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Abstract

This work aims at further investigations on the work of Giambruno and
Restivo [5] to find the rank of the intersection of two finitely generated sub-
monoids of a free monoid. In this connection, we obtain the rank of a finitely
generated submonoid of a free monoid that is accepted by semi-flower au-
tomaton with two bpi’s. Further, when the product automaton of two de-
terministic semi-flower automata with a unique bpi is semi-flower with two
bpi’s, we obtain a sufficient condition on the product automaton in order to
satisfy the Hanna Neumann property.
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1. Introduction

In [6], Howson obtained an upper bound for the rank of intersection of two finitely
generated subgroups of a free group in terms of the individual ranks of subgroups.
Thus, it is known that the intersection of two finitely generated subgroups of a free
group is finitely generated. In 1956, Hanna Neumann proved that if H and K are
finite rank subgroups of a free group, then

rk(H N K) < 2rk(H)rk(K),



where ;E(N) = max(0,7k(N) — 1) for a subgroup N of rank rk(N). This is an
improvement on Howson’s bound. Further, Neumann conjectured that

rk(H N K) < rk(H)rk(K), ()

which is known as Hanna Neumann conjecture [10]. In 1990, Walter Neumann
proposed a stronger form of the conjecture called strengthened Hanna Neumann
conjecture (SHNC) [11]. Meakin and Weil proved SHNC for the class of positively
generated subgroups of a free group [7]. The conjecture has recently been settled
by Mineyev (cf. [8; 9]) and announced independently by Friedman (cf. [2; 3]).

In contrast, it is not true that the intersection of two finitely generated sub-
monoids of a free monoid is finitely generated. Since Tilson’s work [12] in 1972,
through the work of Giambruno and Restivo [5] in 2008, there are several contribu-
tions in the literature on the topic. Using automata-theoretic approach, Giambruno
and Restivo have investigated an upper bound for the rank of the intersection of
two submonoids of special type in a free monoid. In fact, for the special case,
they have proved the Hanna Neumann property. Two submonoids H and K are
said to satisfy Hanna Neumann property (in short, HNP), if H and K satisfy the
inequality ().

This work extends the work of Giambruno and Restivo [5] to another special
class of submonoids. Here, we find the rank of a finitely generated submonoid of
a free monoid that is accepted by semi-flower automaton with two bpi’s. Further,
we obtain a condition to extend HNP for the submonoids of a free monoid which
satisfy the following condition C.

Two submonoids of a free monoid are said to satisfy the condition C,
if they are accepted by deterministic semi-flower automata, each with
a unique bpi and their product automaton is semi-flower with two
bpi’s.

Rest of the paper is organized as follows. In Section 2, we present some pre-
liminary concepts and results that are used in this work. Section 3 is dedicated to
present the main results of the paper. We conclude the paper in Section 4.

2. Preliminaries

In this section, we present some background material from [1; 4; 5]. We try to
confine to the terminology and notations given there so that one may refer to
[1; 4; 5] for those notions that are not presented here, if any.

Let A be a finite set called an alphabet with its elements as letters. The free
monoid over A is denoted by A* and e denotes the empty word — the identity
element of A*. It is known that every submonoid of A* is generated by a unique
minimal set of generators. Thus, the rank of a submonoid H, denoted by rk(H),
of A* is defined as the cardinality of the minimal set of generators X of H, i.e.



rk(H) = |X|. Further, the reduced rank of a submonoid H of A* is defined as
max(0,rk(H) — 1) and it is denoted by ;‘%(H)

An automaton A over an alphabet A is a quadruple (Q,I,T,F), where Q is a
finite set called the set of states, I and T are subsets of () called the sets of initial
and final states, respectively, and F C Q x A x @ called the set of transitions.
Clearly, by denoting the states as vertices/nodes and the transitions as labeled
arcs, an automaton can be represented by a digraph in which initial and final
states shall be distinguished appropriately.

A path in A is a finite sequence of consecutive arcs in its digraph. For ¢; € Q
(0<i<k)anda; € A(1<j<k),let

al as as ag—1 ag
qgo —q1 —q2 — - — (-1 — 4k

be a path P in an automaton A that is starting at ¢p and ending at gx. In this
case, we write i(P) = qo and f(P) = qx. The word a; - - - ax, € A* is the label of the
path P. For each state ¢ € @, the null path is a path from ¢ to ¢ labeled by e.

A path in A is called simple if all the states on the path are distinct. A path
that starts and ends at the same state is called as a cycle, if it is not a null path.
A cycle with all its intermediate states are distinct is called a simple cycle. A cycle
that starts and ends in a state ¢ is called simple in ¢, if no intermediate state is
equal to ¢. Other notions related to paths, viz. subpath, prefix and suffix, can be
interpreted with their literal meaning or one may refer to [5].

Let A be an automaton. The language accepted/recognized by A, denoted by
L(A), is the set of words that are labels of paths from an initial state to a final
state. A state ¢ € @ is accessible (respectively, coaccessible) if there is a path from
an initial state to ¢ (respectively, a path from ¢ to a final state). An automaton
is called trim if all the states of the automaton are accessible and coaccessible.
An automaton A = (Q, I, T, F) is deterministic if it has a unique initial state, i.e.
|I] = 1, and there is at most one transition defined for a state and a letter.

An automaton is called a semi-flower automaton if it is trim with a unique
initial state that is equal to a unique final state such that all the cycles visit the
unique initial-final state.

If an automaton A = (@, I, T, F) is semi-flower, we denote the initial-final state
by 1. In which case, we simply write A = (@, 1,1, F). Further, let us denote by
C 4 the set of cycles that are simple in 1 and by Y4 the set of their labels.

Now, in the following we state the correspondence between semi-flower au-
tomata and finitely generated submonoids of a free monoid.

Theorem 2.1 ([5]). If A is a semi-flower automaton over an alphabet A, then Y4
is finite and A recognizes the submonoid generated by Y4 in A*. Moreover, if A is
deterministic, then Y 4 is the minimal set of generators of the submonoid recognized

by A.

In addition to the above result, given a finitely generated submonoid H of
the free monoid A*, one can easily construct a semi-flower automaton A such that
L(A) = H. Here, to construct A, one may choose a initial-final state and connect a



petal to the initial-final state that corresponds to each word of a (finite) generating
set of H.

With this basic information, we now present the two results of Giambruno and
Restivo which will be generalized/extended in the present paper.

Theorem 2.2 ([5]). If A= (Q,1,1,F) is a semi-flower automaton with a unique
bpi, then
rk(L(A)) < |F| —|Q| + 1.

Moreover, if A is deterministic, then
rk(L(A)) = |F| - Q] + 1.

Here, a state ¢ of an automaton is called a branch point going in, in short bpi,
if the indegree of ¢ (i.e. the number of arcs coming into ¢) is at least 2.

Theorem 2.3 ([5]). If H and K are the submonoids accepted by deterministic
semi-flower automata Ay and Ak, respectively, each with a unique bpi such that
Ap X Ak is a semi-flower automaton with a unique bpi, then

rk(H N K) < rk(H)rk(K).

Here, for automata A = (Q,1,1,F) and A" = (Q',1’,1',F’) both over an
alphabet A, A x A’ is the product automaton (Q x @', (1,1),(1,1"),F) over the
alphabet A such that

((p,7),a,(q,q)) € F <= (p,a,q) € F and (p',a,q') € F'

forall p,q e Q, p',¢ € Q" and a € A.

Notice that if A and A’ are deterministic then so is A x A’. But if A and A’
are trim, then A x A’ need not be trim. However, by considering only those states
which are accessible and coaccessible, we can make the product automaton A x A’
trim. This process does not alter the language accepted by A x A’. In fact, we
have

L(Ax A =L(A) NLA).
Hence, if we state a product automaton A x A’ is semi-flower, we assume that the
trim part of A x A’, without any further explanation.

In the hypothesis of Theorem 2.3, if the product automaton has more than one
bpi, then it is not true that H and K satisfy HNP. This has been shown through
certain examples in [4; 5]. In the present work, first we observe that HNP fails if
the product automaton has two bpi’s. We demonstrate this in Example 3.7. Then
we proceed to investigate on the conditions to achieve HNP in case the product
automaton has two bpi’s.

We would require the following supplementary results from [5] in our main
results. Instead of reworking the details, we simply state in the required form. In
these results, let the automata be over an alphabet A of cardinality n; and for an
automaton A = (Q,I,T,F) and i > 0

BPO,(A) = {q € Q | out degree of g = i}.



Proposition 2.4. If A = (Q,1,1,F) is a deterministic semi-flower automaton
over A, then

|FI—1Ql =Y |BPO;(A)|(i —1).
1=2

Proposition 2.5. Let Ay and As be two deterministic automata over A. If ¢; =
|BPO;(A1)| and d; = |BPO;(Ag)|, for each i =1,...,n, then

|BPO(Ay x Ao)| < > ends.

t<r,s<n

Proposition 2.6. Let {(c1,...,¢,) and {dy,...,d,) be two finite sequences of nat-
ural numbers; then

St-1( > e Y d] < (Z(i—l)q) > G- 1)d;

t=2 t<r<n t<s<n =2 j=2

3. Main Results

In this section we present two results. First we obtain the rank of a finitely gener-
ated submonoid of a free monoid, if it is accepted by a semi-flower automaton with
two bpi’s. This generalizes the result of Giambruno and Restivo for semi-flower
automata with a unique bpi. Then we proceed to obtain HNP for the submonoids
of a free monoid that satisfy the condition C.

We begin with introducing a concise notation for a semi-flower automaton in
which only the initial-final state, bpi’s and the respective paths between them will
be represented along with their labels. We call this as bpi’s and paths representation,jj
in short BPR, of an automaton. For example, the BPR of the semi-flower automa-
ton given in Figure 1 is shown in Figure 2.

The following lemma is useful for obtaining the rank of a semi-flower automaton
with two bpi’s.

Lemma 3.1. If A is a semi-flower automaton with two bpi’s, say p and q such
that the distance from q to the 1 is not more than that of p, then

(i) there is a unique simple path from q to 1, and
(ii) every cycle in A wisits q.
Proof.

(i) If ¢ = 1, then we are done. If not, by the choice of ¢, the initial-final state
1 is not a bpi. Moreover, since q is coaccessible, there is a path from ¢ to
1. Now suppose there are two different simple paths P; and P, with labels
u and v, respectively, from ¢ to 1. Note that P, and P, are not one suffix of
the other. Let w be the label of longest suffix path P’ which is in common



Figure 1: A semi-flower automaton

Figure 2: BPR of the semi-flower automaton given in Figure 1



between the paths P; and P;. As 1 is not a bpi, w # €. But then i(P’) will
be a bpi different from ¢. This a contradiction to the choice of ¢. Thus, there
is a unique simple path from ¢ to 1.

(ii) Since every cycle in A passes through 1, if ¢ = 1, then we are done. If not, 1 is
not a bpi. Now suppose there is a cycle that is not visiting q. Then the cycle
contributes one to the indegree of the state 1. Also, from above (i), there is
a path from ¢ to 1. This implies that the state 1 is a bpi; a contradiction.

O

Since every cycle that visits p also visits ¢, it follows that

Corollary 3.2. If p and q are distinguishable, the distance from p to 1 is more
than that of q.

Notation 3.3. In what follows, if a semi-flower automaton has two bpi’s, say p
and ¢, then we consider that the distance from ¢ to 1 is not more than that of p.
Moreover, we assume that the indegree of p is m and the indegree of ¢ is (I + k),
where k is the number of edges ending at ¢ that are not in any of the paths from
p to q. With this information, the BPR of such an automaton will be as shown in
Figure 3.

Figure 3: BPR of a semi-flower automaton with two bpi’s

Now we are ready to present our first result of the paper.
Theorem 3.4. If A is a semi-flower automaton with two bpi’s p and q, then
rk(L(A)) <ml+k.
Moreover, if A is deterministic, then

rk(L(A)) = ml + k.



Proof. As the number of simple cycles passing through the initial-final state 1 (i.e.
in C 4) gives us an upper bound for the rank rk(L(A)), we count these cycles using
indegree of p and ¢q. The number of cycles in C 4 that are passing through ¢ but not
p is k. Also, as each path entering the state p will split into [ number of paths and
enter in the state ¢, we have ml number of cycles in C' 4 that are passing through p.
Thus, the total number of cycles in C4 is ml+ k. Hence, as L(.A) is the submonoid
generated by Y4, we have

rk(L(A)) <|Ya| = |Ca| =ml+ k.
If A is deterministic, then by Theorem 2.1, we have
rk(L(A)) =ml+k.
O

In a semi-flower automaton with two indistinguishable bpi’s, i.e. with a unique
bpi, we have the following corollary.

Corollary 3.5. Theorem 2.2 follows.

Proof. In the hypothesis of Theorem 3.4, if p = ¢ (i.e. p and ¢ are indistinguish-
able), then A has a unique bpi. In which case, [ = 0 and consequently, rk(L(A)) is
less than or equal to the indegree k of the unique bpi. And in case A is determin-
istic, 7k(L(A)) = k. Now the number of transitions |F| in A can be counted by
the number of arcs entering all the states of A. As A is trim, every state of A has
an arc into it. Further, since 4 has a unique bpi, except the bpi, all other states
have indegree one. Thus, we have

so that
rk(L(A)) < |F|—1Q+ 1.
Moreover, if A is deterministic, then the equality holds. O

Remark 3.6. Theorem 3.4 generalizes Theorem 2.2.

Before proceeding to our second result, it is appropriate to note the following
example.

Example 3.7. Consider the submonoids H = {aa, aba, ba, bb}* and K = {a, bab}*
of the free monoid {a,b}*. We give the automata Ay and Ag which accept H and
K, respectively, in Figure 4. Note that Ay and Ak are deterministic semi-flower
automata, each with unique bpi. The (trim form of) product automaton Ay x Ax
is shown in Figure 5. Clearly, Ay x Ak is semi-flower with two bpi’s, viz. (1,1’)
and (1,3’) and hence rk(H N K) = 5. Whereas, rk(H) = 4 and rk(K) = 2. Thus,
H and K do not satisfy HNP, i.e.

rk(H N K) > rk(H)rk(K).
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Figure 4: Ag (in the left) and Ak (in the right) of Example 3.7

Figure 5: Ay x Ak of Example 3.7

The following lemma is useful in proving our second result of the paper.

Lemma 3.8. If A= (Q,1,1,F) is a semi-flower autormaton with two bpi’s p and
q, then
rk(L(A)) = (m = 1)(I = 1) < |[F| - [Q + 1.

Moreover, if A is deterministic, then the equality holds.

Proof. Since the number of transitions |F| of A is the total indegree (i.e. the sum
of indegrees of all the states) of the digraph of A, we have

|Fl=m+1+k+[Q]—2.

Consequently,
IF| - 1Ql+1 = m+l+k—1
= |F|-1Q|+1 = (ml+k)—(ml—m—1+1)
= |F|-|Q+1 = (ml+k)—(m-1(1-1).
Hence, by Theorem 3.4, |F| —|Q| + 1 > rk(L(A)) — (m — 1)(1 = 1). O



Now, by Proposition 2.4, we have the following corollary.

Corollary 3.9. If A is a deterministic semi-flower automaton with two bpi’s p
and q, then rk(L(A)) = (m — 1)(1 = 1) + Y_ [BPO,(A)|(t — 1) + 1.
t=2

Theorem 3.10. If H and K are the submonoids accepted by deterministic semi-
flower automata Ay and Ak, respectively, each with a unique bpi such that the
product automaton Ag X Ax is semi-flower with two bpi’s p and q, then

rk(H N K) < rk(H)rk(K) + (m — 1)(1 — 1).

Proof. Note that

rk(HNK) = rk(L(Ag x Ag)) —1

= m-1)01-1)+ Z |BPOy(Apn x Ak )|(t — 1) by Corollary 3.9
t=2

IN

(m-1)(1-1)+ Z(t -1) Z ¢rds | by Proposition 2.5,
t=2

t<r,s<n

where ¢, = |BPO,.(Ag)| and ds = |BPO4(Ak)|. Consequently, by Proposition 2.6

A

rk(HNK) < (m—-1)(1—-1)+ (Z(i - 1)ci> > (- 1)d;

i=2 j=2

= (m—1)(—1)+rk(H)rk(K) by Theorem 2.2 and Proposition 2.4.
Hence the result. O

Corollary 3.11. In addition to the hypothesis of Theorem 3.10, if there is a unique
path from p to q in Ag X Ak, then

rk(H N K) < rk(H)rk(K).

4. Conclusion

In this work we have obtained the rank of a finitely generated submonoid of a
free monoid that is accepted by a semi-flower automaton with two bpi’s. This
generalizes the rank result (cf. Theorem 2.2) for semi-flower automata with unique
bpi by Giambruno and Restivo [5]. In fact, the present proof of Theorem 2.2 is
shorter and elegant than that of the original proof by Giambruno and Restivo. In
[5], Giambruno and Restivo obtained HNP for submonoids of a free monoid that
are accepted by deterministic semi-flower automata, each with a unique bpi such
that their product automaton is semi-flower with a unique bpi. Further, by keeping

10



the former automata as they are, if the latter automaton has more than one bpi,
they provided examples which fail to satisfy HNP. In the present work, we give an
example which fails to satisfy HNP when the product automaton has two bpi’s.
In case the product automaton has two bpi’s, we reported a sufficient condition to
obtain HNP. The techniques introduced in this work shall give a scope to one in
extending our work to a general scenario.
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