

as κij = 0 for all j ≥ i > 1

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1)−
m∑

i=2

m∑
j=2

κij(κiκj0 − 1)

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1)−
m∑

i=2

i−1∑
j=2

κij(κiκj0 − 1)

as κij = 0 for all j ≥ i > 1.

Thus,

|F| − |Q|+ 1 ≥ rk(L(A))−
m∑

i=2

(
(κi − 1)(κi1 − 1) +

i−1∑
j=2

κij(κiκj0 − 1)

)
.

Now, by Proposition 2.1.5, we have the following corollary.

Corollary 2.4.2. Let A be an alphabet of cardinality n and let A be a deterministic

SFA over A. For m ≥ 1, if A has m bpis, then

rk(L(A)) =
m∑

i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij(κiκj0 − 1)

)

+
n∑

t=2

|BPOt(A)|(t− 1) + 1.

Theorem 2.4.3. Let AH and AK be deterministic SFA over A each with a unique

bpi accepting submonoids H and K, respectively. For m ≥ 1, if the automaton

(AH × AK)T is an SFA with m bpis, say q1, q2, . . . , qm considered in a topological

ordering, then

r̃k(H ∩K) ≤
m∑

i=2

(
(κi − 1)(κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)
+ r̃k(H)r̃k(K),

where κi is the number of arcs from the initial-final state to qi and κij is the number

of arcs from qi to qj in the BPR of (AH ×AK)T .



2.4 A sufficient condition 33

Proof. Let A be an alphabet of cardinality n. For m ≥ 1, note that

r̃k(H ∩K) = rk(L(AH ×AK))− 1

=
m∑

i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)

+
n∑

t=2

|BPOt(AH ×AK)|(t− 1) by Corollary 2.4.2

≤
m∑

i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)

+
n∑

t=2

(t− 1)

( ∑
t≤r,s≤n

crds

)
by Proposition 2.1.6,

where cr = |BPOr(AH)| and ds = |BPOs(AK)|. Further, by Proposition 2.1.7, we

have

r̃k(H ∩K) ≤
m∑

i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)

+

(
n∑

i=2

(i− 1)ci

)(
n∑

j=2

(j − 1)dj

)

=
m∑

i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)
+ r̃k(H)r̃k(K)

by Corollary 2.3.4 and Proposition 2.1.5.

Hence the result.

We now state a sufficient condition for the Hanna Neumann property of the

submonoids under consideration.

Corollary 2.4.4. In addition to the hypothesis of Theorem 2.4.3, if there is no path

between any two bpis qi and qj, for i, j > 1, except those are passing through q1 and

there is a unique simple path from each bpi to q1 in the automaton (AH × AK)T ,

then

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).



34 Hanna Neumann Property

Proof. For i, j > 1, if there is no path between the bpis qi and qj, except those are

passing through q1, then κij = 0. Further, for i ≥ 2, if there is a unique simple path

from each bpi qi to q1, then the path cannot pass through any other bpi. Thus, we

have κi1 = 1 so that

m∑
i=2

(
(κi − 1) (κi1 − 1) +

i−1∑
j=2

κij (κiκj0 − 1)

)
= 0.

Hence, by Theorem 2.4.3,

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

2.5 Some Examples

In this section, we first illustrate the sufficient condition given in Corollary 2.4.4

with Example 2.5.1. Further, through Example 2.5.2, we observe that the condition

is not necessary for the HNP. At last, in Example 2.5.3, we also provide some

nondeterministic SFA whose languages (submonoids) satisfy HNP.

Example 2.5.1. Consider the deterministic SFA AH1 and AK1 , each with unique

bpi, given in Figure 2.5. Note that AH1 and AK1 , respectively, accept the sub-

monoids H1 = {ab, bc, acc, baa}∗ and K1 = {c, ac, abb, bca, bcb}∗ over the free monoid

{a, b, c}∗. Clearly, rk(H1) = 4 and rk(K1) = 5. The (trim part of) product automa-

ton (AH1×AK1)
T is shown in Figure 2.6. Clearly, (AH1×AK1)

T is a deterministic

SFA with three bpi’s, viz. (p0, p
′
0), (p2, p

′
0) and (p3, p

′
0). Since the initial-final state

(p0, p
′
0) of (AH1 ×AK1)

T is a bpi, it is the first bpi in any topological ordering of the

bpi’s of (AH1 ×AK1)
T . Observe that there is a unique simple path from each of the

other two bpi’s to (p0, p
′
0) and there is no path between the bpi’s (p2, p

′
0) and (p3, p

′
0),

except those are passing through (p0, p
′
0). Further, note that rk(H1 ∩K1) = 4 and



2.5 Some Examples 35

the submonoids H1 and K1 satisfy HNP, i.e.

r̃k(H1 ∩K1) ≤ r̃k(H1)r̃k(K1).

GFED@ABC?>=<89:;p0

a

~~}}
}}

}}
}}

}
b

ÃÃA
AA

AA
AA

AA

GFED@ABCp1

b
00

c

²²

GFED@ABCp2

a

²²

c
nn

GFED@ABCp3

c

FF±±±±±±±±±±±±±±±±
GFED@ABCp4

a

XX0000000000000000

GFED@ABC?>=<89:;p′0
a

ÄÄ¡¡
¡¡

¡¡
¡¡

¡
b

ÂÂ
>>

>>
>>

>>
>

c
¨¨

GFED@ABCp′1

c
11

b
²²

GFED@ABCp′2

c

²²

GFED@ABCp′3

b

GG²²²²²²²²²²²²²²²²²
GFED@ABCp′4

a, b

WW/////////////////

Figure 2.5: AH1 (in the left) and AK1 (in the right) of Example 2.5.1

º¹ ¸·
³´ µ¶(p0, p

′
0)

a //

b

²²

º¹ ¸·
³´ µ¶(p1, p

′
1)

b //

c

²²

º¹ ¸·
³´ µ¶(p0, p

′
3)

b //
º¹ ¸·
³´ µ¶(p2, p

′
0)

c

tt

º¹ ¸·
³´ µ¶(p2, p

′
2)

c

²²

º¹ ¸·
³´ µ¶(p3, p

′
0)

c
eeKKKKKKKKK

º¹ ¸·
³´ µ¶(p0, p

′
4)

a //

b

GG

º¹ ¸·
³´ µ¶(p1, p

′
0)

c

OO

Figure 2.6: (AH1 ×AK1)
T of Example 2.5.1

Example 2.5.2. Consider the deterministic SFA AH2 and AK2 , each with unique

bpi, given in Figure 2.7. Note that AH2 and AK2 , respectively, accept the sub-

monoids H2 = {a, bb, bab}∗ and K2 = {b, ab, aaa}∗ over the free monoid {a, b}∗.
Clearly, rk(H2) = 3 = rk(K2). The (trim part of) product automaton (AH2×AK2)

T

is shown in Figure 2.8. Clearly, (AH2 × AK2)
T is a deterministic SFA with two

bpi’s, viz. (p0, p
′
0) and (p1, p

′
0). Note that rk(H2∩K2) = 5 so that H2 and K2 satisfy

HNP. However, observe that there are two paths from (p1, p
′
0) to (p0, p

′
0). Hence, the

condition given in Corollary 2.4.4 is not necessary for the HNP of two submonoids

of a free monoid.



36 Hanna Neumann Property

GFED@ABC?>=<89:;p0

b
²²

a
­­

GFED@ABCp1

a

²²

b

??

GFED@ABCp2

b

]]

GFED@ABC?>=<89:;p′0

a

²²

b
¨¨

GFED@ABCp′1

a

²²

b

@@

GFED@ABCp′2

a

[[

Figure 2.7: AH2 (in the left) and AK2 (in the right) of Example 2.5.2

º¹ ¸·
³´ µ¶(p0, p

′
1)

b

²²

a //
º¹ ¸·
³´ µ¶(p0, p

′
2)

a

©©º¹ ¸·
³´ µ¶
¨§ ¦¥
¡¢ £¤(p0, p

′
0)

a
99sssssssss

b
%%KKKKKKKKK

º¹ ¸·
³´ µ¶(p1, p

′
0)

bnn

a //
º¹ ¸·
³´ µ¶(p2, p

′
1)

b

VV

Figure 2.8: (AH2 ×AK2)
T of Example 2.5.2

Example 2.5.3. Consider the nondeterministic SFAAH3 andAK3 , each with unique

bpi, given in Figure 2.9. Note that AH3 and AK3 , respectively, accept the sub-

monoids H3 = {ab, aba, ba}∗ and K3 = {a, bb, bab, bbb}∗ over the free monoid {a, b}∗.
Clearly, rk(H3) = 3 and rk(K3) = 4. The (trim part of) product automaton

(AH3 ×AK3)
T is shown in Figure 2.10. Clearly, (AH3 ×AK3)

T is a nondeterminis-

tic SFA with three bpi’s, viz. (p0, p
′
0), (p0, p

′
2) and (p2, p

′
0). Note that rk(H3∩K3) = 4

and the submonoids H3 and K3 satisfy HNP.



2.6 Conclusion 37

GFED@ABC?>=<89:;p0

a

~~}}
}}

}}
}}

}
b

ÃÃA
AA

AA
AA

AA

GFED@ABCp1

b
00

b
²²

GFED@ABCp2

a
nn

GFED@ABCp3

a

MM

GFED@ABC?>=<89:;p′0

b
²²

a
¨¨

GFED@ABCp′1
a

ÄÄ¡¡
¡¡

¡¡
¡¡

¡
b

ÂÂ
>>

>>
>>

>>
>

b

WW

GFED@ABCp′2

b

::

GFED@ABCp′3

b

dd

Figure 2.9: AH3 (in the left) and AK3 (in the right) of Example 2.5.3

º¹ ¸·
³´ µ¶(p0, p

′
0)

a //

b

²²

º¹ ¸·
³´ µ¶(p1, p

′
0)

b //

b

²²

º¹ ¸·
³´ µ¶(p0, p

′
1)

a //

b

uu

º¹ ¸·
³´ µ¶(p1, p

′
2)

b //

b

tt º¹ ¸·
³´ µ¶(p3, p

′
0)

a

ww

º¹ ¸·
³´ µ¶(p2, p

′
1)

a

²²

º¹ ¸·
³´ µ¶(p3, p

′
1)

a
yyrrrrrrrrrr

º¹ ¸·
³´ µ¶(p0, p

′
2)

b
²²º¹ ¸·

³´ µ¶(p2, p
′
0)

a

??

Figure 2.10: (AH3 ×AK3)
T of Example 2.5.3

2.6 Conclusion

This work considers the intersection problem for two submonoids of a free monoid

which are generated by finite prefix sets. In particular, this work has obtained a

sufficient condition for the Hanna Neumann property for the class of submonoids

generated by finite prefix sets. In that connection, a general rank formula for the

submonoids which are accepted by semi-flower automata is also obtained. Thus, this

work addresses one of the problems, viz. the prefix case, posed by Giambruno and

Restivo in the conclusions of the paper [Giambruno and Restivo, 2008]. However,

there is a lot more to investigate the general problem concerning the intersection of



38 Hanna Neumann Property

two arbitrary submonoids of a free monoid. For instance, even in the prefix case,

one could investigate the necessary and sufficient conditions for the Hanna Neumann

property. On the other hand, the intersection problem for two submonoids generated

by finite non-prefix sets of words is of particular interest. For this problem, the rank

formula that is obtained (for nondeterministic automata) in this chapter may be

useful.



3
Holonomy Decomposition

The primary decomposition theorem due to Krohn and Rhodes [1965] is one of the

fundamental results in the theory of automata and monoids. Eilenberg’s holon-

omy decomposition theorem for transformation monoids is a sophisticated version

of the Krohn-Rhodes decomposition theorem [Eilenberg, 1976]. The holonomy de-

composition method appears to be relatively efficient and has been implemented

computationally by Egri-Nagy and Nehaniv [2010]. In order to understand some

structural properties of SFA, we investigate their holonomy decomposition. We pur-

sue the decomposition of SFA classified by their number of bpis. In this chapter, we

obtain the holonomy decomposition of circular SFA with at most two bpis.

39



40 Holonomy Decomposition

3.1 Transformation monoids

The purpose of this section is to present the holonomy decomposition theorem and

its necessary background material. For more details, one may refer to [Dömösi and

Nehaniv, 2005; Egri-Nagy, 2005; Eilenberg, 1976].

Definition 3.1.1. A transformation monoid is a pair (P,M), where P is a nonempty

finite set and M is a submonoid of the monoid of all functions on P with respect to

composition. Further, (P, M) is called transformation group if M is a group.

Notation 3.1.2. For p ∈ P , let p̂ be the constant function on P which takes the value

p, i.e. qp̂ = p, ∀q ∈ P .

In what follows, let (P,M) be a transformation monoid.

Definition 3.1.3. The closure of (P, M), denoted by (̂P, M), is defined as (P, M̂),

where M̂ is the monoid generated by M ∪
⋃
p∈P

{p̂}.

Definition 3.1.4. The skeleton space of (P,M) is a pair (J ,≤), where

J =
{

Pm
∣∣∣ m ∈ M

}
∪

{
{p}

∣∣∣ p ∈ P
}

and the preorder ≤ is defined on J by

R ≤ S if and only if R ⊆ Sm, for some m ∈ M.

For R,S ∈ J , if R ≤ S and R 6= S, then we write R < S. Further, we define an

equivalence relation ∼ on J by

R ∼ S if and only if R ≤ S and S ≤ R.

Notation 3.1.5. For i ≥ 1, we write Ji to denote the set of all elements of the

skeleton space of cardinality i, i.e.

Ji =
{

S ∈ J
∣∣∣ |S| = i

}
.



3.1 Transformation monoids 41

In what follows, let J be the skeleton space of (P, M).

Definition 3.1.6. For S ∈ J , we define the set K(S) to be the set of elements of

M which behave as permutations on S, i.e.

K(S) = {m ∈ M | Sm = S}.

Definition 3.1.7. For S ∈ J with |S| > 1, we define paving of S, denoted by

B(S), to be the set of maximal elements (with respect to the set inclusion) of J

that are contained in S, i.e.

B(S) = {R ∈ J | R ( S and if T ∈ J with R ⊆ T ⊆ S then R = T or T = S}.

Remark 3.1.8. Each m ∈ K(S) acts as a permutation on B(S).

Notation 3.1.9. For m ∈ K(S), we write m̌ to denote the permutation on B(S)

induced by m.

Definition 3.1.10. For S ∈ J with |S| > 1, the set G(S) of all permutations of

B(S) induced by the elements of K(S) is called the holonomy group of S in (P, M).

Remark 3.1.11. The pair
(
B(S), G(S)

)
is a transformation group.

Definition 3.1.12. A height function h : J −→ N is defined inductively as follows.

For R ∈ J ,

(i) If |R| = 1, then Rh = 0

(ii) If |R| > 1; let R0 < R1 < R2 < · · · < Rn = R is a longest chain in J ending

in R and |R0| = 1. Then Rh = n.

The height of (P,M) is defined to be Ph.

Due to Eilenberg, every finite transformation monoid is covered by a wreath

product of its holonomy transformation monoids, where covering relation and wreath

product between transformation monoids are defined as follows.



42 Holonomy Decomposition

Definition 3.1.13. Let (P1,M1) and (P2,M2) be transformation monoids. We say

(P1,M1) is covered by (P2,M2), denoted by (P1,M1) ≺ (P2,M2), if there exists a

surjective partial function f : P2 −→ P1 and, for any m1 ∈ M1, there exists an

element m2 ∈ M2 such that

(p2f)m1 = (p2m2)f, ∀p2 ∈ P2.

Definition 3.1.14. Let (P1,M1) and (P2,M2) be transformation monoids. The

wreath product of (P1,M1) and (P2,M2), denoted by (P1,M1) ◦ (P2,M2), is the

transformation monoid (P1 × P2,M
P2
1 ×M2) with the following action:

(p1, p2)(f, m2) = (p1(p2f), p2m2)

for all (p1, p2) ∈ P1×P2 and for all (f, m2) ∈ MP2
1 ×M2, where MP2

1 is the set of all

functions from P2 to M1.

Now, we state the holonomy decomposition theorem for finite transformation

monoids in the following.

Theorem 3.1.15 ([Eilenberg, 1976]). If (P,M) is a finite transformation monoid,

then

(P,M) ≺ Ĥn ◦ Ĥn−1 ◦ . . . ◦ Ĥ1,

where n = Ph and for 1 ≤ i ≤ n,

Hi =

(
ki∏

j=1

B(Tij),

ki∏
j=1

G(Tij)

)
,

where ki is the number of equivalence classes at height i and {Tij | 1 ≤ j ≤ ki} is

the set of representatives of equivalence classes at height i.

The holonomy decomposition is also used to study the structural properties of

certain algebraic structures [Holcombe, 1980; Krishna and Chatterjee, 2007]. The

holonomy decomposition method is relatively efficient and has been implemented



3.2 Circular SFA 43

computationally by Egri-Nagy and Nehaniv [2010]. One can use the computer al-

gebra package, SgpDec developed by them to study the holonomy decomposition of

transformation monoids.

In this chapter, we consider only complete and deterministic automata. Recall

that an automaton is said to be a circular automaton if there exists an input letter

which induces a circular permutation on the state set of the automaton. Circular

automata have been studied in various contexts. The Černý conjecture is true for

circular automata [Dubuc, 1998; Pin, 1978].

The holonomy decomposition looks for holonomy groups. These groups are the

building blocks for the components of the decomposition. Egri-Nagy and Nehaniv

[2005] proved that the monoid of an automaton is aperiodic (i.e. the subgroups in

the monoid are trivial) if and only if the holonomy groups in the transformation

monoid of the automaton are trivial. In view of Remark 1.4.5(i), it is nontrivial

to investigate the holonomy groups in the transformation monoid of circular SFA.

In this chapter, we pursue this task in circular SFA which are classified by their

number of bpis.

3.2 Circular SFA

In this section, we establish some properties of circular semi-flower automata (CSFA).

In what follows, A = (Q,A, q0, q0,F) denotes a complete and deterministic automa-

ton such that |Q| = n. Further, for m ≥ 1, Cm denotes a transformation group

(X,Cm), for some set X with |X| = m and Cm is the cyclic group generated by a

circular permutation on X.

The following lemma is useful in the sequel.

Lemma 3.2.1. Let A be an SFA over A and a, b ∈ A.

(i) If a is a permutation on Q, then a is a circular permutation on Q.



44 Holonomy Decomposition

(ii) If a and b are permutations on Q, then a = b.

Proof.

(i) It is well known that any permutation on a nonempty finite set can be written

as a composition of disjoint cycles [Dummit and Foote, 2004]. Let us assume

that the permutation a is a product of more than one cycles. Then, a cycle

which does not contain the initial-final state q0 is clearly a cycle in A that

does not pass through q0. Since A is semi-flower, it is not possible. Thus, a

has a single cycle on Q, so that a is a circular permutation on Q.

(ii) On the contrary, let us assume that a 6= b. From part (i), the permutations a

and b are circular permutations on Q. Let cyclic orderings on Q with respect

to a and b be as shown below.

a : q0, qi1 , qi2 , . . . , qin−1

b : q0, qj1 , qj2 , . . . , qjn−1

Since a 6= b, let k be the least number such that qik 6= qjk
. Note that there

exists s > k such that qik = qjs and also there exists r > k such that qjk
= qir .

Now, the path as shown below

qik

ar−k−−→ qir = qjk

bs−k−−→ qjs = qik

is a cycle labeled by ar−kbs−k. Clearly, this cycle does not pass through the

initial-final state q0. But, this is not possible in an SFA. Hence, a = b.

Corollary 3.2.2. If A is a CSFA, then there is a unique circular permutation

induced by the input symbols of A.

In this chapter, we present holonomy decomposition of CSFA classified by their

number of bpis. In this context, we first prove certain properties pertaining to the

bpis of an SFA.



3.2 Circular SFA 45

Lemma 3.2.3. Let A be an SFA over A; then,

BPI(A) = ∅⇐⇒ |A| = 1.

Proof. In an n-state complete and deterministic automaton,

the total indegree of all states = the total number of transitions = n|A|.

Since A is accessible, indegree of each state is at least one. Consequently,

BPI(A) = ∅⇐⇒ the total indegree of all states = n ⇐⇒ |A| = 1.

In what follows, let A = (Q,A, q0, q0,F) be a CSFA. For the rest of the chapter,

we fix the following regarding A. Assume a ∈ A induces a circular permutation a

on the state set Q of A. Accordingly,

a : q0, q1, . . . , qn−1

is the cyclic ordering on Q with respect to a.

Lemma 3.2.4. If A has at least one bpi, then its initial-final state is always a bpi.

Proof. Since A has at least one bpi, by Lemma 3.2.3, we have |A| ≥ 2. We claim

that qn−1b = q0, for all b ∈ A, so that q0 is a bpi. Let us assume the contrary, i.e.

qn−1c 6= q0, for some c ∈ A. Since A is complete and deterministic, qn−1c = qi, for

some i (with 1 ≤ i < n). Note that qian−i−1c = qi. Thus, we have a cycle in A from

qi to qi labeled by an−i−1c that does not visit q0. This is a contradiction. Hence,

qn−1b = q0, for all b ∈ A.

Definition 3.2.5. Let X be a nonempty finite set and f a function on X. The rank

of f , denoted by rank(f), is the cardinality of the image set Xf .

Lemma 3.2.6. For 1 ≤ m < n, if |BPI(A)| = m, then any non-permutation in

M(A) has rank at most m.



46 Holonomy Decomposition

Proof. Since m ≥ 1, by Lemma 3.2.3, there is a b ∈ A \ {a}. It is clear that

a contributes one to the indegree of each state of A. For b ∈ A \ {a}, if b is a

permutation, then |Qb| = n > m. Therefore, we have |BPI(A)| = n > m; which

is a contradiction. Thus, for all b ∈ A \ {a}, the function b is not a permutation;

in fact, |Qb| ≤ m. Now, for x ∈ A∗, if x is a non-permutation, then x contains a

symbol b from A \ {a}. Hence, the rank of x is at most m.

In view of Lemma 3.2.4, we have the following corollary of Lemma 3.2.6.

Corollary 3.2.7. If A has a unique bpi, then Qb = {q0}, for all b ∈ A \ {a}.

3.3 CSFA with at most one bpi

In this section, we present holonomy decomposition of CSFA with at most one bpi.

We first observe that the holonomy decomposition of SFA with no bpis follows from

the general case of permutation SFA. Recall that an automaton is a permutation

automaton if the function induced by each input symbol is a permutation on the

state set. Clearly, an automaton is a permutation automaton if and only if its

monoid is a group.

By Lemma 3.2.1, we have the following proposition which also provides the

holonomy decomposition of a permutation SFA.

Proposition 3.3.1. If A is a permutation SFA, then M(A) is a cyclic group.

Further,

(Q,M(A)) ≺ Ĉn.

Now, we investigate the holonomy decomposition of CSFA with no bpis. By

Lemma 3.2.3, if A is an SFA with no bpis, then |A| = 1, say A = {a}. Note that

the function a is a circular permutation on Q. Thus, A is a circular as well as

permutation SFA. Hence, by Proposition 3.3.1, we have the following theorem.



3.3 CSFA with at most one bpi 47

Theorem 3.3.2. Let A be an SFA with no bpis, then

(Q,M(A)) ≺ Ĉn.

Now, we present the holonomy decomposition of CSFA with a unique bpi in the

following theorem.

Theorem 3.3.3. If A is a CSFA with a unique bpi, then

(Q,M(A)) ≺ Ĉn.

Proof. By Corollary 3.2.7, we have Qb = {q0}, for all b ∈ A \ {a}. This implies that

b = c, for all b, c ∈ A \ {a}. Thus, M(A) is generated by the set {a, b}.
For x ∈ M(A), by Lemma 3.2.6, we have either |Qx| = n or |Qx| = 1. Conse-

quently, the skeleton space of (Q,M(A)) is

J = {Q} ∪J1.

Note that

K(Q) =
{

ai

∣∣∣ 1 ≤ i ≤ n
}

and B(Q) = J1.

Clearly, |B(Q)| = n and the holonomy group of Q is

G(Q) =
{

ǎi

∣∣∣ 1 ≤ i ≤ n
}

,

where each element ǎi is the permutation on B(Q) induced by the corresponding

element ai ∈ K(Q). For 1 ≤ i ≤ n, since ai = ai, we have ǎn = ˇ(an) = ε̌. This

implies that the holonomy group G(Q) is a cyclic group of order n generated by ǎ.

Consequently, we have

(Q,M(A)) ≺ Ĉn.



48 Holonomy Decomposition

3.4 CSFA with two bpis

The present section investigate the holonomy decomposition of CSFA with two bpis.

In this section, A = (Q,A, q0, q0,F) denotes a CSFA with two bpis. By Lemma 3.2.4,

the initial-final state q0 of A is a bpi. Let qm, where 1 ≤ m < n, be the other bpi of

A so that BPI(A) = {q0, qm}. Note that, by Lemma 3.2.3, we have |A| ≥ 2.

Lemma 3.4.1.

(i) For b ∈ A, if rank(b) = 2, then Qb = BPI(A).

(ii) There exists a symbol b ∈ A such that Qb = BPI(A).

Proof. We first note that a contributes one to the indegree of each state in Q. Since

BPI(A) = {q0, qm}, we have Qb ⊆ {q0, qm}, for all b ∈ A \ {a}.

(i) Straightforward from the above statement.

(ii) Let us assume that Qb 6= {q0, qm}, for all b ∈ A \ {a}. Then, for b ∈ A \ {a},
either Qb = {q0} or Qb = {qm}. For some b ∈ A \ {a}, if Qb = {qm}, then

there is loop at qm; which is not possible. Consequently, for all b ∈ A \ {a},
Qb = {q0}. This implies BPI(A) = {q0}; a contradiction. Hence, there exists

b ∈ A such that Qb = BPI(A).

The following lemma provides the skeleton space of the transformation monoid

(Q,M(A)).

Lemma 3.4.2. The skeleton space of the transformation monoid (Q,M(A)) is given

by

J = {Q} ∪J2 ∪J1,

where

J2 =
{
{q0, qm}ai

∣∣∣ 1 ≤ i ≤ n
}

.



3.4 CSFA with two bpis 49

Proof. In view of Lemma 3.2.6, other than Q and singletons, the skeleton space J

can have some sets of size two. Thus, it is sufficient to determine J2.

By Lemma 3.4.1(ii), there exists an input symbol, say b ∈ A \ {a}, such that

Qb = {q0, qm}. Therefore, for all 1 ≤ i ≤ n, the image set

Qbai = {q0, qm}ai ∈ J2.

Thus, we have {
{q0, qm}ai

∣∣∣ 1 ≤ i ≤ n
}
⊆ J2.

Let us assume that Qw ∈ J2, for some w ∈ A∗. Then w is of the form

w = ai1b1a
i2b2 · · · aikbka

ik+1 ,

for ij ≥ 0 (1 ≤ j ≤ k+1) and bi ∈ A (1 ≤ i ≤ k) such that the rank of each function

bi is two (cf. Lemma 3.2.6). Write w = ai1b1ubka
ik+1 , where u = ai2b2 · · · aik . Since

rank(b1ubk) = rank(bk) = 2, we have

Qb1ubk = Qbk = {q0, qm},

by Lemma 3.4.1(i). Consequently,

Qw = Qai1b1ubkaik+1 = {q0, qm}aik+1 .

Hence,

J2 =
{
{q0, qm}ai

∣∣∣ 1 ≤ i ≤ n
}

.

Remark 3.4.3. The cardinality of J2 is not necessarily n as shown in Example

3.4.4.

Example 3.4.4. The automaton A given in Figure 3.1 is a CSFA with BPI(A) =

{1, 3}, and |Q| = 4 . Here, Qb = {1, 3} and we observe that

{1, 3}a = {2, 4}, {1, 3}a2 = {1, 3}, so that |J2| = 2.



50 Holonomy Decomposition

?>=<89:;765401231

a

ÁÁ
>>

>>
>>

>>
>

b
­­

?>=<89:;4

a

@@¡¡¡¡¡¡¡¡¡

b
00

?>=<89:;2

a
¡¡¡¡

¡¡
¡¡

¡¡
¡

bpp?>=<89:;3

a

^>̂>>>>>>>>

b

OO

Figure 3.1: A CSFA A with two bpis

Lemma 3.4.5. There exists x ∈ A∗ such that q0x = qm and qmx = q0.

Proof. If there exists b ∈ A\{a} such that q0b 6= q0, then clearly x = b will serve the

purpose. Otherwise, we have q0b = q0, for all b ∈ A\{a}. However, by Lemma 3.4.1,

there exist a symbol c ∈ A such that Qc = {q0, qm}. If c = a, then Q = {q0, qm}
and the result is straightforward.

Let us assume that c 6= a. Clearly, q0c = q0 and there exists a state qi (with

1 ≤ i < k) such that qic = qm. Let t (with 1 ≤ t < m) be the least number such

that qtc = qm. Choose x = atc and observe that q0x = qm. We claim that qmx = q0.

On the contrary, assume qmx 6= q0. Then, qmx = qm so that there is a cycle from

qm to qm labeled x. Thus, the cycle should pass through q0. Since q0c = q0, there

exist t1 and t2 (1 ≤ t1, t2 < t) with t1 + t2 = t such that

qmat1 = q0 and q0at2c = qm.

Note that q0at2c = qt2c = qm. This contradicts the choice of t, as t2 < t. Thus,

qmx = q0.

Theorem 3.4.6. If A is a CSFA with BPI(A) = {q0, qm}, then

(Q,M(A)) ≺ Ĉr ◦ Ĉ2,

where r (with 1 ≤ r ≤ n) is the smallest number such that {q0, qm}ar = {q0, qm}.



3.4 CSFA with two bpis 51

Proof. From Lemma 3.4.2, the skeleton space of (Q,M(A)) is

J = {Q} ∪J2 ∪J1

in which all the elements of J2 are equivalent to each other.

For 1 ≤ i ≤ n, note that ai permutes the elements of Q and, for x ∈ A∗, if

x 6= ai, then x is not a permutation on Q (cf. Lemma 3.2.1). Consequently,

K(Q) =
{

ai

∣∣∣ 1 ≤ i ≤ n
}

.

Since all the elements of J2 are maximal in Q, we have B(Q) = J2. Let r

(with 1 ≤ r ≤ n) be the smallest integer such that {q0, qm}ar = {q0, qm} so that

|B(Q)| = r. Consequently, the holonomy group

G(Q) =
{

ǎi

∣∣∣ 1 ≤ i ≤ r
}

,

where each function ǎi is a permutation on B(Q) induced by the corresponding

function ai ∈ K(Q). Since ǎi = ǎ
i
, the holonomy group G(Q) is a cyclic group of

order r generated by ǎ. Thus,

(B(Q), G(Q)) = Cr.

Let P = {q0, qm} be a representative in J2. Clearly,

B(P ) = {{q0}, {qm}}.

By Lemma 3.4.5, there exist x ∈ A∗ such that q0x = qm and qmx = q0, so that

K(P ) = {x, ε}. Consequently, the holonomy group G(P ) = C2 and hence,

(B(P ), G(P )) = C2.

Thus, the holonomy decomposition of A is given by

(Q,M(A)) ≺ Ĉr ◦ Ĉ2.



52 Holonomy Decomposition

Corollary 3.4.7. Let n be an odd number; if A is a CSFA with two bpis such that

|Q| = n, then

(Q,M(A)) ≺ Ĉn ◦ Ĉ2.

Proof. From Theorem 3.4.6, we have

(Q,M(A)) ≺ Ĉr ◦ Ĉ2,

where r (with 1 ≤ r ≤ n) is the smallest number such that {q0, qm}ar = {q0, qm}.
We claim that r = n. If r < n, since {q0, qm}ar = {q0, qm} and a is a circular

permutation on Q, it follows that q0ar = qm, and qmar = q0. This implies that

q0a2r = q0 with 1 < 2r < 2n. Therefore, 2r = n; a contradiction. Hence,

(Q,M(A)) ≺ Ĉn ◦ Ĉ2.

3.5 Conclusion

In this work, we have initiated the investigations on the holonomy decomposition

of CSFA, classified by their number of bpis. In fact, first we have ascertained the

holonomy decomposition of CSFA with at most one bpi. Further, we obtained the

holonomy decomposition of CSFA with two bpis. One can target to address the

holonomy decomposition of CSFA with arbitrary number of bpis. In general, one

can look for holonomy decomposition of SFA.



4
Syntactic Complexity

The syntactic complexity of a class of recognizable languages provides a measure

for the complexity of the class. Holzer and König [2004] observed that the syntactic

complexity of the class of all recognizable languages over unary alphabet is linear;

while it is maximum, if the size of alphabet is at least three. It turns out that the

most crucial case is to determine the syntactic complexity for recognizable languages

over a binary alphabet. In this chapter, we investigate the syntactic complexity of

various classes of submonoids accepted by CSFA, classified by their number of bpis.

We first give the syntactic complexity of the class of submonoids accepted by CSFA

with at most one bpi. Then, we consider CSFA with two bpis over a binary alphabet

and obtain the syntactic complexity of the respective submonoids.

53



54 Syntactic Complexity

We now formally present the notion of syntactic complexity. In view of Theorem

1.4.8 and Theorem 1.4.10, we have the following definitions.

Definition 4.0.1. Let L be a recognizable language.

(i) The number of states in the minimal automaton accepting L is called the state

complexity of L.

(ii) The size of the syntactic monoid of L is called the syntactic complexity of L.

Definition 4.0.2. The syntactic complexity of a class of recognizable languages is

the maximal syntactic complexity of languages in that class, taken as a function of

the state complexity of these languages.

Recall that the syntactic monoid of a recognizable language is isomorphic to the

monoid of the minimal automaton accepting the language (cf. Theorem 1.4.11).

Therefore, in order to calculate the syntactic complexity of a recognizable language,

it is convenient to consider the monoid of the minimal automaton accepting the

language.

4.1 The monoid of CSFA

In this section, we prove some of the basic properties and facts about CSFA which

are useful in this chapter. We consider only complete and deterministic automata

throughout the chapter. In what follows, let A = (Q,A, q0, q0,F) be a complete and

deterministic CSFA with |Q| = n and M(A) the monoid of A. We follow the same

notation introduced in Chapter 3, regarding CSFA. We denote by G the submonoid

generated by a in M(A), where a ∈ A induces a circular permutation on Q.

We first prove some results which are useful in the sequel.

Proposition 4.1.1. The submonoid G is a cyclic subgroup of order n in M(A).

Further, G contains all the permutations of M(A).



4.1 The monoid of CSFA 55

Proof. Since G is the submonoid generated by circular permutation a on Q, we have

G is a cyclic group of order n. Now, let x ∈ M(A) be a permutation on Q for

x = a1a2 · · · am with ai ∈ A (1 ≤ i ≤ m). Then

x = a1a2 · · · am = a1a2 · · · am.

Clearly, each function ai is a permutation on Q. By Lemma 3.2.1(ii), we have a = ai,

for all i (1 ≤ i ≤ m). This implies that x = am and consequently x ∈ G.

Remark 4.1.2. For p, q ∈ Q, there exists x ∈ G such that px = q. Indeed, if p = qi

and q = qj, for some i, j (with 1 ≤ i ≤ j ≤ n), then x = aj−i will serve the purpose.

Proposition 4.1.3. A is a minimal automaton.

Proof. Since A is accessible, in view of Theorem 1.4.7, it is sufficient to prove that

the relation ∼A is diagonal. Let p and q be two distinct states. By Remark 4.1.2,

there exists x ∈ G such that px = q0.

Now, we claim that qx 6= q0. For, if qx = q0, then px = qx. Since x ∈ G, we

have p = q; a contradiction. Hence, the relation ∼A is diagonal and consequently,

A is minimal.

We now recall the notion of group actions and its related concepts which are

useful in the present context. For more details, one may refer to any book on basic

abstract algebra (cf. [Dummit and Foote, 2004]).

Definition 4.1.4. Let (H, ◦) be a group with identity e and X a nonempty set.

A group action of H on X is a function · : X × H −→ X satisfying the following

axioms. For x ∈ X and h, h′ ∈ H,

x · e = x and x · (h ◦ h′) = (x · h) · h′.

For x ∈ X, the orbit of x, denoted by O(x), is the equivalence class of x with respect

to the equivalence relation ∼ on X defined by

x ∼ y ⇐⇒ x · h = y for some h ∈ H.



56 Syntactic Complexity

Clearly, O(x) = {x · h | h ∈ H}. Further, for x ∈ X, the stabilizer of x, denoted by

Hx, is the subgroup of H defined by

Hx = {h ∈ H | x · h = x}.

Remark 4.1.5. For x ∈ X, |O(x)| = [H,Hx], the index of the stabilizer Hx in H.

Let us consider the group action of G on M(A) with respect to the monoid

operation, the composition of functions. Note that

M(A) =
⋃

x∈A∗
O(x).

Proposition 4.1.6. For x ∈ A∗, we have |O(x)| = n.

Proof. For x ∈ A∗, we have |O(x)| = [G,Gx]. Since |G| = n, it is sufficient to

prove that Gx = {ε}. Let y ∈ Gx, we have x y = x. This implies that, for q ∈ Q,

q(x y) = qx, i.e. (qx)y = qx. Write qx = q′, then q′y = q′.

We claim that y = ε. Let p ∈ Q be an arbitrary state. By Remark 4.1.2, there

exists z ∈ G such that p = q′z. Consider

py = (q′z)y = (q′y)z = q′z = p.

Hence, y = ε and consequently Gx = {ε}.

Thus, to compute the size of M(A), it is sufficient to count the number of distinct

orbits with respect to the group action of G on M(A). In the following sections, we

investigate the size of M(A) classified by the number of bpis of A.

4.2 CSFA with at most one bpi

In this section, we investigate the syntactic complexity of the submonoids accepted

by CSFA with at most one bpi. We first observe that the syntactic complexity

of the submonoids accepted by SFA with no bpis follows from the general case



4.2 CSFA with at most one bpi 57

of permutation SFA. By Lemma 3.2.1(i) and Proposition 4.1.3, any permutation

SFA is a minimal automaton. Now, by Lemma 3.2.1(ii), we have the following

proposition which also provides the syntactic complexity of the submonoids accepted

by permutation SFA.

Proposition 4.2.1. If A is a permutation SFA, then M(A) is a cyclic group gen-

erated by a. Further, the syntactic complexity of the submonoids accepted by permu-

tation SFA is n.

Let A be an SFA with no bpis, then by Lemma 3.2.3, we have |A| = 1, say

A = {a}. Note that the function a is a circular permutation on Q. Thus, A is

a circular as well as permutation SFA. Hence, by Proposition 4.2.1, we have the

following theorem.

Theorem 4.2.2. The syntactic complexity of the submonoids accepted by SFA with

no bpis is n.

Now, we determine the syntactic complexity of the submonoids accepted by

CSFA with a unique bpi in the following theorem.

Theorem 4.2.3. The syntactic complexity of the submonoids accepted by CSFA

with a unique bpi is 2n.

Proof. Let A be a CSFA with a unique bpi. By Corollary 3.2.7, we have Qb = {q0},
for all b ∈ A \ {a}. This implies that for b, c ∈ A \ {a}, we have b = c. Now, we take

a symbol b ∈ A \ {a}. The orbit of b is

O(b) = {bai | 1 ≤ i ≤ n}.

Let x be a non-permutation in M(A). By Lemma 3.2.6, the non-permutation x

is a constant function. This implies that Qx = {qk}, for some k (with 0 ≤ k < n).

Note that Qbak = {qk}. Therefore, x = bak ∈ O(b) and consequently the orbit O(b)

contains all non-permutations in M(A).



58 Syntactic Complexity

Thus, there are exactly two distinct orbits, one with all permutations (i.e. G)

and other with all non-permutations. By Proposition 4.1.6, we have |M(A)| = 2n.

Since A is arbitrary, we have the syntactic complexity of the submonoids accepted

by CSFA with a unique bpi is 2n.

4.3 CSFA with two bpis

In this section, we investigate the syntactic complexity of CSFA with two bpis. In

the previous section, we have observed that the syntactic complexity of CSFA with

at most one bpi is independent of the size of the input alphabet. In contrast, the

syntactic complexity of CSFA with two bpis varies with respect to the size of input

alphabet. It is evident from the following example.

Example 4.3.1. Consider the CSFAA1 = ({q0, q1, q2, q3, q4}, {a, b}, q0, q0,F1), where

the set of transitions F1 is given by the following table.

F1 q0 q1 q2 q3 q4

a q1 q2 q3 q4 q0

b q3 q3 q3 q0 q0

Also, consider the CSFA A2 = ({q0, q1, q2, q3, q4}, {a, b, c}, q0, q0,F2), where the set

of transitions F2 is given by the following table.

F2 q0 q1 q2 q3 q4

a q1 q2 q3 q4 q0

b q3 q3 q3 q0 q0

c q3 q0 q3 q0 q0

Note that A1 and A2 are 5-state CSFA with the same set of bpis {q0, q3}. The

automaton A1 is defined over the binary alphabet {a, b}, while A2 is defined over

the ternary alphabet {a, b, c}. We observed that the syntactic complexity of the

submonoid accepted by A1 is 60, whereas it is 110 for the submonoid accepted by



4.3 CSFA with two bpis 59

A2. One can observe these numbers through the computer algebra system GAP

[2012].

In view of Example 4.3.1, in this section, we restrict ourselves to investigate the

syntactic complexity of the class of the submonoids accepted by CSFA with two

bpis over a binary alphabet. In fact, in this section, we prove the following main

theorem.

Theorem 4.3.2. The syntactic complexity of the class of the submonoids accepted

by CSFA with two bpis over a binary alphabet is 2n(n + 1).

We fix the following notation for rest of the section. Let A = {a, b} be the binary

alphabet and A = (Q,A, q0, q0,F) a CSFA with two bpis. As earlier, a is the circular

permutation. Let b be the non-permutation. Note that, Qb = BPI(A). By Lemma

3.2.4, the initial-final state q0 is a bpi. Let qm, for some m (with 1 ≤ m < n), be

the other bpi of A so that BPI(A) = {q0, qm}. We need to establish some results

for proving Theorem 4.3.2. In the following, these results are presented in various

subsections.

4.3.1 Idempotents

In this subsection, we obtain the idempotents of M(A) which will be useful to give

a representation of the elements of M(A). In view of Lemma 3.2.6, for x ∈ A∗, we

have rank(x) ∈ {1, 2, n}. Clearly, the identity element ε in M(A) is only idempotent

of rank n. All the elements of rank one in M(A) are idempotent, provided that they

exist. We now estimate idempotents of rank two in M(A). For that, we first prove

the following results.

Proposition 4.3.3. For 1 ≤ i ≤ n and x ∈ A∗, if x is an idempotent in M(A),

then (aixan−i) is also an idempotent in M(A).



60 Syntactic Complexity

Proof. Given that x2 = x. For 1 ≤ i ≤ n, consider

(aixan−i)
2

= (aixan−i)(aixan−i) = (aix2an−i) = (aixan−i).

Hence, (aixan−i) is an idempotent in M(A).

Remark 4.3.4. Let x be an element in M(A) such that Qx = {q0, qm}. If q0x = q0

and qmx = qm, then x is an idempotent.

Proposition 4.3.5. Let t be a natural number such that t < m < n; there exists a

natural number k such that m ≤ t + k(n−m) < n.

Proof. Since n−m > 0, note that the sequence {t+i(n−m)}i=0,1,2,... is an increasing

sequence. Let k be the least number such that m ≤ t + k(n −m). We prove that

t + k(n −m) < n. Since k is least, we have t + (k − 1)(n −m) < m. This implies

that

t + (k − 1)n− km < 0.

Now, we have t + k(n−m) = t + (k − 1)n− km + n < n.

Lemma 4.3.6. There exists a natural number r (with 1 ≤ r < n) such that the

function arb is an idempotent of rank two in M(A).

Proof. Since qm is the bpi of A, there exists j (with 0 ≤ j < m) such that qjb = qm.

Let t (with 0 ≤ t < m) be the least number such that qtb = qm so that q0atb = qm.

Consequently, as qman−m = q0, we have

qman−m+tb = qm.

If q0an−m+tb = q0, then choose r = n − m + t and by Remark 4.3.4, the function

arb is an idempotent of rank two in M(A). Otherwise, since the letter b is suffix of

word an−m+tb, we have q0an−m+tb = qm. Then

qma2(n−m)+tb = qm.



4.3 CSFA with two bpis 61

If q0a2(n−m)+tb = q0, then choose r = 2(n−m) + t and again by Remark 4.3.4, the

function arb is an idempotent of rank two in M(A). Otherwise, since the letter b is

suffix of word a2(n−m)+tb, we have q0a2(n−m)+tb = qm. Then

qma3(n−m)+tb = qm.

As long as we continue this process, in each ith step, we have qmai(n−m)+tb =

qm. Note that, by Proposition 4.3.5, there exists a natural number k such that

m ≤ k(n−m) + t < n. If the above process terminates with a number r before kth

step, then we are through. Otherwise, in the kth step, we have qmak(n−m)+tb = qm.

Moreover, since m ≤ k(n−m) + t < n,

q0(at+k(n−m)b) = qk(n−m)+tb = q0.

Thus, choose r = k(n −m) + t, and hence by Remark 4.3.4, the function arb is an

idempotent of rank two in M(A).

Notation 4.3.7. In this chapter, κ denotes the number obtained in Lemma 4.3.6.

That is, aκb is an idempotent of rank two in M(A).

Lemma 4.3.8.

(i) If q0b 6= q0, then b
2

is an idempotent of rank two in M(A).

(ii) If q0b = q0, then there exists t (with 1 ≤ t < m) such that the function (atb)2

is an idempotent of rank two in M(A).

Proof. We know that qmb = q0.

(i) Since q0b 6= q0, we have q0b = qm. Consider Qb
2

= (Qb)b = {q0, qm}b =

{q0, qm}. Also, since q0b
2

= q0 and qmb
2

= qm, by Remark 4.3.4, the function b
2

is

an idempotent of rank two in M(A).

(ii) Since q0b = q0, the state q1 is not a bpi. Therefore, 1 < m < n. Further,

there exists j (with 0 < j < m) such that qjb = qm. Let t (with 1 ≤ t < m) be the

least number such that qtb = qm so that q0atb = qm. We claim that qmatb = q0.



62 Syntactic Complexity

On the contrary, assume that qmatb 6= q0. Then, qmatb = qm so that there is a

cycle from qm to qm labeled by atb. Since A is an SFA, the cycle should pass through

q0. Since q0b = q0, there exist t1 and t2 (1 ≤ t1, t2 < t) with t1 + t2 = t such that

qmat1 = q0 and q0at2b = qm.

Note that q0at2b = qt2b = qm. This contradicts the choice of t, as t2 < t. Thus,

qmatb = q0.

Now, observe that Q(atb)2 = (Qatb)atb = {q0, qm}atb = {q0, qm}. Further,

q0(atb)2 = q0 and qm(atb)2 = qm. By Remark 4.3.4, the function (atb)2 is an idem-

potent of rank two in M(A).

Notation 4.3.9. In this chapter, τ denotes the number obtained in Lemma 4.3.8(ii).

That is, if q0b = q0, then (aτb)2 is an idempotent of rank two in M(A).

In view of Proposition 4.3.3, we have the following corollary of Lemma 4.3.6 and

Lemma 4.3.8.

Corollary 4.3.10. For 1 ≤ i ≤ n,

(i) ai(aκb)an−i is an idempotent of rank two in M(A).

(ii) If q0b 6= q0, then aib2an−i is an idempotent of rank two in M(A).

(iii) If q0b = q0, then ai(aτb)2an−i is an idempotent of rank two in M(A).

Definition 4.3.11. We call the following list of 2n + 2 idempotents, if they exist,

in M(A) as the basic idempotents. The set of all the basic idempotents in M(A) is

denoted by B.

(i) The idempotent ε.

(ii) The idempotent whose image set is {q0}, denoted by ν.

(iii) For 1 ≤ i ≤ n, the idempotent ai(aκb)an−i.



4.3 CSFA with two bpis 63

(iv) For 1 ≤ i ≤ n, if q0b 6= q0, then the idempotent aib2an−i; else, the idempotent

ai(aτb)2an−i.

Remark 4.3.12. Clearly, |B| ≤ 2(n + 1).

The following example shows that the cardinality of the set of basic idempotents

is not necessarily 2(n + 1).

Example 4.3.13. The automaton given in Figure 4.1 is a CSFA, say A. Note that

BPI(A) = {q0, q2}. By using GAP [2012], we observed that M(A) has no constant

element. Further, we observe that b
2

= aκb, where κ = 2. Hence, |B| < 2(n + 1)

GFED@ABC?>=<89:;q0

a

ÃÃ
AA

AA
AA

AA
A

b

­­

GFED@ABCq3

a

>>}}}}}}}}}

b
00

GFED@ABCq1

a
~~}}

}}
}}

}}
}

bppGFED@ABCq2

a

`ÀAAAAAAAA

b

JJ

Figure 4.1: A semi-flower automaton with two bpis

4.3.2 Elements of rank two

In this subsection, we obtain a representation of the elements of rank two in M(A).

Here, we recall the definition of the complement of a function of rank two from

[Krawetz et al., 2005].

Definition 4.3.14. Let X be a nonempty finite set and α a function on X such

that Xα = {i, j}. The complement of α is the function α# defined by, for k ∈ X,

kα# =





i if kα = j;

j if kα = i.



64 Syntactic Complexity

The following lemma is useful in the sequel.

Lemma 4.3.15.

(i) If q0b 6= q0, then b
#

= b
2
.

(ii) If q0b = q0, then b
#

= baτb.

Proof. We recall that qmb = q0 and Qb = {q0, qm}. Note that, for q ∈ Q, either

qb = q0 or qb = qm.

(i) Since q0b 6= q0, we have q0b = qm. Let q be an arbitrary element of Q. If

qb = q0, then

qb
2

= (qb)b = q0b = qm.

Else,

qb
2

= (qb)b = qmb = q0.

Hence, b
#

= b
2
.

(ii) Given q0b = q0. Let q be an arbitrary element of Q. If qb = q0, then

qbaτb = (qb)aτb = q0aτb = qm

(cf. Lemma 4.3.8(ii)). Else,

qbaτb = (qb)aτb = qmaτb = q0.

Hence, b
#

= baτb.

Theorem 4.3.16. Any element of rank two in M(A) has one of the following forms.

(β) aibaj

(γ) aib2aj



4.3 CSFA with two bpis 65

(δ) aibaτbaj

Here, i, j ∈ {1, . . . , n}.

Proof. Note that every element of rank two in M(A) should have at least one b. Let

w = ai1bai2b . . . baik−1baik ∈ A∗, for it ≥ 0 (t ∈ {1, . . . , k}), such that w be an arbi-

trary element of rank two in M(A). Write w = ai1bubaik , where u = ai2b . . . baik−1 .

Clearly, the function bub has rank two with the image set {q0, qm}.

Case-1 (bub = b): Clearly, w = ai1bubaik = ai1baik , which is in the form (β).

Case-2 (bub 6= b): First we claim that bub = b
#
. Since bub 6= b, there exist p ∈ Q

such that pbub 6= pb. Now, we consider two subcases according to the state pb.

Subcase-1 (pb = q0): Since bub 6= b, we have pbub = qm. Consequently,

q0ub = qm.

Let q ∈ Q be an arbitrary element. Then, either qb = q0 or qb = qm.

If qb = q0, then

qbub = (qb)ub = q0ub = qm.

Else (qb = qm), qbub = (qb)ub = qmub. To show the last term is equal

to q0, let us assume the contrary. That is, assume qmub 6= q0. Then,

qmub = qm. Consequently,

Qbub = (Qb)ub = {q0, qm}ub = {qm}.

This is a contradiction to bub is of rank two. Thus, if qb = qm, then

qbub = q0. Hence, bub = b
#
.

Subcase-2 (pb 6= q0): One can proceed in the similar lines as in Subcase-1

and obtain that bub = b
#
.



66 Syntactic Complexity

If q0b 6= q0, then by Lemma 4.3.15(i), we have b
#

= b
2
. Consequently,

w = ai1bubaik = ai1b2aik ,

which is in the form (γ).

If q0b = q0, then by Lemma 4.3.15(ii), we have b
#

= baτb. Consequently,

w = ai1bubaik = ai1baτbaik ,

which is in the form (δ).

4.3.3 Representation of M(A)

In this subsection, we give a canonical representation of the elements of M(A) in

terms of basic idempotents and circular permutation.

Theorem 4.3.17. Every element of M(A) can be written as a composition of a

basic idempotent and a permutation, i.e.

M(A) = BG =
{

e g
∣∣∣ e ∈ B and g ∈ G

}
.

Proof. For x ∈ A∗, by Lemma 3.2.6, we have rank(x) ∈ {1, 2, n}. If rank(x) = 1,

then the function x is an idempotent (being a constant function). Therefore, there

exists i (with 1 ≤ i ≤ n) such that

x = ν ai ∈ BG.

If rank(x) = n, then the function x is a permutation of the form x = ai, for some i

(with 1 ≤ i ≤ n). Clearly, x ∈ G so that

x = ε x ∈ BG.

If rank(x) = 2, then, by Theorem 4.3.16, x = aibaj or x = aib2aj or x = aibaτbaj,

for some i, j ∈ {1, . . . , n}.



4.3 CSFA with two bpis 67

If x = aibaj, then

x = ai−κ(aκb)aj = ai−κ(aκb)an−(i−κ) aj+(i−κ) = ai′(aκb)an−i′ aj′ ,

where i′ and j′ are, respectively, the residues of (i−κ) and (j + i−κ) mod n.

Consequently, x ∈ BG.

If x = aib2aj, then

x = aib2an−i aj−(n−i) = aib2an−i aj′ ,

where j′ is the residue of (j + i− n) mod n. Consequently, x ∈ BG.

If x = aibaτbaj, then

x = ai−τ (aτb)2aj = ai−τ (aτb)2an−(i−τ) aj−n+(i−τ) = ai′(aτb)2an−i′ aj′ ,

where i′ and j′ are, respectively, the residues of (i − τ) and (j + i − τ − n)

mod n. Consequently, x ∈ BG.

Thus, in all the cases the function x ∈ M(A) can be written as a composition of a

basic idempotent and a permutation in G. Hence, M(A) = BG.

4.3.4 An example

Consider the CSFA A′ = (Q,A, 1, 1,F) with Q = {1, 2, . . . , n}, A = {a, b}, and the

transitions are given in the following table.

F 1 2 3 · · · n− 1 n

a 2 3 4 · · · n 1

b 2 1 1 · · · 1 1

Clearly, the input letters a and b induces the functions a and b on Q, respectively,

given as

a =


 1 2 3 · · · n− 1 n

2 3 4 · · · n 1


 and b =


 1 2 3 · · · n− 1 n

2 1 1 · · · 1 1


 .



68 Syntactic Complexity

One can observe that Qbab = {1}. Therefore, the function bab is the constant

function ν in M(A′). Further, we observe that κ = n− 1 and the functions

b
2

=


 1 2 3 · · · n− 1 n

1 2 2 · · · 2 2


 and aκb =


 1 2 3 · · · n− 1 n

1 2 1 · · · 1 1




are idempotents of rank two in M(A′). By Proposition 4.3.3, the functions aib2an−i

and ai(an−1b)an−i are basic idempotents of rank two in M(A′), where i ∈ {1, 2, . . . , n}.
Now, we pursue on the orbits of basic idempotents of rank two. In this connection,

first note that, for 1 ≤ r ≤ n,

arb =


 1 2 · · · n− r n− r + 1 n− r + 2 · · · n− 1 n

1 1 · · · 1 2 1 · · · 1 1


 ,

arb2 =


 1 2 · · · n− r n− r + 1 n− r + 2 · · · n− 1 n

2 2 · · · 2 1 2 · · · 2 2


 .

For 1 ≤ j < i ≤ n, let us assume that O(aib2an−i) ∩ O(ajb2an−j) 6= ∅. Then, for

some t (with 1 ≤ t ≤ n),

aib2an−i = ajb2an−j at =⇒ ai−jb2 = b2ai−j+t.

If i − j + t 6= 0(mod n), then Qb2ai−j+t 6= {1, 2} = Qai−jb2; a contradiction.

Otherwise, we have ai−jb2 = b2. But, from the above shown b
2

and arb2, we can

observe that ai−jb2 6= b2. Hence, for 1 ≤ j < i ≤ n, we have

O(aib2an−i) ∩ O(ajb2an−j) = ∅.

Similarly, we can prove that, for 1 ≤ j < i ≤ n, we have

O(ai(an−1b)an−i) ∩ O(aj(an−1b)an−j) = ∅.

Note that b
2 6= an−1b. Now, for 1 ≤ j < i ≤ n, let us assume that

O(aib2an−i) ∩ O(aj(an−1b)an−j) 6= ∅.



4.3 CSFA with two bpis 69

Then, for some t (with 1 ≤ t ≤ n), we have

aib2an−i = aj(an−1b)an−j at =⇒ ai−jb2 = (an−1b)ai−j+t.

If i−j+t 6= 0( mod n), then Qb2ai−j+t 6= {1, 2} = Qai−jb2 = {1, 2}; a contradiction.

Otherwise, we have ai−jb2 = an−1b. But, from the above shown an−1b and arb2, we

can observe that ai−jb2 6= an−1b. Hence, for 1 ≤ j < i ≤ n, we have

O(aib2an−i) ∩ O(aj(an−1b)an−j) = ∅.

Thus, all the orbits of the basic idempotents of rank two are disjoint and so all the

basic idempotents of rank two are distinct. Thus, |B| = 2(n + 1). Consequently,

M(A′) = BG = 2n(n + 1). Hence, the syntactic complexity of the submonoid

accepted by the CSFA A′ is 2n(n + 1).

4.3.5 Proof of Theorem 4.3.2

Now, we prove the main Theorem 4.3.2. We know that

M(A) =
⋃

x∈M(A)

O(x)

=
⋃

x∈BG

O(x) by using Theorem 4.3.17

=
⋃

x∈B

O(x).

This implies that

|M(A)| ≤ |B||O(x)|
≤ 2n(n + 1) by using Proposition 4.1.6 and Remark 4.3.12.

Thus, the sizes of syntactic monoids of the submonoids accepted by CSFA with two

bpis over a binary alphabet is bounded by 2n(n+1), where n is the state complexity

of the CSFA. For the class of automata displayed in Subsection 4.3.4, the syntactic

monoid size is exactly 2n(n + 1). Hence, the syntactic complexity of the class of

submonoids accepted by CSFA with two bpis over a binary alphabet is 2n(n + 1).



70 Syntactic Complexity

4.4 Conclusion

This work investigates the syntactic complexity of the various classes of the sub-

monoids accepted by CSFA, classified by their number of bpis. In fact, we showed

that the syntactic complexity of the submonoids accepted by CSFA with at most

one bpi is linear. Further, we proved that the syntactic complexity of the class of the

submonoids accepted by CSFA with two bpis over a binary alphabet is 2n(n + 1).

In that connection, we obtained a representation for the functions of rank two in

the monoid of CSFA with two bpis over a binary alphabet. However, there is a

lot more to investigate the syntactic complexity concerning the finitely generated

submonoids of a free monoid. For instance, one can target to address the syntactic

complexity of the class of the submonoids accepted by CSFA with two bpis over an

arbitrary alphabet. In general, one can study the syntactic complexity of the class

of the submonoids accepted by CSFA and SFA with more than two bpis.



5
L-Primitive Words

The concept of primitive words plays an important role in the algebraic theory of

languages. Ito et al. [1988] have studied the primitive words in the languages of

automata, in general. In this chapter, we focus on investigating the primitive words

in the languages of semi-flower automata. In fact, we extend our study on the

primitive words in the submonoids of free monoids. We could quickly ascertain that

the number of primitive words in a submonoid of a free monoid is either at most one

or infinity. Then, we proceed to consider L-primitive words, a generalized notion

of primitive words, introduced by Krishna [2011]. Here, we study the distribution

of L-primitive words in certain subsets of free monoids. In particular, we target to

count the L-primitive words in the submonoids of free monoids.

71



72 L-Primitive Words

5.1 Primitive words in submonoids

In this section, we quickly recall some necessary results on primitive words from

Shallit [2008]. Further, we investigate the number of primitive words in the sub-

monoids of a free monoid.

Definition 5.1.1. A nonempty word x ∈ A∗ is said to be a primitive word if x is

not a power of any other word in A∗, i.e. for u ∈ A∗,

x = uk =⇒ k = 1.

Let X be a subset of A∗. The set of primitive words in X is denoted by Xp.

Theorem 5.1.2. Every nonempty word can be uniquely expressed as a power of a

primitive word.

Definition 5.1.3. Let w ∈ A∗ be a nonempty word. The unique primitive word

x ∈ A∗ such that w = xk, for some integer k ≥ 1, is called the primitive root of w,

and it is denoted by
√

w.

Definition 5.1.4. Let L be a subset of A∗. The root of L, denoted by
√

L, is defined

as
√

L =
{√

w ∈ A∗
p

∣∣ w ∈ L \ {ε}}.

Definition 5.1.5. Let L be a subset of A∗. The subset L is said to be commutative

if uv = vu, for all u, v ∈ L.

Remark 5.1.6. Let L be a subset of A∗. The subset L is commutative if and only

if there exists w ∈ A∗ such that L ⊆ {w}∗.

Theorem 5.1.7 (Shyr and Tseng [1984]). Let H be a submonoid of A∗. H is

noncommutative if and only if |Hp| = ∞.

Now, we observe that a submonoid of A∗ contains either at most one primitive

word or infinitely many primitive words.



5.2 L-primitive words 73

Theorem 5.1.8. Let H be a submonoid of A∗; then either |Hp| ≤ 1 or |Hp| = ∞.

Proof. If H = {ε}, then |Hp| = 0. Let us assume that H 6= {ε}. If H is noncom-

mutative, then by Theorem 5.1.7, we have |Hp| = ∞. Otherwise, by Remark 5.1.6,

we have H ⊆ {w}∗, for some nonempty word w ∈ A∗. Without loss of generality,

assume that w ∈ A∗
p. Thus, according to w ∈ H or not, we have |Hp| = 1 or 0.

Corollary 5.1.9. If H(6= {ε}) is a submonoid of A∗, then either |√H| = 1 or ∞.

5.2 L-primitive words

The notion of L-primitive words has been introduced by Krishna [2011] as a gener-

alization of the classical definition of primitive words. In this section, we recall the

definitions and some basic properties related to L-primitive words from [Krishna,

2011]. In what follows, L always denotes a subset of A∗.

Definition 5.2.1. A nonempty word x ∈ A∗ is said to be an L-primitive word if x

is not a power of any other word in L, i.e. for u ∈ L,

x = uk =⇒ k = 1.

Notation 5.2.2. Let X be a subset of A∗.

(i) The set of L-primitive words in X is denoted by XL-p.

(ii) The set of L-primitive words in X∗, i.e. (X∗)L-p, is simply denoted by X∗
L-p.

(iii) The set of L-primitive words in Xc, the complement of X in A∗, is simply

denoted by Xc
L-p.

Remark 5.2.3.

(i) If L = ∅, then A∗
L-p = A+, the set of all nonempty words over A.

(ii) If L = A∗, then A∗
L-p = A∗

p, the set of all primitive words over A.



74 L-Primitive Words

Proposition 5.2.4. If L1 and L2 are two subsets of A∗, then

L1 ⊆ L2 =⇒ A∗
L2-p ⊆ A∗

L1-p.

Proof. On the contrary, let us assume that A∗
L2-p 6⊆ A∗

L1-p. Then there exists

w ∈ A∗
L2-p, but w 6∈ A∗

L1-p. Since w 6∈ A∗
L1-p, there exists u ∈ L1 such that w = uk,

for some k > 1. In view of hypothesis, we have u ∈ L2. Consequently, w /∈ A∗
L2-p; a

contradiction.

Corollary 5.2.5. Every primitive word is an L-primitive word.

Corollary 5.2.6. If |A| ≥ 2, then |A∗
L-p| = ∞.

Remark 5.2.7. An L-primitive word is not necessarily a primitive word. For in-

stance, let L = {abab} ⊆ {a, b}∗. Clearly, the word abab is an L-primitive word, but

not a primitive word.

Definition 5.2.8. Let w ∈ A∗ be a nonempty word. The set of L-primitive roots

of w, denoted by L
√

w, is defined as

L
√

w = {x ∈ A∗
L-p | xk = w, for some k ≥ 1}.

Remark 5.2.9. The primitive root of a nonempty word is an L-primitive root of

the word. Thus, if w 6= ε, then L
√

w 6= ∅.

Definition 5.2.10. Let X be a subset of A∗. The L-primitive root of X, denoted

by L
√

X, is defined as

L
√

X =
⋃

w∈X\{ε}

L
√

w.

5.3 L-primitive words in L

In this section, we make an attempt to investigate L-primitive words in L and also in

Lc. In this connection, we provide some sufficient conditions and characterizations.

In fact, we give relation between L-primitive words and L-primitive roots in L.



5.3 L-primitive words in L 75

Theorem 5.3.1. If ε /∈ L, then L 6= ∅ if and only if LL-p 6= ∅.

Proof. Let us assume that L 6= ∅ and choose w ∈ L. If w ∈ LL-p, then we are

through. Otherwise, there exists u ∈ L such that w = uk, for some k > 1. Clearly,

|u| < |w|. If u ∈ LL-p, then we are through. Otherwise, we continue to choose

shorter words in L whose power is w. But this process terminates at a finite stage

and eventually we get a word x ∈ LL-p and w = xm, for some m > 1. Hence,

LL-p 6= ∅. The converse is straightforward.

Theorem 5.3.2. If L ⊆ A∗ is a prefix set such that ε /∈ L, then L = LL-p.

Proof. Clearly, LL-p ⊆ L. Let x ∈ L, but x /∈ LL-p. There exists a word u ∈ L such

that x = uk, for some k > 1. Thus, the word u ∈ L is a prefix of the word x ∈ L.

This contradicts that L is a prefix set. Hence, L = LL-p.

Remark 5.3.3. The converse of Theorem 5.3.2 is not necessarily true. For instance,

let L = {a, ab} ⊆ {a, b}∗. Clearly, L = LL-p, but L is not a prefix set.

It is clear that LL-p ⊆ L
√

L. Now, we explore the possibilities so that LL-p = L
√

L.

For this we need the notion of power of a subset of A∗ introduced by Calbrix and

Nivat [1996].

Definition 5.3.4. Let X be a subset of A∗. The power of X, denoted by pow(X),

is defined as

pow(X) = {xi | x ∈ X and i ≥ 1}.

Remark 5.3.5. Clearly, pow(A∗
L-p) = A+.

Theorem 5.3.6.

(i) L
√

L ⊆ L ⇐⇒ LL-p = L
√

L.

(ii) Lc = pow(Lc) =⇒ LL-p = L
√

L.

(iii) L ⊆ A∗
p =⇒ LL-p = L

√
L = L.



76 L-Primitive Words

Proof. We first note that LL-p ⊆ L
√

L.

(i) (:⇐=) Since LL-p ⊆ L, from the hypothesis, we have L
√

L ⊆ L.

(=⇒:) Let x ∈ L
√

L; then x is L-primitive word. Also, from the hypothesis,

we have x ∈ L. Thus, x ∈ LL-p. Hence, we have the part (i).

(ii) Let us assume that x ∈ L
√

L \ LL-p. Since x is an L-primitive word and

x /∈ LL-p, we have x /∈ L. Then, from the hypothesis, we have xk ∈ Lc, for all

k ≥ 1. But, since x ∈ L
√

L, we have x ∈ L
√

w, for some w ∈ L. That is, there is

a number t ≥ 1, such that xt = w(∈ L); a contradiction. Hence, L
√

L = LL-p.

(iii) Clearly, LL-p ⊆ L. Let x ∈ L; from the hypothesis, we have x ∈ A∗
p. By

Corollary 5.2.5, since every primitive word is an L-primitive word, we have

x ∈ LL-p. Thus, L = LL-p.

It is clear that for w ∈ A∗
p, we have L

√
w = {w}. Since L ⊆ A∗

p, we have

L
√

L =
⋃
w∈L

L
√

w =
⋃
w∈L

{w} = L.

Hence, if L ⊆ A∗
p, we have LL-p = L

√
L = L.

Corollary 5.3.7. L = L
√

L ⇐⇒ LL-p = L
√

L = L.

Remark 5.3.8. The converse of Theorem 5.3.6(ii) is not necessarily true. For

instance, consider L = {a, b, a6} ⊆ {a, b}∗. Observe that LL-p = L
√

L = {a, b}.
Clearly, since a2 ∈ Lc, we have a6 ∈ pow(Lc); but, a6 /∈ Lc. Hence, Lc 6= pow(Lc).

Theorem 5.3.9. L = pow(L) ⇐⇒ Lc
L-p = Lc.

Proof.

(=⇒:) Clearly, Lc
L-p ⊆ Lc. Let x ∈ Lc, but x /∈ Lc

L-p. There exists a word y ∈ L

such that x = yk, for some k > 1. Since y ∈ L, we have yk ∈ pow(L). It follows

that x ∈ pow(L). But, L = pow(L), we have x ∈ L. This is a contradiction.



5.4 L-primitive words in submonoids 77

(:⇐=) Clearly, L ⊆ pow(L). Let x ∈ pow(L), but x /∈ L. There exists a word

y ∈ L such that x = yk, for some k > 1. Since, x /∈ L, we have x ∈ Lc. But,

Lc
L-p = Lc, it follows that x is an L-primitive word; which is a contradiction.

5.4 L-primitive words in submonoids

In this section, we study the L-primitive words in the submonoids of a free monoid.

We first count the L-primitive words in a submonoid of the free monoid over a

unary alphabet. In this case, when L is finite, we prove that a submonoid has either

at most one or infinitely many L-primitive words. Then, finally we leave certain

remarks on estimating the number of L-primitive words over an arbitrary alphabet.

Let A = {a} be a unary alphabet. It is well known that A∗ is isomorphic to the

additive monoid of natural numbers N = {0, 1, 2, . . .} under the isomorphism given

by ak 7→ k. Thus, each word ak of A∗ is characterized by its length k ∈ N. Hence,

we count the L-primitive words in the submonoids of N, instead of A∗. In what

follows, H(6= {0}) denotes a submonoid of N and L a nonempty subset of N.

To count L-primitive words in H, we use some properties of numerical monoids.

In the following, first we present some necessary results on numerical monoids from

[Rosales and Garćıa-Sánchez, 2009].

Definition 5.4.1. A numerical monoid is a submonoid of N whose complement in

N is finite.

Theorem 5.4.2. Every numerical monoid admits a unique finite minimal system

of generators.

Theorem 5.4.3. Let X be a nonempty subset of N. The submonoid generated by

X, in N is a numerical monoid if and only if gcd(X) = 1.



78 L-Primitive Words

Theorem 5.4.4. Any nontrivial submonoid of N is isomorphic to a numerical

monoid.

Now, we count the number of L-primitive words in H. We begin with the

following remark.

Remark 5.4.5. If 1 ∈ L, then according to 1 ∈ H or not, we have |HL-p| = 1 or

|HL-p| = 0, respectively.

Let us assume that 1 /∈ L. In view of Theorem 5.4.4 and Theorem 5.4.2, let Y

be the finite minimal generating set of H.

Theorem 5.4.6. If gcd(Y ) = 1, then |HL-p| = ∞.

Proof. If gcd(Y ) = 1, by Proposition 5.4.3, the submonoid H is a numerical monoid

so that |N\H| < ∞. Thus, H contains infinitely many prime numbers. Since 1 /∈ L,

every prime number is L-primitive. Hence, |HL-p| = ∞.

Theorem 5.4.7. If L is a finite set and gcd(Y ) > 1, then |HL-p| ≤ 1 or |HL-p| = ∞.

Proof. We first assume that l |6 d, for all l ∈ L and claim that |HL-p| = ∞. Let

gcd(Y ) = d. Since d 6= 1, by Proposition 5.4.3, the submonoid H is not a numerical

monoid. We define the function

f : H −→ N by hf =
h

d
.

Clearly, f is a monomorphism and therefore the image of f , Im(f), is isomorphic to

H. By Theorem 5.4.3, the submonoid Im(f) is a numerical monoid.

Clearly, Im(f) has infinitely many prime numbers. Let p ∈ Im(f) be a prime

number such that p > max(L), then pd ∈ H. By Euclid’s lemma, l |6 pd, for all

l ∈ L. Since Im(f) has infinitely many such prime numbers, we have |HL-p| = ∞.

Now, we assume that l | d, for some l ∈ L. Here, we determine |HL-p| with

respect to d ∈ L or not. If d /∈ L, then clearly |HL-p| = 0. If d ∈ L, we consider the

cases d ∈ H or not. If d /∈ H, then clearly |HL-p| = 0. In case d ∈ H, if there is an

l′(6= d) which divides d, then |HL-p| = 0; otherwise |HL-p| = 1.



5.5 Conclusion 79

Remark 5.4.8. If L is an infinite subset of N, then |HL-p| need not satisfy the

Theorem 5.4.7. For instance, let H be the submonoid of N generated by the set

{4, 6} and L = {4}∪{P\{2, 5}}, where P is the set of all prime numbers in N. We

observe that HL-p = {4, 10} and so |HL-p| = 2. Similarly, if L = {4}∪{P\{2, 5, 7}},
then HL-p = {4, 10, 14} and so |HL-p| = 3.

In the following, we make certain remarks on the number of L-primitive words in

the submonoids of a free monoid over an alphabet of size at least two. First observe

that if the submonoid H is {ε}, then |HL-p| = 0. If H 6= {ε}, then by Corollary

5.2.5, we have the following remark.

Remark 5.4.9. If H is a noncommutative submonoid of A∗, where |A| ≥ 2, then

|HL-p| = ∞.

5.5 Conclusion

In this chapter, we have considered a study on the number of primitive words in the

languages of SFA. In fact, we extended the study to submonoids of free monoids and

observed that the number is either at most one or infinite. Also, we have considered

to study the number of L-primitive words in submonoids of free monoids. If L is a

finite, we have counted the number of L-primitive words in the submonoids of a free

monoid over a unary alphabet. When L is infinite, the problem appears to be more

complicated and a systematic study in this regard is necessary. In case the alphabet

size is at least two, we could remark only on the number of L-primitive words

in noncommutative submonoids. One can consider the problem in commutative

submonoids.





Bibliography

Beaudry, M. and Holzer, M.: 2011, On the size of inverse semigroups given by

generators, Theoret. Comput. Sci. 412(8-10), 765–772.

Berstel, J. and Perrin, D.: 1985, Theory of codes, Vol. 117 of Pure and Applied

Mathematics, Academic Press Inc.

Berstel, J., Perrin, D. and Reutenauer, C.: 2010, Codes and automata, Vol. 129 of

Encyclopedia of Mathematics and its Applications, Cambridge University Press,

Cambridge.

Brzozowski, J. A. and Li, B.: 2012, Syntactic complexities of some classes of star-free

languages, DCFS, pp. 117–129.

Brzozowski, J. A. and Liu, D.: 2012, Syntactic complexity of finite/cofinite, definite,

and reverse definite languages, CoRR abs/1203.2873.

Brzozowski, J., Li, B. and Ye, Y.: 2012, Syntactic complexity of prefix-, suffix-,

bifix-, and factor-free regular languages, Theoret. Comput. Sci. 449, 37–53.

Brzozowski, J. and Ye, Y.: 2011, Syntactic complexity of ideal and closed languages,

Developments in language theory, Vol. 6795 of Lecture Notes in Comput. Sci.,

Springer, Heidelberg, pp. 117–128.

81



82 Bibliography

Calbrix, H. and Nivat, M.: 1996, Prefix and period languages of rational ω-

languages, Developments in language theory, II (Magdeburg, 1995), World Sci.

Publ., River Edge, NJ, pp. 341–349.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.: 2001, Introduction to

algorithms, second edn, MIT Press.

Czeizler, E., Kari, L. and Seki, S.: 2010, On a special class of primitive words,

Theoret. Comput. Sci. 411(3), 617–630.

Domaratzki, M.: 2004, Trajectory-based operations, PhD thesis, Queen’s University,

Canada.

Dömösi, P., Horváth, S., Ito, M., Kászonyi, L. and Katsura, M.: 1993, Formal lan-

guages consisting of primitive words, Fundamentals of computation theory (Szeged,

1993), Vol. 710 of Lecture Notes in Comput. Sci., Springer, Berlin, pp. 194–203.

Dömösi, P. and Nehaniv, C. L.: 2005, Algebraic theory of automata networks, Vol. 11

of SIAM Monographs on Discrete Mathematics and Applications, Society for In-

dustrial and Applied Mathematics (SIAM), Philadelphia, PA.

Dubuc, L.: 1998, Sur les automates circulaires et la conjecture de Černý, RAIRO

Inform. Théor. Appl. 32(1-3), 21–34.

Dummit, D. S. and Foote, R. M.: 2004, Abstract algebra, third edn, John Wiley &

Sons Inc., Hoboken, NJ.

Egri-Nagy, A.: 2005, Algebraic hierarchical decompositions of finite state automata

a computational approach, PhD thesis, University of Hertfordshire.

Egri-Nagy, A. and Nehaniv, C. L.: 2005, Cycle structure in automata and the

holonomy decomposition, Acta Cybernet. 17(2), 199–211.



Bibliography 83

Egri-Nagy, A. and Nehaniv, C. L.: 2010, SgpDec software package for hierarchical

coordinatization of groups and semigroups, implemented in the GAP computer

algebra system, Version 0.5.38, http://sgpdec.sf.net.

Eilenberg, S.: 1976, Automata, languages, and machines. Vol. B, Academic Press,

New York.

Friedman, J.: 2011a, Linear algebra and Hanna Neumann conjecture. Preprint.

Friedman, J.: 2011b, Sheaves on graphs, their homological invariants, and a proof

of the Hanna Neumann conjecture. Preprint.

URL: arXiv:1105.0129v2

GAP: 2012, GAP – Groups, algorithms, and programming, Version 4.5.4.

URL: http://www.gap-system.org

Giambruno, L.: 2007, Automata-theoretic methods in free monoids and free groups,

PhD thesis, Universit degli Studi di Palermo, Palermo, Italy.

Giambruno, L. and Restivo, A.: 2008, An automata-theoretic approach to the study

of the intersection of two submonoids of a free monoid, Theor. Inform. Appl.

42(3), 503–524.

Holcombe, M.: 1980, Holonomy decompositions of near-rings, Proc. Edinburgh

Math. Soc. (2) 23(1), 43–47.

Holzer, M. and König, B.: 2004, On deterministic finite automata and syntactic

monoid size, Theoret. Comput. Sci. 327(3), 319–347.

Howson, A. G.: 1954, On the intersection of finitely generated free groups, J. London

Math. Soc. 29, 428–434.



84 Bibliography

Hsiao, H. K., Huang, C. C. and Yu, S. S.: 2002, Word operation closure and prim-

itivity of languages, J.UCS 8(2), 243–256 (electronic). Advances and trends in

automata and formal languages.

Ito, M.: 2004, Algebraic theory of automata and languages, World Scientific Pub-

lishing Co. Inc., River Edge, NJ.

Ito, M., Katsura, M., Shyr, H. J. and Yu, S. S.: 1988, Automata accepting primitive

words, Semigroup Forum 37(1), 45–52.

Karhumäki, J.: 1984, A note on intersections of free submonoids of a free monoid,

Semigroup Forum 29(1-2), 183–205.

Kari, L. and Thierrin, G.: 1998, Word insertions and primitivity, Util. Math. 53, 49–

61.

Krawetz, B., Lawrence, J. and Shallit, J.: 2005, State complexity and the monoid of

transformations of a finite set, Internat. J. Found. Comput. Sci. 16(3), 547–563.

Krishna, K. V.: 2011, L-primitive words. Preprint.

Krishna, K. V. and Chatterjee, N.: 2007, Holonomy decomposition of seminearrings,

Southeast Asian Bull. Math. 31(6), 1113–1122.

Krohn, K. and Rhodes, J.: 1965, Algebraic theory of machines. I. Prime decom-

position theorem for finite semigroups and machines, Trans. Amer. Math. Soc.

116, 450–464.

Lawson, M. V.: 2004, Finite automata, Chapman & Hall/CRC, Boca Raton, FL.

Lyndon, R. C. and Schützenberger, M. P.: 1962, The equation aM = bNcP in a free

group, Michigan Math. J. 9, 289–298.

Meakin, J. and Weil, P.: 2002, Subgroups of free groups: a contribution to the

Hanna Neumann conjecture, Geom. Dedicata 94, 33–43.



Bibliography 85

Mineyev, I.: 2011, Groups, graphs, and the Hanna Neumann conjecture. Preprint.

Mineyev, I.: 2012, Submultiplicativity and the Hanna Neumann conjecture, Ann.

of Math. 175(1), 393–414.

Neumann, H.: 1956, On the intersection of finitely generated subgroups of free

groups, Publ. Math. Debrecen 4, 186–189.

Neumann, W. D.: 1990, On intersections of finitely generated subgroups of free

groups, Groups—Canberra 1989, Vol. 1456 of Lecture Notes in Math., Springer,

Berlin, pp. 161–170.

Pin, J.-E.: 1978, Sur un cas particulier de la conjecture de Cerny, Automata, lan-

guages and programming (Fifth Internat. Colloq., Udine, 1978), Vol. 62 of Lecture

Notes in Comput. Sci., Springer, Berlin, pp. 345–352.

Pin, J.-E.: 1986, Varieties of formal languages, Foundations of Computer Science,

Plenum Publishing Corp., New York.

Rosales, J. C. and Garćıa-Sánchez, P. A.: 2009, Numerical semigroups, Vol. 20 of

Developments in Mathematics, Springer, New York.

Shallit, J. O.: 2008, A Second Course in Formal Languages and Automata Theory,

Cambridge University Press.

Shyr, H. J. and Tseng, D. C.: 1984, Some properties of dense languages, Soochow

J. Math. 10, 127–131.

Tilson, B.: 1972, The intersection of free submonoids of a free monoid is free,

Semigroup Forum 4, 345–350.





Index

A, 8

A∗, 8

A∗/∼L
, 17

A+, 8

B(S), 41

BPI(A), 10

BPO(A), 10

BPOi(A), 23

Cm, 43

CA, 12

G, 54

G(S), 41

Hx, 55

K(S), 41

L-primitive root, 74

L-primitive word, 73

L(A), 11

M(A), 16

X \ Y , 9

X∗, 8

Xp, 72

XL-p, 73

YA, 12

α#, 63

A, 9

AT , 11

A1 ×A2, 12

m̌, 41

κ, 61

κi, 26

κij, 26

G, 26

B, 62

e(P ), 10

s(P ), 10

Cm, 43

J , 40

Ji, 40

pow(X), 75

rank(f), 45

87



88 Index

x, 16

κi0, 28

ν, 62

4, 25

∼L, 17

∼A, 17

L
√

X, 74

L
√

w, 74
√

L, 72
√

w, 72

τ , 62

ε, 8

M̂ , 40

p̂, 40

(̂P, M), 40

r̃k(H), 9

q0, 13

rk(H), 9

Accessible state, 11

Alphabet, 8

Automaton, 10

circular, 16

complete, 11

deterministic, 12

digraph of, 10

final state of, 10

initial state of, 10

language of, 11

minimal, 17

monoid of, 16

monoidal, 12

permutation, 16

product, 12

semi-flower, 13

states of, 10

transitions of, 9

trim, 11

trim part of, 11

Basic idempotent, 62

bpi, 10

bpo, 10

BPR, 23

Circular permutation, 16

Coaccessible state, 11

Commutative set, 72

Complement of function, 63

Covering relation, 42

CSFA, 43

Cycle, 10

simple, 11

simple in q, 11

Finitely generated monoid, 9

Free monoid, 8

Group action, 55



Index 89

Hanna Neumann property, 20

Height function, 41

HNP, 20

Holonomy group, 41

Language, 8

Letter, 8

Numerical monoid, 77

Orbit, 55

Path, 10

label of, 10

length of, 10

null, 10

prefix, 11

simple, 10

suffix, 11

Paving, 41

Prefix set, 8

Primitive root, 72

Primitive word, 72

Rank of function, 45

Rank of monoid, 9

Recognizable language, 11

Reduced rank, 9

SFA, 13

Stabilizer, 55

State complexity, 54

Subpath, 11

Symbol, 8

Syntactic complexity, 54

Syntactic congruence, 17

Syntactic monoid, 17

Topological ordering, 26

Transformation group, 40

Transformation monoid, 40

closure of, 40

skeleton space of, 40

Word, 8

Length of, 8

prefix, 8

proper, 8

suffix, 8

proper, 8

Wreath product, 42





Bio-Data

Full Name : Shubh Narayan Singh

Education

July, 2007 – Till Date : Research Scholar, Department of Mathematics

Indian Institute of Technology Guwahati, Guwahati.

July, 2005 – May, 2007 : M. Sc. in Mathematics

University of Allahabad, Allahabad.

July, 2002 – May, 2005 : B. Sc. with Mathematics, Physics, & Chemistry

University of Allahabad, Allahabad.

Teaching Experience

July, 2007 – May 2012 : Teaching Assistant, Department of Mathematics

IIT Guwahati, Guwahati.

Publications

1. The Rank and Hanna Neumann Property of Some Submonoids of a Free Monoid,

Ann. Math. Inform., To appear.

2. A Sufficient Condition for Hanna Neumann Property of Submonoids of a Free

Monoid, Semigroup Forum, To appear.

3. Holonomy Decomposition of Circular Semi-Flower Automata, Communicated.

91



92 Bio-Data

4. Syntactic Complexity of Circular Semi-Flower Automata, Communicated.

5. L-Primitive Words in Submonoids, Communicated.

All the above five articles are coauthored with K. V. Krishna.

Conferences/Workshops:

1. On the Rank of the Intersection of Two Submonoids of a Free Monoid , Inter-

national Conference A3: Abstract Algebra and Algorithms Conference, Eger,

Hungary, August 14-17, 2011.

2. Research Promotion Workshop on Introduction to Graph and Geometric Al-

gorithms, IIT Guwahati, India, October 21-23, 2011.

3. International workshop cum conference on Groups, Actions, Computations

(GAC 2010), HRI Allahabad, India, September 1-12, 2010.


