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Abstract. Using automata-theoretic approach, Giambruno and Restivo have
investigated on the intersection of two finitely generated submonoids of the
free monoid over a finite alphabet. In particular, they have obtained Hanna
Neumann property for a special class of submonoids generated by finite prefix
sets. This work continues their work and provides a sufficient condition for
Hanna Neumann property for the entire class of submonoids generated by finite
prefix sets. In this connection, a general rank formula for the submonoids which
are accepted by semi-flower automata is also obtained.

Introduction

Howson proved that the intersection of two finitely generated subgroups of a free
group is finitely generated [7]. In 1956, Hanna Neumann improved the result by
proving that if H and K are finite rank subgroups of a free group, then

r̃k(H ∩K) ≤ 2r̃k(H)r̃k(K),

where r̃k(N) = max(0, rk(N)− 1) for a subgroup N of rank rk(N). Further, Neu-
mann conjectured that

r̃k(H ∩K) ≤ r̃k(H)r̃k(K), (?)

which is known as Hanna Neumann conjecture [12]. In 1990, Walter Neumann
proposed a stronger form of the conjecture called strengthened Hanna Neumann
conjecture (SHNC) [13]. Meakin and Weil proved SHNC for the class of positively
generated subgroups of a free group [9]. The conjecture has recently been settled
by Mineyev (cf. [10, 11]) and announced independently by Friedman (cf. [3, 4]).

In contrast, it is not always true that the intersection of two finitely generated
submonoids of a free monoid is finitely generated. It appears that the intersection
problem for submonoids of free monoids is much more complex than the analogous
problem for subgroups of free groups. In particular, Hanna Neumann property
for submonoids of a free monoid is of special interest. Two finitely generated sub-
monoids H and K of a free monoid are said to satisfy Hanna Neumann property (in
short, HNP), if H and K satisfy the inequality (?). There are several contributions
in the literature to study the intersection of two submonoids of a free monoid.

In 1972, Tilson proved that the intersection of free submonoids of the free monoid
over a finite alphabet is free [16]. In connection to HNP, Karhumäki obtained a
result for submonoids of rank two of the free monoid over a finite alphabet. In fact,
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Karhumäki proved that the intersection of two submonoids of rank two is generated
either by a set of at most two words or by a regular language of a special form [8].
Using an automata-theoretic approach, Giambruno and Restivo have investigated
on the rank and HNP of certain submonoids of a free monoid [6].

In [6], Giambruno and Restivo introduced the concept called semi-flower au-
tomata (in short, SFA). An SFA accepts a finitely generated submonoid of the free
monoid over the underlying alphabet, and vice versa. Moreover, if an SFA is deter-
ministic, it accepts the submonoid generated by a finite prefix set. Conversely, the
submonoid generated by a finite prefix set is accepted by a deterministic SFA with
at most one ‘branch point going in’ (in short, bpi). Using SFA, Giambruno and
Restivo have initiated the investigations on the intersection of two submonoids gen-
erated by finite prefix sets. It is clear that the product automaton of two determin-
istic SFA accepts the intersection of the submonoids accepted by the deterministic
SFA. If the product automaton is also semi-flower, then clearly the intersection is
also finitely generated. Giambruno and Restivo have considered two submonoids
which are accepted by deterministic SFA with a unique bpi such that the product
automaton is also semi-flower with at most one bpi. They have shown that such
submonoids satisfy HNP. Further, if the product automaton has more than one
bpi, they have provided some examples of submonoids which fail to satisfy HNP.
Recently in [14, 15], Singh and Krishna have obtained a condition on the product
automaton with two bpi’s, so that the respective submonoids satisfy HNP.

The present work is in the direction of addressing HNP for the entire class of
submonoids generated by finite prefix sets. This work generalizes the work of Singh
and Krishna and provides a sufficient condition for HNP of two submonoids gener-
ated by finite prefix sets. Further, a general rank formula for the submonoids which
are accepted by SFA is also obtained. The main work of the paper is presented in
Section 2. Before that, in Section 1, the necessary preliminary concepts and results
are presented. In Section 3, we provide certain examples and counterexamples. The
paper is concluded in Section 4.

1. Preliminaries

In this section, we present the necessary background material from [1, 5, 6]. Let
A be a finite set called an alphabet with its elements as letters. The free monoid
over A is denoted by A∗ and ε denotes the empty word – the identity element of
A∗. It is known that every submonoid of A∗ is generated by a unique minimal set
of generators. Thus, if H is a submonoid of A∗, then the rank of H, denoted by
rk(H), is defined as the cardinality of the minimal set of generators X of H, i.e.
rk(H) = |X|. Further, the reduced rank of H is defined as max(0, rk(H)−1) and it
is denoted by r̃k(H). A set of words, say X, is said to be a prefix set if no element
of X is a proper prefix of another element in X.

Let A be an alphabet. An automaton over A is a quadruple (Q, I, T, E), where
Q is a finite set called the set of states, I and T are subsets of Q called the sets of
initial and final states, respectively, and E ⊆ Q×A×Q called the set of transitions.
Clearly, by denoting the states as vertices/nodes and the transitions as labeled arcs,
an automaton can be represented by a digraph in which initial and final states shall
be distinguished appropriately.

In what follows, let A = (Q, I, T,E) be an automaton over A. A state, say q, of
A is called a branch point going in, in short bpi, if the number of transitions coming
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into q (i.e. the indegree of q – the number of arcs coming into q – in the digraph
of A) is at least two. Similarly, a state, say q, of A is called a branch point going
out, in short bpo, if the number of transitions going out from q (i.e. the outdegree
of q – the number of arcs going out from q – in the digraph of A) is at least two.
The sets bpi’s and bpo’s of A are denoted by BPI(A) and BPO(A), respectively.
Further, for i ≥ 0, we write

BPOi(A) = {q ∈ Q | the number of transitions defined on q is equal to i},
i.e. the set of states whose outdegree – the number of arcs going out of the state –
in the digraph of A is i.

A path in A is a finite sequence of consecutive arcs in its digraph. For pi ∈ Q
(0 ≤ i ≤ k) and aj ∈ A (1 ≤ j ≤ k), let

p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−−→ pk−1

ak−→ pk

be a path, say P , in A that is starting at p0 and ending at pk. In this case, we
write i(P ) = p0 and f(P ) = pk. The word a1 · · · ak ∈ A∗ is the label of the path P .
A null path is a path from a state to itself labeled by ε.

A path in A is called simple if all the states on the path are distinct. A path
that starts and ends at the same state is called as a cycle, if it is not a null path.
A cycle

p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−−→ pk−1

ak−→ pk = p0

is called a simple cycle if p0, . . . , pk−1 are all distinct. Other notions related to
paths, viz. subpath, prefix path and suffix path, can be defined in a usual way or
one may refer to [6].

The language accepted by A, denoted by L(A), is the set of words in A∗ that are
the labels of the paths from an initial state to a final state. A state, say q, of A
is accessible (respectively, coaccessible) if there is a path from an initial state to q
(respectively, a path from q to a final state). The trim part of A, denoted by AT , is
the automaton obtained from A by considering only the accessible and coaccessible
states, and the respective transitions between them. Note that L(A) = L(AT ). If
A = AT , then we say A is trim. An automaton is deterministic if it has a unique
initial state and there is at most one transition defined for a state and a letter, i.e.
the transition relation can be seen as a partial function from Q×A to Q.

An automaton is called a monoidal automaton if it is trim with a unique initial
state which is the unique final state. Further, a monoidal automaton is called a
semi-flower automaton, in short SFA, if all the cycles in the automaton visit the
unique initial-final state.

If A = (Q, I, T, E) is a monoidal automaton, we denote the initial-final state by
q0. In this case, we simply write A = (Q, q0, q0, E). Further, if A is an SFA, let us
denote by CA the set of simple cycles (passing through q0) in A and by YA the set
of their labels.

In the following theorem we state the correspondence between SFA and finitely
generated submonoids of a free monoid.

Theorem 1.1 ([6]). If A is an SFA over A, then YA is finite and A accepts the
submonoid generated by YA in A∗. Moreover, if A is deterministic, then YA is a
prefix set and it is the minimal set of generators of the submonoid accepted by A.
Conversely, let X be a finite subset of A∗ and let H be the submonoid generated by
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X; then there exists an SFA accepting H. Furthermore, if X is a prefix set, then
there exists a deterministic SFA with at most one bpi accepting H.

We now present the concept of product automaton and discuss the state of the
art of the intersection problem of two submonoids generated by finite prefix sets.

Let A1 = (Q1, I1, T1, E1) and A2 = (Q2, I2, T2, E2) be two automata defined
over A. The product automaton A1 ×A2 is the automaton

(Q1 ×Q2, I1 × I2, T1 × T2, E)

over the alphabet A such that

((p, p′), a, (q, q′)) ∈ E ⇐⇒ (p, a, q) ∈ E1 and (p′, a, q′) ∈ E2

for all p, q ∈ Q1, p′, q′ ∈ Q2 and a ∈ A.
Notice that, if A1 and A2 are deterministic, then so is A1 ×A2. But, if A1 and

A2 are trim, then A1 ×A2 need not be trim. Further,

L(A1 ×A2) = L((A1 ×A2)T ) = L(A1) ∩ L(A2).

Let H and K be submonoids generated by finite prefix sets of words over A.
In view of Theorem 1.1, suppose AH and AK are deterministic SFA over A with
at most one bpi accepting H and K, respectively. Clearly, (AH × AK)T is a
deterministic monoidal automaton accepting H ∩K. In order to consider the case
that H ∩K is finitely generated, one could restrict (AH ×AK)T to be semi-flower.
With this hypothesis, we discuss HNP of H and K as follows. We first prove the
following proposition.

Proposition 1.2. If AH or AK has no bpi’s, then H and K satisfy HNP.

Proof. Without loss of generality, assume that AH has no bpi’s, i.e. BPI(AH) = ∅.
By [6, Proposition 2.6], we have BPO(AH) = ∅. We claim that
BPO((AH × AK)T ) = ∅. Let (p, q) ∈ BPO((AH × AK)T ). Since (AH × AK)T

is deterministic, there exist two distinct letters a1, a2 ∈ A such that the tran-
sitions

(
(p, q), a1, (p1, q1)

)
and

(
(p, q), a2, (p2, q2)

)
are in (AH × AK)T , for some

states (p1, q1) and (p2, q2). Thus, the transitions (p, a1, p1) and (p, a2, p2) are in
AH . But, since a1 6= a2, we have BPO(AH) 6= ∅; a contradiction. Hence,
BPO((AH ×AK)T ) = ∅. Again, by [6, Proposition 2.6], the semi-flower automa-
ton (AH ×AK)T has no bpi’s. Consequently, by [6, Theorem 2.7], the submonoid
H ∩K is cyclic so that the result follows. ¤

We now summarize the HNP of H and K.
Case 1. AH or AK has no bpi’s: In this case, by Proposition 1.2, H and

K satisfy HNP.
Case 2. AH and AK have unique bpi: In this case, (AH×AK)T can have

arbitrary number of bpi’s. Thus, the problem is considered into various
subcases and we only know the following.

I. (AH ×AK)T has at most one bpi: In this subcase, if (AH ×AK)T

is semi-flower, then H and K satisfy HNP (cf. [6, Theorem 3.6]).
II. (AH ×AK)T has two bpi’s: In this subcase, even if (AH × AK)T

is semi-flower, H and K need not satisfy HNP (cf. [15, Example 3.7]).
However, if (AH × AK)T is an SFA with two bpi’s having a unique
path from one bpi to the other, then H and K satisfy HNP (cf. [15,
Corollary 3.11]).
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In general, if (AH × AK)T has more than one bpi, there are several examples of
H and K which fail to satisfy HNP (cf. [5, 6]). Thus, if (AH × AK)T has an
arbitrary number of bpi’s, in this work we would investigate on certain conditions
so that H and K satisfy HNP. For that purpose, we would require the following
supplementary results from [6].

Proposition 1.3. Let A be an alphabet of cardinality n. If A = (Q, q0, q0, E) is a
deterministic SFA over A, then

|E| − |Q| =
n∑

i=2

|BPOi(A)|(i− 1).

Proposition 1.4. Let A be an alphabet of cardinality n and let A1 and A2 be two
deterministic automata over A. If ci = |BPOi(A1)| and di = |BPOi(A2)|, for each
i ∈ {1, . . . , n}, then

|BPOt(A1 ×A2)| ≤
∑

t≤r,s≤n

crds.

Proposition 1.5. Let 〈c1, . . . , cn〉 and 〈d1, . . . , dn〉 be two finite sequences of nat-
ural numbers; then

n∑
t=2

(t− 1)


 ∑

t≤r≤n

cr

∑

t≤s≤n

ds


 ≤

(
n∑

i=2

(i− 1)ci

) 


n∑

j=2

(j − 1)dj


 .

2. Main Results

In this section we generalize the work of Singh and Krishna in [15]. First we
obtain the rank of the submonoid of a free monoid that is accepted by an SFA. Then
we proceed to obtain a condition for HNP of two submonoids of a free monoid which
are generated by finite prefix sets.

2.1. BPR and Rank. We begin with introducing a concise notation for an SFA in
which only the initial-final state, bpi’s and the respective paths between them will
be considered along with their labels. We call this as bpi’s and paths representation,
in short BPR, of the semi-flower automaton.

Definition 2.1. Let A = (Q, q0, q0, E) be an SFA over A; the BPR of A is a
quadruple A′ = (Q′, q0, q0, E

′), where
(i) Q′ = BPI(A) ∪ {q0}, and
(ii) E′ is the finite subset of Q′×A∗×Q′ defined by (p0 = p, x, q = pk) ∈ E′ if

and only if there exist distinct p1, . . . , pk−1 ∈ Q \Q′ and x = a1 · · · ak, for
ai ∈ A, such that (pi−1, ai, pi) ∈ E for all 1 ≤ i ≤ k, i.e.

p = p0
a1−→ p1

a2−→ p2
a3−→ · · · ak−1−−−→ pk−1

ak−→ pk = q

is a simple path from p to q (or simple cycle, when p = q) labeled by x in
which the intermediate nodes, if any, are outside Q′.

Remark 2.2. By adopting the digraph representation of an automaton, we can draw
a digraph for the BPR of an SFA. Here, the arcs are labeled by the labels (words)
of respective simple paths (or simple cycles) of the SFA.

Example 2.3. The BPR of the SFA given in Figure 1 is shown in Figure 2.
Here, we distinguish the initial-final state by double-lined nodes.
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Figure 1. A Semi-Flower Automaton
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Figure 2. The BPR of the SFA given in Figure 1

Remark 2.4. Let A = (Q, q0, q0, E) be an SFA and let A′ = (Q′, q0, q0, E
′) be the

BPR of A.

(i) Every cycle in A′ passes through the state q0.
(ii) The number of simple cycles in A is equal to the number of simple cycles

in A′.
(iii) For any p, q ∈ Q′, the number simple paths from p to q in A is equal to the

number of simple paths from p to q in A′.
Proposition 2.5. Let A be an SFA and let A′ be the BPR of A. There is a linear
ordering 4 on the states of A′ such that

(i) the initial-final state q0 is the least element, and
(ii) for j 6= 0, if qj 4 qi, then there is no arc from qj to qi in A′.

Proof. Construct the digraph G from the digraph of A′ by removing the arcs which
are leaving out of the initial-final state q0. By Remark 2.4(i), G is a directed acyclic



HANNA NEUMANN PROPERTY IN FREE MONOIDS 7

graph. Define a relation ≤ on the nodes of G by

p ≤ q if and only if there is a simple path from q to p in G.

As the null path is a simple path from a node to itself in G, clearly ≤ is reflexive.
Since there are no cycles in G, it can be observed that ≤ is anti-symmetric and
transitive. Thus, the relation ≤ is a partial ordering on the nodes of G. Since every
state in A is coaccessible, the initial-final state q0 is the least element with respect
to ≤.

As every partial ordering can be extended to a linear ordering, consider a linear
ordering 4 of the nodes of G which is an extension of ≤. Thus, the obtained linear
ordering 4 is the desired one. ¤
Remark 2.6. By applying a topological sort algorithm (eg. refer [2]) on the directed
acyclic graph G, one can get a linear ordering as described in Proposition 2.5.

In what follows, by a topological ordering of the bpi’s of an SFA is meant a
linear ordering on the states (possibly, except the initial-final state) of its BPR as
in Proposition 2.5.

Example 2.7. Let A be the SFA given in Figure 1. A topological ordering of the
bpi’s of A is

p2, p4, p3, p1.

Notice that there is no arc from p3 or p4 to p1 in the BPR of A (cf. Figure 2).
Hence, in a topological ordering of the bpi’s of A, the bpi p1 can come at any
position after p2. Thus, the possible other topological orderings are p2, p1, p4, p3

and p2, p4, p1, p3.

Notation 2.8. Let A be an SFA and let A′ be the BPR of A. If we say that
A has m bpi’s, we always assume that q1, q2, . . . , qm are the bpi’s of A, which are
considered in a topological ordering. That is,

q1 4 q2 4 · · · 4 qm.

As per the ordering, we also fix the following numbers in the BPR A′.
(i) For 1 ≤ i ≤ m, κi always refer to the number of arcs from the state q0 to

the bpi qi in A′.
(ii) For 1 ≤ i, j ≤ m, κij always refer to the number of arcs from the bpi qi to

the bpi qj in A′.
Remark 2.9. As per the topological ordering of the bpi’s of A, we have κij = 0 for
all j ≥ i > 1. If the initial-final state q0 of A is a bpi, then clearly q1 = q0 so that,
for j ≥ 1, κ1j = κj ; otherwise, κ1j = 0.

Remark 2.10. In the digraph of A (as well as in A′), the indegree of a bpi qj ,
1 ≤ j ≤ m, is given by the expression

κj +
m∑

i=j+1

κij .

The following lemma is useful in obtaining the rank of an SFA.

Lemma 2.11. Let A be an SFA and let p be the first bpi in a topological ordering
of the bpi’s of A, i.e. p 4 q, for all bpi’s q; then

(i) there is a unique simple path from p to the initial-final state q0, and
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(ii) every cycle in A visits p.

Proof. If the initial-final state q0 is a bpi, then clearly p = q0. In which case, the
null path is the unique simple path from p to q0. And, since A is semi-flower, every
cycle in A visits p. If q0 is not a bpi, we proceed as follows.

(i) Since p is coaccessible, there is a path from p to the state q0. Now suppose
there are two different paths P1 and P2 with labels u and v, respectively,
from p to the state q0. Let w be the label of longest suffix path P ′ which
is in common between the paths P1 and P2. As the state q0 is not a bpi,
w 6= ε. But then i(P ′) will be a bpi different from p. This a contradiction
to the choice of p. Thus, there is a unique simple path from p to q0.

(ii) Suppose there is a cycle that is not visiting p. Also, from above (i), there
is a simple path from p to the state q0. Let P be the longest common
suffix path of these two paths ending at q0. Clearly, i(P ) is a bpi and
i(P ) 6= p. Since there is a path from p to i(P ), we have i(P ) 4 p. This is a
contradiction to the choice of p. Hence, every cycle in A visits p.

¤

Corollary 2.12. Let A be an SFA. If p is the first bpi in a topological ordering of
the bpi’s of A, then p is the first bpi in any topological ordering of the bpi’s of A.

Let A be an SFA. Now we are ready to present our first main result of the paper
on the rank of the submonoid L(A). The rank of L(A) can be characterized using
the bpi’s of A. First note that, if there is no bpi in A, then clearly the rank of L(A)
is either 0 or 1. If A has at least one bpi, we have the following theorem.

Theorem 2.13. Let A be an SFA and m ≥ 1. If A has m bpi’s, then

rk(L(A)) ≤
m∑

i=1

κiκi0, (#)

where κi0 is the number of simple paths from the bpi qi to the initial-final state q0.
The number κi0 can be given by the recursive formula

κ10 = 1 and κi0 =
i−1∑

j=1

κijκj0, for i > 1.

Moreover, if A is deterministic, then the equality holds in (#).

Proof. Let q1 4 q2 4 · · · 4 qm be the bpi’s of A. It is known from Theorem 1.1
that

rk(L(A)) ≤ |YA| ≤ |CA|.
We prove the result by showing that |CA|, the number of simple cycles in A passing
through the state q0, is equal to the righthand side of (#), i.e. we show that

|CA| =
m∑

i=1

κiκi0.

By Remark 2.4(ii), |CA| = |CA′ |, where CA′ is the number of simple cycles in the
BPR A′ of A.
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For 1 ≤ i ≤ m, let νi be the number of simple cycles in A′ that are passing
through the bpi qi but not through any bpi qj with j > i. Clearly,

|CA′ | =
m∑

i=1

νi.

We conclude the result by arguing that νi = κiκi0, for 1 ≤ i ≤ m.
In case i = 1, ν1 is the number of simple cycles in A′ that are passing through

the bpi q1 but not through any other bpi. First note that, by Lemma 2.11 there is
a unique simple path from q1 to q0 so that κ10 = 1. Now, each simple cycle that
is counted in ν1 is merely an arc from q0 to q1 followed by the unique simple path
from q1 to q0. Thus, the number of simple cycles counted in ν1 is the number of
arcs from q0 to q1, i.e. κ1. Hence, we have

ν1 = κ1 = κ1κ10.

For i > 1, as per the topological ordering, νi is clearly obtained by multiplying
the number of arcs from q0 to the bpi qi and the number of simple paths from qi

to q0. That is,
νi = κiκi0

as desired. Now, we obtain the recursive formula for κi0. For 1 ≤ t < i, let µit be
the number of simple paths in A′ from the bpi qi to q0 that are passing through

the bpi qt but not through any other bpi qj with j > t. Clearly, κi0 =
i−1∑
t=1

µit. But,

for 1 ≤ t < i, the number µit is nothing else but the product of the number of arcs
from qi to qt and the number of simple paths from qt to q0, i.e. µit = κitκt0. Hence,
we have the recursive formula

κi0 =
i−1∑
t=1

κitκt0.

If A is deterministic, then by Theorem 1.1, we have

rk(L(A)) = |CA| =
m∑

i=1

κiκi0.

¤

Now, Theorem 2.10 of [6] is an immediate corollary as stated below. We will use
this corollary in one of our main results.

Corollary 2.14. If A = (Q, q0, q0, E) is an SFA with a unique bpi, then

rk(L(A)) ≤ κ1 = |E| − |Q|+ 1.

Moreover, if A is deterministic, then the equality holds.

Example 2.15. Let us consider the topological ordering

p2 4 p4 4 p3 4 p1

of the bpi’s of the SFA A given in Figure 1. That is, q1 = p2, q2 = p4, q3 = p3

and q4 = p1. Accordingly, κ1 = 1, κ2 = 1, κ3 = 2 and κ4 = 3. Also, κ41 = 1, κ42 =
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0, κ43 = 0, κ31 = 1, κ32 = 2 and κ21 = 1. Since A is deterministic, we have

rk(L(A)) = κ1 + κ2(κ21) + κ3(κ31 + κ32κ21) +
κ4(κ41 + κ42κ21 + κ43κ31 + κ43κ32κ21)

= 11.

2.2. Hanna Neumann Property. In this subsection, we obtain a sufficient con-
dition for HNP of two submonoids which are accepted by deterministic SFA with
a unique bpi. The following lemma is useful in obtaining the proposed result.

Lemma 2.16. Let A = (Q, q0, q0, E) be an SFA and m ≥ 1. If A has m bpi’s,
then

|E| − |Q|+ 1 ≥ rk(L(A))−
m∑

i=2


(κi − 1)(κi1 − 1) +

i−1∑

j=2

κij(κiκj0 − 1)


 .

Moreover, if A is deterministic, then the equality holds.

Proof. Since the number of transitions |E| of A is the total indegree (i.e. the sum
of indegrees of all the states) of the digraph of A, by Remark 2.10, we have

|E| = |Q| −m +
m∑

j=1


κj +

m∑

i=j+1

κij


 .

Consequently,

|E| − |Q|+ 1 = κ1 +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij

= κ1 +
m∑

i=2

κiκi0 +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij −
m∑

i=2

κiκi0.

Now, by Theorem 2.13 and simple algebraic manipulations, we have

|E| − |Q|+ 1

≥ rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij −
m∑

i=2

κiκi0

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij −
m∑

i=2

κi




i−1∑

j=1

κijκj0




= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij −
m∑

i=2

κi


κi1 +

i−1∑

j=2

κijκj0




= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

j=1

m∑

i=j+1

κij −
m∑

i=2

κiκi1 −
m∑

i=2

i−1∑

j=2

κiκijκj0

= rk(L(A)) +
m∑

j=2

(κj − 1) +
m∑

i=2

κi1 +
m∑

j=2

m∑

i=j+1

κij −
m∑

i=2

κiκi1 −
m∑

i=2

i−1∑

j=2

κiκijκj0
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= rk(L(A)) +
m∑

j=2

(κj − 1)−
m∑

i=2

κi1(κi − 1) +
m∑

j=2

m∑

i=j+1

κij −
m∑

i=2

i−1∑

j=2

κiκijκj0

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1) +
m∑

j=2

m∑

i=j+1

κij −
m∑

i=2

i−1∑

j=2

κiκijκj0

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1) +
m∑

j=2

m∑

i=2

κij −
m∑

i=2

m∑

j=2

κiκijκj0,

as κij = 0 for all j ≥ i > 1

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1)−
m∑

i=2

m∑

j=2

κij(κiκj0 − 1)

= rk(L(A))−
m∑

i=2

(κi − 1) (κi1 − 1)−
m∑

i=2

i−1∑

j=2

κij(κiκj0 − 1)

as κij = 0 for all j ≥ i > 1.

Thus,

|E| − |Q|+ 1 ≥ rk(L(A))−
m∑

i=2


(κi − 1)(κi1 − 1) +

i−1∑

j=2

κij(κiκj0 − 1)


 .

¤

Now, by Proposition 1.3, we have the following corollary.

Corollary 2.17. Let A be an alphabet of cardinality n and let A be a deterministic
SFA over A. For m ≥ 1, if A has m bpi’s, then

rk(L(A)) =
m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij(κiκj0 − 1)




+
n∑

t=2

|BPOt(A)|(t− 1) + 1.

Theorem 2.18. Let AH and AK be deterministic SFA over A each with a unique
bpi accepting submonoids H and K, respectively. For m ≥ 1, if the automaton
(AH ×AK)T is an SFA with m bpi’s, say q1, q2, . . . , qm considered in a topological
ordering, then

r̃k(H ∩K) ≤
m∑

i=2


(κi − 1)(κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)


 + r̃k(H)r̃k(K),

where κi is the number of arcs from the initial-final state to qi and κij is the number
of arcs from qi to qj in the BPR of (AH ×AK)T .
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Proof. Let A be an alphabet of cardinality n. For m ≥ 1, note that

r̃k(H ∩K) = rk(L(AH ×AK))− 1

=
m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)




+
n∑

t=2

|BPOt(AH ×AK)|(t− 1) by Corollary 2.17

≤
m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)




+
n∑

t=2

(t− 1)


 ∑

t≤r,s≤n

crds


 by Proposition 1.4,

where cr = |BPOr(AH)| and ds = |BPOs(AK)|. Further, by Proposition 1.5, we
have

r̃k(H ∩K) ≤
m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)




+

(
n∑

i=2

(i− 1)ci

)


n∑

j=2

(j − 1)dj




=
m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)


 + r̃k(H)r̃k(K)

by Corollary 2.14 and Proposition 1.3.

Hence the result. ¤

We now state a sufficient condition for Hanna Neumann property of the sub-
monoids under consideration.

Corollary 2.19. In addition to the hypothesis of Theorem 2.18, if there is no path
between any two bpi’s qi and qj, for i, j > 1, except those are passing through q1 and
there is a unique simple path from each bpi to q1 in the automaton (AH × AK)T ,
then

r̃k(H ∩K) ≤ r̃k(H)r̃k(K).

Proof. For i, j > 1, if there is no path between the bpi’s qi and qj except those are
passing through q1, then κij = 0. Further, for i ≥ 2, if there is a unique simple path
from each bpi qi to q1, then the path cannot pass through any other bpi. Thus, we
have κi1 = 1 so that

m∑

i=2


(κi − 1) (κi1 − 1) +

i−1∑

j=2

κij (κiκj0 − 1)


 = 0.

Hence, by Theorem 2.18, r̃k(H ∩K) ≤ r̃k(H)r̃k(K). ¤
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3. Some Examples

In this section, we first illustrate the sufficient condition given in Corollary 2.19
with Example 3.1. Further, through Example 3.2, we observe that the condition is
not necessary for the HNP. At last, in Example 3.3, we also provide some nonde-
terministic SFA whose languages (submonoids) satisfy HNP.

Example 3.1. Consider the deterministic SFA AH1 and AK1 , each with unique
bpi, given in Figure 3. Note that AH1 and AK1 , respectively, accept the sub-
monoids H1 = {ab, bc, acc, baa}∗ and K1 = {c, ac, abb, bca, bcb}∗ over the free
monoid {a, b, c}∗. Clearly, rk(H1) = 4 and rk(K1) = 5. The (trim part of) prod-
uct automaton (AH1 × AK1)

T is shown in Figure 4. Clearly, (AH1 × AK1)
T is

a deterministic SFA with three bpi’s, viz. (p0, p
′
0), (p2, p

′
0) and (p3, p

′
0). Since the

initial-final state (p0, p
′
0) of (AH1×AK1)

T is a bpi, it is the first bpi in any topolog-
ical ordering of the bpi’s of (AH1 ×AK1)

T . Observe that there is a unique simple
path from each of the other two bpi’s to (p0, p

′
0) and there is no path between the

bpi’s (p2, p
′
0) and (p3, p

′
0), except those are passing through (p0, p

′
0). Further, note

that rk(H1 ∩K1) = 4 and the submonoids H1 and K1 satisfy HNP, i.e.

r̃k(H1 ∩K1) ≤ r̃k(H1)r̃k(K1).
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AA
AA
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c
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Figure 3. AH1 (in the left) and AK1 (in the right) of Example 3.1
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′
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c
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′
3)

b //
º¹ ¸·³´ µ¶(p2, p

′
0)

c
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c
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Figure 4. (AH1 ×AK1)
T of Example 3.1
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Example 3.2. Consider the deterministic SFAAH2 andAK2 , each with unique bpi,
given in Figure 5. Note that AH2 and AK2 , respectively, accept the submonoids
H2 = {a, bb, bab}∗ and K2 = {b, ab, aaa}∗ over the free monoid {a, b}∗. Clearly,
rk(H2) = 3 = rk(K2). The (trim part of) product automaton (AH2 × AK2)

T

is shown in Figure 6. Clearly, (AH2 × AK2)
T is a deterministic SFA with two

bpi’s, viz. (p0, p
′
0) and (p1, p

′
0). Note that rk(H2 ∩ K2) = 5 so that H2 and K2

satisfy HNP. However, observe that there are two paths from (p1, p
′
0) to (p0, p

′
0).

Hence, the condition given in Corollary 2.19 is not necessary for the HNP of two
submonoids of a free monoid.
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b

²²

a
®®

?>=<89:;p1

a

²²

b

>>

?>=<89:;p2

b

]]

GFED@ABC?>=<89:;p′0

a

²²

b
©©

GFED@ABCp′1

a

²²

b

??

GFED@ABCp′2

a

\\

Figure 5. AH2 (in the left) and AK2 (in the right) of Example 3.2

º¹ ¸·³´ µ¶(p0, p
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b
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′
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a
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′
0)

a

99ttttttttt

b
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º¹ ¸·³´ µ¶(p1, p
′
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bnn

a //
º¹ ¸·³´ µ¶(p2, p

′
1)

b

UU

Figure 6. (AH2 ×AK2)
T of Example 3.2

Example 3.3. Consider the nondeterministic SFA AH3 and AK3 , each with unique
bpi, given in Figure 7. Note that AH3 and AK3 , respectively, accept the sub-
monoids H3 = {ab, aba, ba}∗ and K3 = {a, bb, bab, bbb}∗ over the free monoid
{a, b}∗. Clearly, rk(H3) = 3 and rk(K3) = 4. The (trim part of) product au-
tomaton (AH3 × AK3)

T is shown in Figure 8. Clearly, (AH3 × AK3)
T is a non-

deterministic SFA with three bpi’s, viz. (p0, p
′
0), (p0, p

′
2) and (p2, p

′
0). Note that

rk(H3 ∩K3) = 4 and the submonoids H3 and K3 satisfy HNP.
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Figure 7. AH3 (in the left) and AK3 (in the right) of Example 3.3
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Figure 8. (AH3 ×AK3)
T of Example 3.3

4. Conclusion

This work considers the intersection problem of two submonoids of a free monoid
which are generated by finite prefix sets. In particular, this work has obtained
a sufficient condition for Hanna Neumann property for the class of submonoids
generated by finite prefix sets. In that connection, a general rank for the submonoids
which are accepted by semi-flower automata is also obtained. Thus, this work
addresses one of the problems, viz. the prefix case, posed by Giambruno and Restivo
in the conclusions of the paper [6]. However, there is a lot more to investigate on
the general problem concerning the intersection of two arbitrary submonoids of a
free monoid. For instance, even in the prefix case, one could investigate on the
necessary and sufficient conditions for Hanna Neumann property. On the other
hand, the intersection problem of two submonoids generated by finite non-prefix
sets of words is of particular interest. To study this problem, the rank formula
that is proposed for nondeterministic automata and the relevant techniques may
be useful.
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