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Abstract. In order to study the structure of A+(Bn) – the affine near-
semiring over a Brandt semigroup – this work completely characterizes the
Green’s classes of its semigroup reducts. In this connection, this work classi-
fies the elements of A+(Bn) and reports the size of A+(Bn). Further, idem-
potents and regular elements of the semigroup reducts of A+(Bn) have also
been characterized and studied some relevant semigroups in A+(Bn).

Introduction

An algebraic structure (S, +, ·) with two binary operations + and · is said to
be a near-semiring if (S, +) and (S, ·) are semigroups and · is one-side, say left,
distributive over +, i.e. a(b + c) = ab + ac, for all a, b, c ∈ S. Typical examples of
near-semirings are of the form M(Γ), the set of all mappings on a semigroup Γ, and
certain subsets of M(Γ). If Γ is a group, then M(Γ) is endowed with the structure
called near-ring (Pilz 1983).

van Hoorn and van Rootselaar (1967) have introduced the concept of near-
semirings as a generalization of near-rings and established some fundamental prop-
erties. Several authors have studied near-semirings in various aspects. Some
authors have considered studying the algebraic structure of near-semirings (e.g.
Hoogewijs (1976), Krishna and Chatterjee (2007), van Hoorn (1970), Weinert (1982))
and others utilized the concept in various applications (e.g. Desharnais and Struth
(2008)). Recently, Gilbert and Samman (2010a,b) have studied the classes of en-
domorphism near-semirings over Clifford semigroups and Brandt semigroups.

An affine mapping over a vector space is a sum of a linear transformation and a
constant map. Blackett (1956) studied the near-ring of affine mappings over a vec-
tor space. An abstract notion of affine near-rings is introduced by Gonshor (1964).
Authors have considered the study of affine near-rings in different contexts (e.g.
Feigelstock (1985), Malone (1969)). Holcombe (1983, 1984) studied affine near-
rings, in the context of linear sequential machines. These notions are extended to
near-semirings by Krishna (2005). Further, Krishna and Chatterjee (2005) have
studied affine near-semirings over generalized linear sequential machines. A map-
ping on a semigroup (Γ,+) is said to be an affine map if it can be written as a sum
of an endomorphism and a constant map. The subnear-semiring of M(Γ) generated
by the set of affine maps is an affine near-semiring over Γ, denoted by A+(Γ).

In this work, we study A+(Bn) – the affine near-semiring over a Brandt semi-
group Bn. In this connection, we report the size of A+(Bn) and study the structural
properties of semigroup reducts of A+(Bn) via Green’s relations. Other than the
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introduction, the paper has been organized in five sections. Section 1 provides a
necessary background material. In Section 2, we conduct a systematic study to
classify the elements of A+(Bn) and finally report its size. Sections 3 and 4 are
devoted to give the structures of additive and multiplicative semigroups of A+(Bn),
respectively. In the respective sections, for both the semigroups we provide com-
plete characterizations of Green’s classes and their sizes. Further, we characterize
regular and idempotent elements of both the semigroups and study some relevant
subsemigroups. Finally, in Section 5, we illustrate our results on the affine near-
semiring A+(B2).

1. Preliminaries

In this section, we provide a necessary background material and fix our notation.
For more details one may refer to (Gilbert and Samman 2010b, Krishna 2005).

Definition 1.1. An algebraic structure (S, +, ·) is said to be a near-semiring if
(1) (S, +) is a semigroup,
(2) (S, ·) is a semigroup, and
(3) a(b + c) = ab + ac, for all a, b, c ∈ S.

In this work, unless it is required, algebraic structures (such as semigroups,
groups, near-semirings) will simply be referred by their underlying sets without
explicit mention of their operations. Further, we write an argument of a function
on its left, e.g. xf is the value of a function f at an argument x.

Example 1.2. Let (Γ,+) be a semigroup and M(Γ) be the set of all mappings on
Γ. The algebraic structure (M(Γ), +, ◦) is a near-semiring, where + is point-wise
addition and ◦ is composition of mappings, i.e., for γ ∈ Γ and f, g ∈ M(Γ),

γ(f + g) = γf + γg and γ(f ◦ g) = (γf)g.

Also, certain subsets of M(Γ) are near-semirings. For instance, the set Mc(Γ) of
all constant mappings on Γ is a near-semiring with respect to the above operations
so that Mc(Γ) is a subnear-semiring of M(Γ).

Given a semigroup (Γ,+), the set End(Γ) of all endomorphisms over Γ need
not be a subnear-semiring of M(Γ). The endomorphism near-semiring, denoted by
E+(Γ), is the subnear-semiring generated by End(Γ) in M(Γ). Indeed, the subsemi-
group of (M(Γ), +) generated by End(Γ) equals (E+(Γ),+). If (Γ,+) is commuta-
tive, then End(Γ) is a subnear-semiring of M(Γ) so that End(Γ) = E+(Γ). Gilbert
and Samman (2010b) have studied endomorphism near-semirings over Brandt semi-
groups.

Definition 1.3. For any integer n ≥ 1, let [n] = {1, 2, . . . , n}. The semigroup
(Bn,+), where Bn = ([n]× [n]) ∪ {ϑ} and the operation + is given by

(i, j) + (k, l) =
{

(i, l) if j = k;
ϑ if j 6= k

and, for all α ∈ Bn, α + ϑ = ϑ + α = ϑ, is known as Brandt semigroup. Note that
ϑ is the (two sided) zero element in Bn.

Gilbert and Samman have studied the structure of additive semigroup of near-
semiring E+(Bn) via Green’s relations. Further, they have reported the sizes of
E+(Bn), for n ≤ 6, using the computer algebra package GAP. The following concept
plays a vital role in their work.
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Definition 1.4. Let (Γ,+) be a semigroup with zero element ϑ. For f ∈ M(Γ),
the support of f , denoted by supp(f), is defined by the set

supp(f) = {α ∈ Γ | αf 6= ϑ}.
A function f ∈ M(Γ) is said to be of k-support if the cardinality of supp(f) is k, i.e.
|supp(f)| = k. If k = |Γ| or k = 1, then f is said to be of full support or singleton
support, respectively.

Note that the notion of full support maps used in (Gilbert and Samman 2010b)
is too restrictive and is limited to the elements of E+(Bn) whose support size is at
most n. Whereas, the above definition can be adopted to any map.

Notation 1.5. For X ⊆ M(Γ), we write Xk to denote the set of all mappings of
k-support in X, i.e.

Xk = {f ∈ X | f is of k-support}.
Lemma 1.6. If f, g ∈ M(Γ), then supp(f + g) ⊆ supp(f) ∩ supp(g). Moreover,
for f ∈ M(Γ)k, we have |supp(f + g)| ≤ k and |supp(g + f)| ≤ k.

Proof. Straightforward. ¤
The present work on affine near-semirings is inspired by the work of Gilbert

and Samman on endomorphism near-semirings. Now, we recall the notion of affine
maps and affine near-semirings from (Krishna 2005). Let (Γ, +) be a semigroup.
An element f ∈ M(Γ) is said to be an affine map if f = g+h, for some g ∈ End(Γ)
and h ∈ Mc(Γ). The set Aff(Γ) of all affine mappings over Γ need not be a subnear-
semiring of M(Γ). The affine near-semiring, denoted by A+(Γ), is the subnear-
semiring generated by Aff(Γ) in M(Γ). Indeed, the subsemigroup of (M(Γ),+)
generated by Aff(Γ) equals (A+(Γ), +) (cf. (Krishna and Chatterjee 2005, Corollary
1)). If (Γ, +) is commutative, then Aff(Γ) is a subnear-semiring of M(Γ) so that
Aff(Γ) = A+(Γ).

For α ∈ Γ, the constant map on Γ which sends all the elements of Γ to α is
denoted by ξα, i.e. γξα = α for all γ ∈ Γ. For X ⊆ Γ, we write

CX = {ξα ∈ M(Γ) | α ∈ X}.
Note that CΓ = Mc(Γ). If we are not specific about the constant image, we may
simply write ξ to denote a constant map. We write the set of idempotent elements
of Γ by I(Γ). Note that I(Bn) = {(k, k) : k ∈ [n]} ∪ {ϑ}.

2. The elements of A+(Bn)

In this section, we carry out a systematic study through two subsections to
characterize the elements of A+(Bn) and find the size of A+(Bn). First we study
the elements of End(Bn) and Aff(Bn) in Subsection 2.1. Then, in Subsection 2.2,
we obtain a main result on classification and the number of elements of A+(Bn)
(cf. Theorem 2.15).

2.1. End(Bn) and Aff(Bn). We find the size of End(Bn) by generalizing the cor-
responding result for Endϑ(Bn) in (Gilbert and Samman 2010b). They have shown
that the monoid

Endϑ(Bn) = {f ∈ End(Bn) | ϑf = ϑ},
with respect to composition of mappings, is isomorphic to the monoid S0

n = Sn∪{0},
where the symmetric group Sn of degree n is adjoined by the zero element 0 (cf.
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(Gilbert and Samman 2010b, Proposition 2.2)). Thus, it is clear that |Endϑ(Bn)| =
n! + 1. Now, we extend this result to End(Bn) and find its cardinality in Theorem
2.2.

Let f ∈ Aut(Bn), the set of all automorphisms over Bn. Clearly ϑf = ϑ. Then,
from the proof of (Gilbert and Samman 2010b, Proposition 2.2), there exists a
permutation σ ∈ Sn such that (i, j)f = (iσ, jσ). Further, for any permutation
σ ∈ Sn, the mapping φσ : Bn → Bn such that (i, j) 7→ (iσ, jσ), ϑ 7→ ϑ is an
automorphism over Bn. Now, it can be observed that the assignment

σ 7→ φσ : Sn → Aut(Bn)

is an isomorphism. Thus, we have the following proposition.

Proposition 2.1. Aut(Bn) is isomorphic to Sn.

Theorem 2.2. End(Bn) = Aut(Bn) ∪ CI(Bn). Hence, |End(Bn)| = n! + n + 1.

Proof. Clearly, Aut(Bn) ∪ CI(Bn) ⊆ End(Bn). Let f ∈ End(Bn). If ϑf = ϑ, then
by (Gilbert and Samman 2010b, Proposition 2.2), f ∈ Aut(Bn) and f = φσ for
some σ ∈ Sn. If ϑf 6= ϑ, then ϑf = (k, k) for some k ∈ [n]. Now, for any (i, j) ∈ Bn,

(k, k) = ϑf = ((i, j) + ϑ)f = (i, j)f + (k, k)

so that (i, j)f = (k, k). Thus, if ϑf 6= ϑ, then f ∈ CI(Bn). Hence,

End(Bn) = Aut(Bn) ∪ CI(Bn).

Since |CI(Bn)| = n + 1 and, by Proposition 2.1, |Aut(Bn)| = |Sn| = n!, we have
|End(Bn)| = n! + n + 1. ¤

We now characterize and count the elements of Aff(Bn) in the following theorem.

Theorem 2.3. Aff(Bn) = Aff(Bn)n ∪ CBn . Moreover, |Aff(Bn)| = (n! + 1)n2 + 1.

Proof. Since every constant map over Bn is an affine map, we have
Aff(Bn)n ∪ CBn ⊆ Aff(Bn). Let f ∈ Aff(Bn). If f = ξϑ, then clearly f ∈ CBn .
Otherwise, write f = g + ξ(p,q) for some g ∈ End(Bn) \ {ξϑ}. By Theorem 2.2, g
can be either ξ(k,k) for some k ∈ [n] or φσ for some σ ∈ Sn.

In case g = ξ(k,k) for some k ∈ [n], since f 6= ξϑ, we have k = p so that
f = ξ(p,q) ∈ CBn . Further, as there are n possibilities each for p and q, we have n2

affine maps (of full support) in this case.
We may now suppose g = φσ for some σ ∈ Sn. Clearly, we have ϑf = ϑ, because

ϑφσ = ϑ. Now for (i, j) ∈ Bn \ {ϑ}

(i, j)f = (iσ, jσ) + (p, q) =
{

(iσ, q), if j = pσ−1;
ϑ, otherwise.

Hence, supp(f) = {(i, pσ−1) : i ∈ [n]} so that f ∈ Aff(Bn)n. Consequently,

Aff(Bn) = Aff(Bn)n ∪ CBn .

Since the above union is disjoint and |CBn | = n2 + 1, it remains to prove that
|Aff(Bn)n| = (n!)n2. As shown above, every affine map of n-support is precisely of
the form φσ + ξ(p,q), for some σ ∈ Sn and p, q ∈ [n]. Thus, |Aff(Bn)n| ≤ (n!)n2.
Now, let f = φσ + ξ(p,q) and g = φρ + ξ(s,t), for some σ, ρ ∈ Sn and p, q, s, t ∈ [n].
If q 6= t, then clearly Im(f) 6= Im(g). If σ 6= ρ, then there exists i0 ∈ [n] such
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that i0σ 6= i0ρ. If supp(f) ∩ supp(g) = ∅, then f 6= g. Otherwise, for (i0, k) ∈
supp(f) ∩ supp(g),

(i0, k)f = (i0σ, q) 6= (i0ρ, t) = (i0, k)g.

Assume σ = ρ but p 6= s, then clearly supp(f) 6= supp(g). Thus, distinct choices of
σ and (p, q) determine distinct affine maps of n-support. Hence the result. ¤

Following remarks are immediate from the proof of Theorem 2.3.

Remark 2.4. If f ∈ Aff(Bn) such that ϑ ∈ supp(f) then f is a nonzero constant
map.

Remark 2.5. Given f ∈ Aff(Bn)n, there exist k, q ∈ [n] and σ ∈ Sn such that
supp(f) = {(i, k) | i ∈ [n]}, Im(f) = {(iσ, q) | i ∈ [n]} ∪ {ϑ} and (i, k)f = (iσ, q),
for all i ∈ [n].

Definition 2.6. For f ∈ Aff(Bn)n, a representation of f is defined by a triplet
(k, q; σ), where the parameters k, q and σ are as per Remark 2.5.

2.2. Classification of elements in A+(Bn). We conclude the section in this
subsection by obtaining the cardinality of A+(Bn) along with a classification of its
elements (cf. Theorem 2.15).

Proposition 2.7. If f ∈ A+(Bn) and ϑ ∈ supp(f), then f is a nonzero constant
map.

Proof. For f ∈ A+(Bn), write f = f1 + · · · + fm where each fj ∈ Aff(Bn). If
ϑf 6= ϑ, then each fj must be a nonzero constant map (cf. Remark 2.4) and hence
f is a nonzero constant map. ¤

It is clear that any nonzero constant map in M(Bn) is of full support. The
following corollary of Proposition 2.7 ascertains that the converse holds in case of
the elements in A+(Bn).

Corollary 2.8. If f ∈ A+(Bn) is of full support, then f is a nonzero constant
map. Hence, |A+(Bn)n2+1| = n2.

Proposition 2.9. If f, g ∈ Aff(Bn)n and h is a nonzero constant map, then we
have

(1) |supp(g + f)| = 0 or 1,
(2) |supp(h + f)| = 1,
(3) |supp(f + h)| = 0 or n.

Proof. Let (k, q; σ) and (k′, q′; σ′) be the representations of f and g, respectively
and h = ξ(r,s), for r, s ∈ [n].

(1) If k 6= k′, then supp(f) ∩ supp(g) = ∅ and clearly, |supp(g + f)| = 0.
Otherwise,

supp(f) = supp(g) = {(i, k) | 1 ≤ i ≤ n}.
Since σ is a permutation on [n], let j be the unique element in [n] such that
jσ = q′. Now,

(j, k)(g + f) = (jσ′, q′) + (jσ, q) = (jσ′, q)

and, for i ∈ [n] with i 6= j, (i, k)(g + f) = ϑ. Thus, supp(g + f) = {(j, k)}.
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(2) Since σ is a permutation on [n], there is a unique t ∈ [n] such that tσ = s.
Now,

(t, k)(h + f) = (t, k)ξ(r,s) + (t, k)f = (r, s) + (tσ, q) = (r, q)

and for all α ∈ Bn \ {(t, k)}, α(h + f) = ϑ. Thus, |supp(h + f)| = 1.
(3) If q 6= r, then clearly, α(f +h) = ϑ, for all α ∈ Bn, so that |supp(f +h)| = 0.

Otherwise, for all 1 ≤ i ≤ n,

(i, k)(f + h) = (iσ, q) + (r, s) = (iσ, s)

and, for all α ∈ Bn \ supp(f), α(f + h) = ϑ. Hence, |supp(f + h)| = n.
¤

Lemma 2.10. For f ∈ M(Bn) and k, l, p, q ∈ [n], if (k, l)f = (p, q) and αf = ϑ
for all α ∈ Bn \ {(k, l)}, then f ∈ A+(Bn)1. Hence, |A+(Bn)1| = n4.

Proof. It is sufficient to prove that f is a finite sum of affine maps. Consider a
permutation σ on [n] such that kσ = q and then consider g ∈ Aff(Bn)n whose
representation is (l, q; σ). Note that ξ(p,q) + g ∈ A+(Bn). Moreover,

(k, l)(ξ(p,q) + g) = (p, q) + (kσ, q) = (p, q)

and, for (i, l) ∈ supp(g) with i 6= k, (i, l)(ξ(p,q) + g) = (p, q) + (iσ, q) = ϑ, as iσ 6= q.
Further, it is clear that α(ξ(p,q) + g) = ϑ, for all α /∈ supp(g). Hence, ξ(p,q) + g = f .
Consequently, |A+(Bn)1| is the number of choices of k, l, p, q ∈ [n], as desired. ¤

Notation 2.11. We use (k,l)ζ(p,q) to denote the singleton support map f whose
supp(f) = {(k, l)} and Im(f) \ {ϑ} = {(p, q)}.
Lemma 2.12. If f ∈ A+(Bn) \Aff(Bn), then |supp(f)| = 1.

Proof. Suppose that f = f1 + · · · + fm ∈ A+(Bn) \ Aff(Bn) with m ≥ 2 and
fi = gi +hi, for some gi ∈ End(Bn) and hi ∈ CBn . In view of Theorem 2.3, for each
i, either fi ∈ CBn or fi ∈ Aff(Bn)n. Clearly, none of the fi’s can be ξϑ. For all i ≥ 2,
if fi’s are nonzero constant maps, then f = g1 + ξ, where ξ = h1 + f2 + · · ·+ fm ∈
CBn so that f ∈ Aff(Bn); this contradicts the choice of f . On the other hand,
fj ∈ Aff(Bn)n for some j ≥ 2. Note that |supp(f)| ≤ |supp(hj−1 + fj)|. Hence, by
Proposition 2.9(2), |supp(f)| ≤ 1; consequently, |supp(f)| = 1. ¤

In view of Theorem 2.3, we have the following corollaries of Lemma 2.12.

Corollary 2.13. For n ≥ 3 and 1 < k < n, A+(Bn)k = ∅.

Corollary 2.14. For n ≥ 1, f ∈ Aff(Bn)n ⇐⇒ f ∈ A+(Bn)n. Hence, |A+(Bn)n| =
(n!)n2.

Now, combining the results from Corollary 2.8 through Corollary 2.14, we have
the following main result of the section.

Theorem 2.15. For n ≥ 2, |A+(Bn)| = (n! + 1)n2 + n4 + 1. In fact, we have the
following breakup of the elements of A+(Bn).

(1) The number of mappings of full support is n2.
(2) The number of mappings of n-support is (n!)n2.
(3) The number of mappings of singleton support is n4.
(4) The number of mappings of 0-support is 1.
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Remark 2.16. For n = 1, End(Bn) = Aff(Bn) = A+(Bn) = {(1, 1; id)}∪CBn , where
id is the identity permutation on [n]. Note that all the elements of the near-semiring
A+(B1) are idempotents in both the semigroup reducts.

3. Structure of (A+(Bn),+)

In this section, we study the additive semigroup structure of the affine near-
semiring A+(Bn) via Green’s relations. First we characterize Green’s classes of
(A+(Bn),+) and find their sizes. Further, we investigate the regular and idempo-
tent elements of A+(Bn) and certain relevant subsemigroups. We observe that the
semigroup (A+(Bn), +) is eventually regular. We refer (Howie 1976) for certain
fundamental notions on semigroups.

The semigroup reduct (A+(Bn),+) of the affine near-semiring (A+(Bn), +, ◦) is
denoted by A+(Bn)

+
. Further, in a particular context, if there is no emphasis on

the semigroup, we may simply write A+(Bn).

3.1. Green’s classes of A+(Bn)
+
. In this subsection, we study all the Green’s

relations R, L, D, J and H on the semigroup A+(Bn)
+
. Being a finite semigroup,

A+(Bn)
+

is periodic; hence, by (Howie 1976, Proposition 1.5), the Green’s relations
J and D coincide on A+(Bn)

+
. For f ∈ A+(Bn)

+
, Rf , Lf and Df denote the

Green’s classes of the relations R, L and D, respectively, containing f .
The following result is useful in characterizing the Green’s classes of A+(Bn)

+
.

Proposition 3.1. In A+(Bn)
+
, we have the following.

(1) The set of constant maps CBn is a subsemigroup which is isomorphic to Bn.
(2) The set A+(Bn)1∪{ξϑ} is an ideal which is isomorphic to the 0-direct union

of n2 copies of Bn.
Hence, both the subsemigroups are regular.

Proof.
(1) Clearly, the assignment α 7→ ξα, for all α ∈ Bn, is an isomorphism from Bn

to CBn .
(2) Observe that, by Lemma 1.6, A+(Bn)1 ∪ {ξϑ} is an ideal. Consider the

semigroup Z which is 0-direct union of the collection {B(i,j)
n | (i, j) ∈

[n]× [n]} of n2 copies of Bn indexed by [n]× [n]. For the nonzero elements
of Z, we write (p, q)(i,j) to denote the element (p, q) which is in the (i, j)th
copy of Bn. Now, the assignment (k,l)ζ(p,q) 7→ (p, q)(k,l) and ξϑ 7→ ϑ is
clearly a semigroup isomorphism from A+(Bn)1 ∪ {ξϑ} to Z.

Regularity of these semigroups follows from the regularity of Bn. ¤

Lemma 3.2. Let f and g be two mappings in the semigroup (M(Bn), +). If fRg
(or fLg), then supp(f) = supp(g).

Proof. If f = g, the result is straightforward. Otherwise, if fRg, then there exist
h, h′ ∈ M(Bn) such that f + h = g and g + h′ = f . By Lemma 1.6,

supp(g) = supp(f + h) ⊆ supp(f)

and
supp(f) = supp(g + h′) ⊆ supp(g).

Hence, supp(f) = supp(g). Similarly, if fLg, then supp(f) = supp(g). ¤
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For 1 ≤ i ≤ 2, let πi : [n] × [n] → [n] be the ith projection map. That is,
(p, q)π1 = p and (p, q)π2 = q, for all (p, q) ∈ [n]× [n].

Definition 3.3. For f ∈ M(Bn), an image invariant of f , denoted by ii(f), is
defined as the number q ∈ [n], if exists, such that

Im(f) \ {ϑ} = {(i, q) | i ∈ X}
for some X ⊆ [n].

Remark 3.4. From Theorem 2.15, it can be observed that every nonzero element of
A+(Bn) has an image invariant.

Remark 3.5. For nonzero elements of Bn, the relation R (or L) is the equality on
the first coordinate (or on the second coordinate, respectively). Hence, other than
the class {ϑ}, the number of R or L classes in Bn is n. Consequently, any two
nonzero elements of Bn are D-related (cf. (Howie 1976, Lemma 2.4)).

In view of Lemma 3.2, we characterize the Green’s relations R, L and D on
A+(Bn)

+
classified by the supports of its elements.

Theorem 3.6. For f, g ∈ A+(Bn)1 ∪A+(Bn)n2+1, we have
(1) fRg if and only if supp(f) = supp(g) and αfπ1 = αgπ1, ∀α ∈ supp(f),
(2) fLg if and only if supp(f) = supp(g) and αfπ2 = αgπ2, ∀α ∈ supp(f),
(3) fDg if and only if supp(f) = supp(g).

Proof.
(1) In view of Lemma 3.2, if both f, g are in A+(Bn)n2+1 or in A+(Bn)1, the

characterization follows from Proposition 3.1 and Remark 3.5.
(2) Similar to (1).
(3) Clearly, fDg implies supp(f) = supp(g). The converse follows from Propo-

sition 3.1 and Remark 3.5.
¤

Theorem 3.7. For f, g ∈ A+(Bn)n, we have
(1) fRg if and only if supp(f) = supp(g) and αfπ1 = αgπ1, ∀α ∈ supp(f),
(2) Lf = {f},
(3) fDg if and only if fRg.

Proof.
(1) For f, g ∈ A+(Bn)n, by Proposition 2.9(3), fRg if and only if there exist

ξ, ξ′ ∈ CBn such that f = g + ξ and g = f + ξ′. This implies that αfπ1 =
αgπ1, for all α ∈ supp(f) (= supp(g), by Lemma 3.2). For the converse, let
ii(f) = l and ii(g) = m (cf. Remark 3.4). Choose the functions h = ξ(l,m)

and h′ = ξ(m,l). We show, simultaneously, that supp(f + h) = supp(g) and
α(f + h) = αg, for all α ∈ supp(g). Note that supp(f + h) ⊆ supp(f) =
supp(g). Let α ∈ supp(g). Then, αf 6= ϑ so that αf = (k, l) for some
k ∈ [n], as ii(f) = l. Thus, since αfπ1 = αgπ1 and ii(g) = m, we have
αg = (k, m). Now,

α(f + h) = αf + αh = (k, l) + (l, m) = (k, m) = αg.

Hence, α ∈ supp(f + h) and f + h = g. Similarly, we can prove that
g + h′ = f so that fRg.
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(2) If n = 1, the result is straightforward. For n ≥ 2, let g ∈ Lf with g 6= f .
Then there exists h ∈ A+(Bn) such that h+f = g. However, by Proposition
2.9, |supp(h + f)| ≤ 1; a contradiction. Thus, Lf = {f}.

(3) Follows from (2).
¤

In view of Theorem 2.15, we have the following corollary of theorems 3.6 and
3.7.

Corollary 3.8. For n ≥ 2, we have the following.

(1) The number of R-classes in A+(Bn)
+

is (n!)n + n3 + n + 1.
(2) The number of L-classes in A+(Bn)

+
is (n!)n2 + n3 + n + 1.

(3) The number of D-classes in A+(Bn)
+

is (n!)n + n2 + 2.

Proof.
(1) Other than the class {ξϑ}, by Theorem 3.6(1), there are n and n3 R-classes

containing the full support maps and singleton support maps, respectively.
Further, by Theorem 3.7(1), (n!)n R-classes are present in A+(Bn)n (each
is of size n). Hence, we have the total number.

(2) Similar to above (1), by Theorem 3.6(2), there are n3 +n+1 L-classes con-
taining singleton support and constant maps. And the remaining number
(n!)n2 is the number of L-classes containing n-support maps (cf. Theorem
3.7(2)).

(3) Other than the class {ξϑ}, by Theorem 3.6(3), all the full support elements
form a single D-class and there are n2 D-classes (each is of size n2) contain-
ing singleton support elements. Including (n!)n D-classes which are present
in A+(Bn)n (cf. Theorem 3.7(3) and above (1)), we have (n!)n + n2 + 2
D-classes in A+(Bn)

+
.

¤

Remark 3.9. Since α+α = α+α+α, for all α ∈ Bn, we have f +f = f +f +f , for
all f in the semigroup (M(Bn),+). Consequently, any subsemigroup of (M(Bn),+)
is aperiodic.

Hence, by Remark 3.9, we have the following proposition (cf. (Pin 1986, Propo-
sition 4.2)).

Proposition 3.10. The Green’s relation H is trivial on the semigroup A+(Bn)
+
.

Remark 3.11. Proposition 3.3(e) in (Gilbert and Samman 2010b), given for endo-
morphism near-semirings, also follows immediately from Remark 3.9.

3.2. Regular elements and idempotents in A+(Bn)
+
. In this subsection, we

characterize the regular and idempotent elements in A+(Bn)
+

and ascertain that
A+(Bn)

+
is eventually regular. We observe that the set of regular elements in

A+(Bn)
+

forms an inverse semigroup.

Theorem 3.12. For n ≥ 2,

(1) f ∈ A+(Bn)
+

is of k-support with k 6= n if and only if f is regular;
(2) I(A+(Bn)

+
) = {ξα |α ∈ I(Bn)} ∪

{
(i,j)ζ(k,k)

∣∣∣ i, j, k ∈ [n]
}

.
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Proof.

(1) In view of Proposition 3.1, it is sufficient to show that n-support elements
are not regular. For f ∈ A+(Bn)n, if there is a g ∈ A+(Bn) such that
f+g+f = f , then, by Proposition 2.9, |supp(f+g+f)| ≤ 1; a contradiction.
Hence, f is not regular.

(2) Since I(Bn) = {(k, k) | k ∈ [n]}, by Proposition 3.1,

I(CBn
) = {ξα | α ∈ I(Bn)}

and
I(A+(Bn)1) =

{
(i,j)ζ(k,k)

∣∣∣ i, j, k ∈ [n]
}

.

Further, for f ∈ A+(Bn)n, since |supp(f + f)| = 1 (cf. Proposition 2.9),
f + f cannot be f . Hence, the idempotents of A+(Bn)

+
are merely in

CBn
∪A+(Bn)1.

¤

Corollary 3.13. A+(Bn)
+

has n3 + n + 1 idempotents and n4 + n2 + 1 regular
elements.

For n ≥ 2, since n-support elements in A+(Bn)
+

are not regular, the semigroup
A+(Bn)

+
is not a regular semigroup. However, in the following proposition, we

prove that A+(Bn)
+

is eventually regular, i.e. for every f ∈ A+(Bn)
+
, we observe

that there is a number m such that mf (= f + · · · + f for m times) is regular
(Edwards 1983).

Proposition 3.14. The semigroup A+(Bn)
+

is eventually regular.

Proof. In view of Theorem 3.12, it remains to show that, for each f ∈ A+(Bn)n,
there is a number m such that mf is regular. Now, for f ∈ A+(Bn)n, since
f +f ∈ A+(Bn)1 (cf. Proposition 2.9), we have 2f is regular. Hence, the semigroup
A+(Bn)

+
is eventually regular. ¤

For n ≥ 2, let K be the set of regular elements in A+(Bn)
+
. By Theorem 3.12,

K = A+(Bn) \ A+(Bn)n. Further, by Theorem 3.12(2), all the idempotents of
A+(Bn)

+
are in K. We prove the following theorem concerning the set K.

Theorem 3.15. (K, +) is an inverse semigroup.

Proof. Let f, g ∈ K. If one of them is the zero map, then |supp(f + g)| = 0. If
one of them is of singleton support, then by Lemma 1.6, |supp(f + g)| ≤ 1. If both
f and g are of full support, then |supp(f + g)| = n2 + 1 or 0. Thus, in any case,
f + g ∈ K. Hence, (K, +) is a regular semigroup.

Referring to (Howie 1976, Theorem 1.2), it is sufficient to show that the idem-
potents in K commute. Let f, g ∈ I(K). If one of them is the zero map, then
f + g = g + f = ξϑ. Otherwise, we have the following cases.

Case 1: |supp(f)| = |supp(g)|. Then,

f + g = g + f =

{
f if f = g;
ξϑ otherwise.



AFFINE NEAR-SEMIRINGS OVER BRANDT SEMIGROUPS 11

Case 2: |supp(f)| 6= |supp(g)|. Say, |supp(f)| = n2 + 1 and |supp(g)| = 1.
Then,

f + g = g + f =

{
g if Im(f) = Im(g) \ {ϑ};
ξϑ otherwise.

Thus, I(K) is commutative. Hence, (K, +) is an inverse semigroup ¤

4. Structure of (A+(Bn), ◦)
In this section, we study the multiplicative semigroup structure of the affine

near-semiring A+(Bn) via Green’s relations. First we characterize Green’s classes
of (A+(Bn), ◦) and find their sizes. We observe that the semigroup (A+(Bn), ◦) is
regular (cf. Theorem 4.8) and orthodox (cf. Theorem 4.10). Further, we investigate
the idempotent elements of A+(Bn) and certain relevant subsemigroups.

The semigroup reduct (A+(Bn), ◦) of the affine near-semiring (A+(Bn),+, ◦) is
denoted by A+(Bn)

◦
. Further, in a particular context, if there is no emphasis on

the semigroup, we may simply write A+(Bn). For f, g ∈ M(Bn), the product f ◦ g
will simply be written as fg.

4.1. Green’s classes of A+(Bn)
◦
. As mentioned earlier in the case of A+(Bn)

+
,

the Green’s relations J and D coincide also on the semigroup A+(Bn)
◦
. In this

subsection, we study the Green’s relations R, L, D and H on A+(Bn)
◦
. For f ∈

A+(Bn)
◦
, the Green’s classes containing f of the relations R, L, D and H on

A+(Bn)
◦

are again denoted by Rf , Lf , Df and Hf , respectively.
We begin with the structural properties of the subsemigroups A+(Bn)1 ∪ {ξϑ}

and CBn of A+(Bn)
◦
.

Remark 4.1. The semigroup (CBn , ◦) has right zero multiplication, i.e. fg = g, for
all f, g ∈ CBn . Consequently, (CBn , ◦) is regular.

Proposition 4.2. The semigroup (A+(Bn)1 ∪ {ξϑ}, ◦) is isomorphic to (Bn2 , +).
Hence, (A+(Bn)1 ∪ {ξϑ}, ◦) is regular.

Proof. Clearly, the assignment (k,l)ζ(p,q) 7→ ((k, l), (p, q)) and ξϑ 7→ ϑ is a semigroup
isomorphism from (A+(Bn)1 ∪ {ξϑ}, ◦) to (Bn2 , +). Hence, since the semigroup
(Bn2 , +) is regular, (A+(Bn)1 ∪ {ξϑ}, ◦) is regular. ¤
Lemma 4.3. If g is a nonconstant map in A+(Bn), then supp(fg) ⊆ supp(f).

Proof. If fg is the zero map, then the result is straightforward. Let fg 6= ξϑ

and α ∈ supp(fg). Then, ϑ 6= α(fg) = (αf)g so that αf ∈ supp(g). Since g
is not a constant map, by Proposition 2.7, αf 6= ϑ so that α ∈ supp(f). Hence,
supp(fg) ⊆ supp(f). ¤

We present a characterization of the Green’s relation R on A+(Bn)
◦

in the
following theorem.

Theorem 4.4. For f, g ∈ A+(Bn)
◦
, we have

(1) if f, g ∈ CBn , then fRg;
(2) if f, g 6∈ CBn , then fRg ⇐⇒ supp(f) = supp(g).

Moreover, for n ≥ 2, the number of R-classes in A+(Bn)
◦

is n2 + n + 1.

Proof.
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(1) By Remark 4.1, any two elements of CBn are R-related. Thus, CBn has a
single R-class containing all the constant maps.

(2) If fRg with f 6= g, then there exist h, h′ ∈ A+(Bn) such that fh = g and
gh′ = f . Note that h and h′ are nonconstant maps; otherwise, f and g will
be constant maps. Now, by Lemma 4.3, supp(g) = supp(fh) ⊆ supp(f)
and supp(f) = supp(gh′) ⊆ supp(g). Hence, supp(f) = supp(g).

Conversely, suppose supp(f) = supp(g). If f, g ∈ A+(Bn)1, by Remark
3.5 and Proposition 4.2, we get fRg. Consequently, A+(Bn)1 has n2 R-
classes each of size n2. On the other hand, let f = (k, p; σ) and g = (k, q; σ′).
Since σ and σ′ are permutation on [n], define the bijection τ : [n] → [n] by
iστ = iσ′, for all i ∈ [n]. Now consider the n-support maps h = (p, q; τ)
and h′ = (q, p; τ−1) in A+(Bn). For i ∈ [n], we have

(i, k)(fh) = (iσ, p)h = (iστ, q) = (iσ′, q) = (i, k)g;

and, for α ∈ Bn \ supp(f), α(fh) = ϑh = ϑ = αg. Thus, fh = g. Similarly,
gh′ = f . Hence, fRg. Thus, A+(Bn)n contains n R-classes each of size
(n!)n.

Hence, for n ≥ 2, the number of R-classes in A+(Bn)
◦

is n2 + n + 1. ¤

We present a characterization of the Green’s relation L on A+(Bn)
◦

in the fol-
lowing theorem.

Theorem 4.5. For f, g ∈ A+(Bn)
◦
, fLg ⇐⇒ Im(f) = Im(g). Moreover, for

n ≥ 2, the number of L-classes in A+(Bn)
◦

is 2n2 + n + 1.

Proof. If fLg with f 6= g, then there exist h, h′ ∈ A+(Bn) such that hf = g and
h′g = f . Since Im(g) = Im(hf) ⊆ Im(f) and Im(f) = Im(h′g) ⊆ Im(g), we have
Im(f) = Im(g).

Conversely, suppose Im(f) = Im(g) so that |supp(f)| = |supp(g)|. Clearly,
the L-classes in CBn are singletons. Consequently, CBn has n2 + 1 L-classes. If
f, g ∈ A+(Bn)1, by Remark 3.5 and Proposition 4.2, we have fLg and hence, there
are n2 L-classes in A+(Bn)1 each is of size n2. Otherwise, let f = (k, p; σ) and
g = (l, p; ρ). Set h = (l, k; ρσ−1) and h′ = (k, l;σρ−1) ∈ A+(Bn). For i ∈ [n], we
have

(i, l)(hf) = (iρσ−1, k)f = (iρσ−1σ, p) = (iρ, p) = (i, l)g;
and, for α ∈ Bn \ supp(h),

α(hf) = ϑf = ϑ = αg,

as supp(h) = supp(g). Thus, hf = g. Similarly, we can observe that h′g = f .
Hence, fLg. Consequently, we have n R-classes containing n-support elements
each is of size (n!)n.

Hence, for n ≥ 2, the number of L-classes in A+(Bn)
◦

is 2n2 + n + 1. ¤

Following characterization of the Green’s relation H on A+(Bn)
◦

is a corollary
of theorems 4.4 and 4.5.

Corollary 4.6. For f, g ∈ A+(Bn)
◦
, fHg if and only if Im(f) = Im(g) and

supp(f) = supp(g). Moreover, for n ≥ 2, the number of H-classes in A+(Bn)
◦

is
n4 + 2n2 + 1.

We characterize the Green’s relation D in the following theorem.
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Theorem 4.7. For f, g ∈ A+(Bn)
◦
, fDg ⇐⇒ |supp(f)| = |supp(g)| or f, g ∈ CBn .

Hence, for n ≥ 2, the number of D-classes in A+(Bn)
◦

is 3.

Proof. For f, g ∈ A+(Bn)
◦
, observe that

fDg ⇒ there exists h ∈ A+(Bn)
◦

such that fLh and hRg

⇒ Im(f) = Im(h) and hRg (by Theorem 4.5)
⇒ |supp(f)| = |supp(h)| and (either supp(h) = supp(g) or h, g ∈ CBn)

(by Theorem 4.4)
⇒ either |supp(f)| = |supp(g)| or f, g ∈ CBn

Conversely, if f, g ∈ CBn , then by Theorem 4.4, fRg so that fDg. If f, g ∈
A+(Bn)1, then, by Remark 3.5 and Proposition 4.2, fDg. Finally, let f, g ∈
A+(Bn)n such that f = (k, p;σ) and g = (l, q; ρ). For τ ∈ Sn, consider h =
(l, p; τ) ∈ A+(Bn). Now, by Theorem 4.5 and Theorem 4.4(2), fLh and hRg so
that fDg.

Hence, for n ≥ 2, A+(Bn)
◦

has threeD-classes, viz. CBn , A+(Bn)1 and A+(Bn)n.
¤

4.2. Regular elements and idempotents in A+(Bn)
◦
. In this subsection, we

characterize the regular and idempotent elements in A+(Bn)
◦

and ascertain that
A+(Bn)

◦
is regular. Moreover, it is an orthodox semigroup. We observe that the

set excluding the full support elements in A+(Bn)
◦

forms an inverse semigroup.

Theorem 4.8. The semigroup A+(Bn)
◦

is regular.

Proof. In view of Remark 4.1 and Proposition 4.2, it is sufficient to show that
n-support elements in A+(Bn)

◦
are regular. Let f = (k, p;σ) ∈ A+(Bn)n. Set

g = (p, k; σ−1) ∈ A+(Bn). For (i, k) ∈ supp(f) with i ∈ [n],

(i, k)(fgf) = (iσ, p)(gf) = (iσσ−1, k)f = (i, k)f.

Hence, fgf = f so that f is regular. Thus, the semigroup A+(Bn)
◦

is regular. ¤

Now, in the following theorem, we identify the idempotent elements in A+(Bn)
◦

and count their number.

Theorem 4.9. For n ≥ 2,

I(A+(Bn)
◦
) = {ξα | α ∈ Bn} ∪ {(k, k; id) | k ∈ [n]} ∪

{
(i,j)ζ(i,j)

∣∣∣ i, j ∈ [n]
}

.

Hence, |I(A+(Bn)
◦
)| = 2n2 + n + 1.

Proof. By Remark 4.1, clearly, all the n2 + 1 elements of (CBn , ◦) are idempotents.
Since nonzero idempotents in Bn2 are of the form ((i, j), (i, j)), we have, n2 elements
of the form (i,j)ζ(i,j) are idempotents in A+(Bn)1. Observe that the idempotent
elements in A+(Bn)n are of the form (k, k; id), where k ∈ [n] and id is the identity
permutation on [n]. Thus, there are n idempotent elements in A+(Bn)n. Hence,
for n ≥ 2, the number of idempotents in A+(Bn)

◦
is 2n2 + n + 1. ¤

Theorem 4.10. The semigroup A+(Bn)
◦

is orthodox.
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Proof. In view of Theorem 4.8, it is sufficient to prove that I(A+(Bn)
◦
) is a sub-

semigroup of A+(Bn)
◦
. Let f, g ∈ I(A+(Bn)

◦
). Note that if f or g is a constant

map, then fg is also a constant map and hence, fg is an idempotent element.
Otherwise, we consider the following cases to show that fg ∈ I(A+(Bn)

◦
).

Case 1: f, g ∈ A+(Bn)l, for l ∈ {1, n}. It can be observed that if f = g, then
fg = f ; otherwise, fg = ξϑ.

Case 2: f = (i,j)ζ(i,j) and g = (k, k, id). Observe that if j = k, then fg =
gf = f ; otherwise, fg = gf = ξϑ.

Thus, the set I(A+(Bn)
◦
) is closed with respect to composition. Hence, A+(Bn)

◦

is an orthodox semigroup. ¤

For n ≥ 2, let N = A+(Bn) \A+(Bn)n2+1. If f, g ∈ N , then by Proposition 2.7,
ϑ /∈ supp(f) ∩ supp(g). Hence, ϑ(fg) = ϑ so that |supp(fg)| 6= n2 + 1. Thus, N
is closed with respect to composition. From the proof of Theorem 4.8, it can be
observed that (N, ◦) is regular. Also, from the proof of Theorem 4.10, the set I(N)
is closed with respect to composition. Further, note that (I(N), ◦) is a commutative
semigroup. Hence, we have the following theorem.

Theorem 4.11. (N, ◦) is an inverse semigroup.

5. An example: A+(B2)

In this section, we illustrate our results using the affine near-semiring A+(B2).
First note that A+(B2) has 29 elements (cf. Theorem 2.15). The number of D-
classes in A+(B2)

+
is 10 and it is 3 in A+(B2)

◦
(cf. Corollary 3.8 and Theorem

4.7). The number of L-classes in A+(B2)
+

is 19 and it is 11 in A+(B2)
◦

(cf.
Corollary 3.8 and Theorem 4.5). The number of R-classes in A+(B2)

+
is 15 and

it is 7 in A+(B2)
◦

(cf. Corollary 3.8 and Theorem 4.4). Since the H-relation is
trivial on A+(B2)

+
, all the 29 elements are in 29 different classes. The number of

H-classes in A+(B2)
◦

is 25 (cf. Corollary 4.6). All this information along with the
respective Green’s classes of both the semigroups A+(B2)

+
and A+(B2)

◦
are shown

in Figure 1 using egg-box diagrams. Here, following the notations/representaions
introduced in this paper, the elements of A+(B2) are displayed with their supports
and images. Thus, the characterizations of the respective Green’s relations can also
be crosschecked in this figure. Further, in the figure, the idempotents elements in
these semigroups are marked with a * on their left-top corner.
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