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Abstract. This work observes that S-semigroups are essentially the representations

of near-semirings to proceed to establish categorical representation of near-semirings.

Further, this work addresses some approximations to find a suitable category in which

a given near-semiring is primitive.
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1. Introduction

An algebraic structure (S, +, ·) is said to be a near-semiring if

1. (S, +) is semigroup with identity 0,

2. (S, ·) is semigroup,

3. (x + y)z = xz + yz for all x, y, z ∈ S, and

4. 0x = 0 for all x ∈ S.

The standard examples of near-semirings are typically of the form M(Γ), the
set of all mappings on a semigroup (Γ,+) with identity zero, with respect to
pointwise addition and composition of mappings, and certain subsets of this set.
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Two important subsets of M(Γ) are the set of constant mappings, and the set
of mappings which fix zero. In fact, these two sets are subnear-semirings of
M(Γ) in the usual sense. In an arbitrary near-semiring S, these substructures
can be defined as constant part Sc = {s ∈ S | s0 = s} and zero-symmetric part
S0 = {s ∈ S | s0 = 0}. A near-semiring S is said to be a zero-symmetric near-
semiring∗ (constant near-semiring) if S = S0 (S = Sc, respectively). Another
example of near-semiring that generalizes M(Γ) is: let Σ ⊆ End(Γ), the set of
endomorphisms on Γ, and define

MΣ(Γ) = {f : Γ → Γ | fα = αf,∀α ∈ Σ}.

Then MΣ(Γ) is a near-semiring. Indeed, M(Γ) = M{idΓ}(Γ).
A semigroup (Γ,+) with zero o is said to be an S-semigroup if there exists a

composition (x, γ) 7→ xγ of S × Γ −→ Γ such that

1. (x + y)γ = xγ + yγ,

2. (xy)γ = x(yγ), and

3. 0γ = o, for all x, y ∈ S, γ ∈ Γ.

It is clear that Γ is an S-semigroup with S = M(Γ). Also, the semigroup
(S, +) of a near-semiring (S, +, ·) is an S-semigroup.

For further details on near-semirings or S-semigroups one may refer [6, 8,
10, 11]. In what follows S always denotes a near-semiring, and an additive
semigroup with zero is simply referred as semigroup.

In this work we first observe that the notion of S-semigroup gives an algebraic
representation of near-semirings which further helps us to establish a categorical
representation. This enables one to make use of the special properties of the
near-semirings, and provides a practical approach to the problem of classifying
certain classes of near-semirings. We also made an attempt to approximate
categories in which a given arbitrary near-semiring is primitive, as an extension
of the work of Holcombe [3] and that of Clay [2] for near-rings.

2. Representations

Let Γ,Γ′ be two S-semigroups. A mapping f : Γ −→ Γ′ is said to be an S-
homomorphism if

f(x + y) = f(x) + f(y); f(ax) = af(x)

for all a ∈ S and all x, y ∈ Γ. Near-semiring homomorphism can be defined in
usual way.

∗In the literature, zero-symmetric near-semirings are often referred as seminearrings [4, 6,
7, 10].
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Following Jacobson [5], we define a representation of a near-semiring S as a
homomorphism of S into the near-semiring of mappings of some semigroup with
zero.

Let us recall the following embedding theorem from [4] before going to ob-
serve that S-semigroups are precisely the representations of near-semirings.

Embedding Theorem. For every near-semiring S there exists a semigroup
Γ, such that S can be embedded in M(Γ).

From this theorem one can ascertain that every near-semiring can be embed-
ded into a near-semiring with unity.

Let a 7→ ā be a representation of S that acts on a semigroup Γ. Define a
composition from S × Γ to Γ by ax = ā(x), for x ∈ Γ and a ∈ S, so that Γ is an
S-semigroup. Hence, every representation of a near-semiring S determines an
S-semigroup.

On the other hand, every S-semigroup Γ determines a representation of the
near-semiring S. Indeed, for a ∈ S, define a mapping aS on Γ by aS(x) = ax
for all x ∈ Γ. Then τ : S −→ M(Γ) given by τ(a) = aS is a near-semiring
homomorphism. Hence τ is a representation of S.

This discussion can be summarized as follows.

Theorem 2.1. The concepts of S-semigroup and representation of a near-
semiring S are equivalent.

In the following we obtain a representation of near-semirings in a more general
way using the theory of categories. Let C be a category; write X ∈ C to indicate
that X is an object of C . For any X, Y ∈ C , the set of morphisms in C from
X to Y is written as [X, Y ]C . The category of sets and mappings is denoted
by S ; S denotes the category of semigroups and their homomorphisms. The
category of S-semigroups and S-homomorphisms for a fixed near-semiring S will
be denoted by SS . The contravariant representable functor hX : C −→ S is
given by hX(Y ) = [Y, X]C , hX(u) = vu for any v : Z −→ X, where u : Y −→ Z.
The forgetful functor from S to S will be denoted by ρ : S −→ S , and it is
ρ̄ : SS −→ S . For other terminology and fundamental concepts of category
theory that are used in the rest of the paper, one may refer [1, 9].

An object X ∈ C is said to be a semigroup object in C if and only if there
exists a functor σ : C −→ S such that the following functor diagram commutes.

C
hX //

σ
ÂÂ?

??
??

??
? S

S

ρ

??~~~~~~~~

It is more practical to deal with morphisms rather than functors in some
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circumstances. For that purpose, Lemma 2.2 is formulated in the similar lines
of a theorem for group objects (cf. Theorem 4.1 of [1]).

Lemma 2.2. Let C be a category with finite products and a final object e, and let
X ∈ C . Let η be the unique element of [X, e]C . X is a semigroup object in C if
and only if there exist morphisms m ∈ [X ×X, X]C , and ε ∈ [e,X]C such that
the diagrams

X ×X ×X

1X×m

²²

m×1X// X ×X

m

²²

X ×X
(εη)×1X// X ×X

m

²²
X ×X m

// X X

∆

OO

1X // X

are commutative, where ∆ is the ‘diagonal’ morphism.

Theorem 2.3. Let (X, σ) be a semigroup object in C , a category with finite
products and a final object. Then [X, X]C is a near-semiring, say S, and for
any Y ∈ C , [Y, X]C is an S-semigroup.

Proof. Let S = [X, X]C and a, b ∈ S. By Lemma 2.2, there is a semigroup
structure (S, +) defined by a+b = m{a, b}, where {a, b} is the unique morphism
making the following diagram (1) commutative with p1, p2 : X × X −→ X
canonical projections, and m is obtained as in Lemma 2.2.

X X ×X
p1oo p2 // X X X ×X

p1oo p2 // X

X

{a,b}
OO

b

<<xxxxxxxxx
a

ccFFFFFFFFF
−(1) X

{a,b}
OO

b

<<xxxxxxxxx
a

ccFFFFFFFFF
−(2)

X

c

OO bc

EE­­­­­­­­­­­­­­­­

ac

YY4444444444444444

Clearly, S is a semigroup under the composition of morphisms in C . Right
distributivity follows from the commutative diagram (2), so that S is a near-
semiring.

Again, since (X, σ) is a semigroup object in C , for any Y ∈ C , Γ = [Y, X]C
is a semigroup, where addition + on Γ is given by α + β = m{α, β} for α, β ∈ Γ
and {α, β} is the unique morphism, such that the following diagram commutes.

X X ×X
p1oo p2 // X

Y

{α,β}
OO

β

;;wwwwwwwww
α

ccGGGGGGGGG
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Define an action from S × Γ to Γ by (a, α) 7→ aα, for a ∈ S and α ∈ Γ. By a
similar argument to the first part of this proof we see that

(a + b)α = aα + bα, and (ab)α = a(bα)

for all a, b ∈ S and α ∈ Γ, so that Γ is an S-semigroup.

Given the situation of Theorem 2.3, we call [X, X]C the endomorphism near-
semiring of X in C .

Remark 2.4. Let (X, σ) be a semigroup object in a category C with finite prod-
ucts and final object. If S = [X, X]C then there is a contravariant functor
µX : C −→ SS , such that the following diagram commutes,

C
hX //

µX ÃÃA
AA

AA
AA

S

SS

ρ̄

>>}}}}}}}}

where ρ̄ is the forgetful functor from SS to S .

Example 2.5. In the category of sets and mappings S , semigroup objects are
just semigroups. Then the endomorphism near-semiring of a semigroup Γ in C
is the set of all mappings of Γ into itself.

Example 2.6. In the category S ∗ of pointed sets, let us consider the zero of semi-
group objects Γ∗ as distinguished element. The endomorphism near-semiring of
Γ∗ is the set of zero-preserving maps of Γ∗ into itself. This near-semiring is
zero-symmetric.

Example 2.7. Let Σ be a semigroup. The category SΣ, of Σ-sets, has objects
as pairs (X, m), where X is a set and m : Σ × X −→ X is a mapping with
the property that m(αβ, x) = m(α, m(β, x)) for all x ∈ X and α, β ∈ Σ. A
morphism f : (X1,m1) −→ (X2,m2) is a mapping f : X1 −→ X2, such that the
following diagram commutes.

Σ×X1

1Σ×f

²²

m1
// X1

f

²²
Σ×X2 m2

// X2

The endomorphism near-semiring of X, a semigroup object in SΣ, is the set of
mappings f of X into itself, such that f(m(α, x)) = m(α, f(x)) for all x ∈ X
and α ∈ Σ. This example generalizes near-semirings of the form MΣ(X) and
S-semigroups.
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Example 2.8. Let C1, C2 be two categories with C2 a subcategory of C1. The
category 〈C1,C2〉 is defined to have objects f : B −→ A, where B ∈ C2, A ∈ C1

and f ∈ [B,A]C1 . A morphism from f : B −→ A to g : C −→ D is a pair (a, b)
such that bf = ga, where a ∈ [B,C]C2 , b ∈ [A,D]C1 , i.e. a morphism from f to
g can be given by a commutative diagram as below.

B
a //

f

²²

C

g

²²
A

b // D

Further, let C3 be a subcategory of C1 and define 〈C1,C2,C3〉 to have objects
(f, f ′), where f : B −→ A, f ′ : C −→ A and A ∈ C1, B ∈ C2, C ∈ C3,
f ∈ [B,A]C1 , f ′ ∈ [C, A]C1 ; and morphisms from (f, f ′) to (g, g′) are the com-
mutative diagrams,

B
f //

²²

A

²²

C

²²

f ′oo

B1
g // A1 C1

g′oo

where A1 ∈ C1, B1 ∈ C2, C1 ∈ C3, g ∈ [B1, A1]C1 , g′ ∈ [C1, A1]C1 . A natural
extension of these ideas give a category 〈C1,C2, . . . ,Ck〉, where Cj is a subcate-
gory of C1 for j = 2, 3, . . . , k. In a more general case, suppose F : C −→ C ′ is
an embedding functor, we can construct the category 〈C ′, F (C )〉.

As an example of the construction, let Σ be a semigroup and Σ′ be a subsemi-
group of Σ. There exists an embedding F : S ∗

Σ −→ S ∗
Σ′ , where S ∗

Σ (and S ∗
Σ′)

is pointed Σ-sets (Σ′-sets respectively). Let X be a semigroup object of S ∗
Σ′ and

Y a subsemigroup of X which is also a semigroup object of S ∗
Σ. Then the endo-

morphism near-semiring of (F (Y ) ⊆ X) is the set of all mappings f : X −→ X,
such that f(Y ) ⊆ Y , f(m(α′, x)) = m(α′, f(x)), f(m(α, y)) = m(α, f(y)) for
all x ∈ X, y ∈ Y, α′ ∈ Σ′, and α ∈ Σ. These near-semirings are examples of an
important class of near-semirings which deserves study in its own right.

Several other examples come in the same line. So far it is observed how
the near-semirings arise in essentially the same way as endomorphism sets of
semigroup objects in particular categories.

Let S be a near-semiring and C be a category with finite products. An object
X is said to be an S-semigroup object in C if and only if there exist

1. a functor σ such that (X, σ) is a semigroup object in C , and

2. a near-semiring homomorphism τ : S −→ [X, X]C .

In this case, (X, σ, τ) denotes an S-semigroup object in C . An S-semigroup
object (X, σ, τ) is said to be faithful in C if and only if τ is one-one.

If C is the category of sets and mappings then a semigroup object in C is
simply a semigroup and the concept of an S-semigroup in C coincides with the
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natural definition of an S-semigroup. Therefore, S-semigroups are special cases
of the concept of S-semigroups in a category C .

Theorem 2.9. Let S be a near-semiring and let C be a category with finite
products and final object. Then for X ∈ C , X is an S-semigroup object in C
if and only if there exists a contravariant functor λ : C −→ SS such that the
following diagram

C
hX //

λ ÃÃA
AA

AA
AA

S

SS

ρ̄

>>}}}}}}}}

is commutative, where ρ̄ : SS −→ S is the forgetful functor.

Proof. Suppose (X, σ, τ) is an S-semigroup object in C . Let Y ∈ C , and write
Γ = [Y, X]C . Consider the structure of an S-semigroup to Γ as follows: define
s · γ = τ(s)γ for γ ∈ Γ, s ∈ S. Thus there exists a functor λ : C −→ SS , such
that λ(Y ) is the S-semigroup Γ = [Y, X]C .

Conversely, suppose λ exists, and that ρ∗ : SS −→ S and ρ : S −→ S are
forgetful functors. Then (X, ρ∗ ◦λ) is a semigroup object in C . A near-semiring
homomorphism τ : S −→ [X, X]C is defined as follows. Since λ(Y ) is an S-
semigroup, one may construct a near-semiring homomorphism

τ̄ : S −→ [hX(Y ), hX(Y )]S

for any Y ∈ C . For each s ∈ S, the homomorphism τ̄(s) induces a natural
transformation Ts : hX −→ hX . As a consequence of Yoneda lemma, one may
find a unique morphism gs ∈ [X, X]C in natural correspondence with Ts. Now
define τ : S −→ [X, X]C by τ(s) = gs for all s ∈ S. This gives the required
near-semiring homomorphism.

Remark 2.10. It is possible to define an S-homomorphism between S-semigroups
in the same category C . For instance, given a near-semiring S and a category
C with finite products and final object, let (X, σ, τ), (Y, σ′, τ ′) be S-semigroups
in C . A morphism f : X −→ Y in C is an S-homomorphism in C if and only if

– for all s ∈ S the following diagram commutes

X

f

²²

τ(s)
// X

f

²²
Y

τ ′(s)
// Y

– there exists a natural transformation ξ : σ −→ σ′ such that the induced
natural transformation Tξ : hX −→ hY corresponds via the Yoneda lemma
to the morphism f : X −→ Y in C .
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Thus, one can define a category of S-semigroups and S-homomorphisms in a
category with finite products.

3. Approximation Theorems

First we formulate the notions: transparent S-subsemigroups, minimality and
primitivity in categories for near-semirings as an extension of those parallel no-
tions for near-rings given by Holcombe [3]. Then we proceed to approximate
categories in which the given near-semiring is primitive. Unless otherwise stated,
in the following C is a category with finite products and a final object, also there
exists a forgetful functor U : C −→ S .

Suppose (X, σ, τ) and (Y, σ′, τ ′) are S-semigroups in C and u : Y −→ X
is an S-homomorphism in C . We call (Y, u) an S-subsemigroup of X in C if
and only if u is a monomorphism in C , and U (u) is an inclusion in S . An
S-subsemigroup (Y, u) of X is called transparent if and only if

[Y, X]C = {uf | f ∈ [Y, Y ]C },

i.e. any morphism in [Y, X]C can be decomposed into the composition of a
morphism in the near-semiring [Y, Y ]C with u. Let X be an S-semigroup in C
and f ∈ [K, X]C a monomorphism, for K ∈ C . We call (K, f) is a generator of
X if and only if U (f) is a set inclusion, and for every a ∈ [K, X]C , there exists
sa ∈ S such that τ(sa)f = a. An S-semigroup X in C is called C -minimal if and
only if given a nontrivial monomorphism f ∈ [K,X]C with U (f) a set inclusion,
either (K, f) is a generator of X, or there exists a transparent S-subsemigroup
(Y, u) of X such that f factors through u in the following way: there exists
f ′ ∈ [K, Y ]C such that U (f ′) is a set inclusion and f = uf ′. Further, a near-
semiring S is said to be C -primitive for some C if there exists a C -minimal
S-semigroup X in C which is faithful.

Naturally there may exist near-semirings which are not C -primitive for any
C . Though finding a suitable category C such that given a near-semiring S is
C -primitive is difficult, it is often possible to find a category C over which S
can be represented in a useful way. For example there may be representations
of X over C such that τ : S −→ [X, X]C is one-one. Now replace C by other
categories so that the representations are preserved, and at the same time to
make the homomorphism τ nearer to being an isomorphism, which is clearly a
desirable objective.

Let (X, τ) be an S-semigroup in C , where τ : S −→ [X, X]C the near-
semiring homomorphism. Suppose G is AutS(X), the group of all invertible S-
homomorphisms in C . Construct a category CG in which objects are the pairs
(A,α), where A ∈ C and α : G −→ [A,A]C is a semigroup homomorphism. A

morphism ξ of CG, say (A,α)
ξ−→ (B, β), is a morphism ξ ∈ [A,B]C such that

β(g)ξ = ξα(g) for all g ∈ G.
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Remark 3.1. CG is a category with finite products and final object. Moreover,
there exists a forgetful functor UG : CG −→ S .

The objects X ∈ C may be equipped with the structure of an object XG ∈ CG

by defining XG = (X, idX).

Remark 3.2. (XG, τG) is an S-semigroup in CG, where τG : S −→ [XG, XG]CG

is defined by τG(s) = τ(s) ∀s ∈ S. Moreover, if τ is one-one then τG is one-one.

Theorem 3.3. If X is C -minimal then XG is CG-minimal.

Proof. Let fG ∈ [KG, XG]CG
be a monomorphism and UG(fG) be a set inclusion.

On forgetting the G-structure, we obtain a monomorphism f ∈ [K,X]C . Since
X is C -minimal, there are two cases.

Consider the case when (K, f) is generator of X in C . Suppose aG ∈
[KG, XG]CG

, and consider the corresponding morphism a ∈ [K, X]C . There
exists sa ∈ S such that τ(sa)f = a. Since τG(sa) = τ(sa) we have τG(sa)f = a
and so τG(sa)fG = aG. Hence (KG, fG) is a generator of XG in CG.

On the other hand, suppose (Y, u) is a transparent S-subsemigroup of X in
C and f ′ ∈ [K,Y ]C is such that U (f ′) is a set inclusion and f = uf ′. We turn
Y into an object of CG as follows. Let g ∈ G, then gu ∈ [Y, X]C and hence, by
transparency of Y , gu = ufg for some unique fg ∈ [Y, Y ]C . Define a mapping

β : G −→ [Y, Y ]C

by β(g) = fg for all g ∈ G. For g, g′ ∈ G we have β(gg′) = fgg′ and ufgg′ =
gg′u = gufg′ = ufgfg′ , so that β is a semigroup homomorphism and hence
(Y, β) is an object of CG. Now we shall prove that (Y, β) is transparent S-
subsemigroup of XG in CG. Let (Y, β)

η−→ XG be any morphism in CG. Then
for each g ∈ G, the following left side diagram is commutative. Since Y is
transparent S-subsemigroup of X in C we have η = uf , for some f ∈ [Y, Y ]C ,
so that the outer square of the following right side diagram is equals to left side
diagram and hence commutes.

Y

β(g)

²²

η // X

g

²²

Y

β(g)

²²
=

²²

f // Y
u //

β(g)

²²

X

g

²²
Y

η // X Y
f

// Y u
// X

Note that the right hand square of the right side diagram also commutes and
hence, because u is a monomorphism, the left hand square of right diagram
commutes, i.e. β(g)f = fβ(g) for all g ∈ G, so that (Y, β)

f−→ (Y, β) is a
morphism of CG. Thus (Y, β) is transparent in XG in the category CG. Finally,



912 K.V. Krishna and N. Chatterjee

the diagram

KG

f ′ ""FFFFFFFF
fG // XG

(Y, β)

u

<<xxxxxxxx

commutes in CG from similar considerations. Hence XG is CG-minimal.

Though the results are valid with the semigroup structure of [X, X]C in
place of the group G, by choosing the group G we could further narrow down
the category to CG. As we can embed [XG, XG]CG

in [X, X]C , Theorem 3.3
gives us an approximation theorem without disturbing the special nature of the
representation X of S.

If X has any G-closed S-subsemigroup we can produce a better approxima-
tion to S. Here, an S-subsemigroup (Y, u) of X is referred as G-closed if and
only if given g ∈ G there exists a unique f ∈ [Y, Y ]C such that gu = uf .

Remark 3.4. Since u is monomorphism, if (Y, u) is transparent in C then (Y, u)
is G-closed.

Lemma 3.5. Let (Y, u) be a G-closed S-subsemigroup of X in C . Define
G′ = AutS/ker τ′ (Y ), where τ ′ : S −→ [Y, Y ]C is the S-semigroup structure
near-semiring homomorphism. There is an embedding functor F : CG′ −→ CG.

Proof. F can be obtained by defining a semigroup monomorphism θ : G −→ G′.
For that, let g ∈ G; then g ∈ [X, X]C , g is invertible and τ(s)g = gτ(s) for
any s ∈ S. Also, since (Y, u) is G-closed there is unique f ∈ [Y, Y ]C such that
gu = uf . Define θ : G −→ G′ by setting θ(g) = f , for g ∈ G. We shall ascertain
that f ∈ G′. Since θ(1) is the identity morphism on Y , it follows that θ(g) is
invertible. To show that f τ̄ ′(s̄) = τ̄ ′(s̄)f for all s̄ ∈ S/ker τ ′ , we have to prove
that fτ ′(s) = τ ′(s)f ∀s ∈ S. Since u is S-homomorphism in C , we have:

ufτ ′(s) = guτ ′(s) = gτ(s)u
= τ(s)gu = τ(s)uf = uτ ′(s)f

and thus fτ ′(s) = τ ′(s)f ∀s ∈ S. It is easy to see that θ is a semigroup
monomorphism, as desired.

Let (A,α) ∈ CG′ , so that α : G′ −→ [A,A]C is a semigroup homomorphism.
Set F ((A,α)) = (A,αθ) so that F ((A,α)) ∈ CG, and F is an embedding functor.

Consider the category D = 〈CG, F (CG′)〉 (cf. Example 2.8 for notation).
Note that this is a category with finite products, final object, and there exists
a forgetful functor. The object XG ∈ CG can naturally be equipped with the
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structure, X∗, defined to be (F (Y ) ⊆ XG), and the near-semiring homomor-
phism τ∗ : S −→ [X∗, X∗]D is defined by τ∗(s) = τ(s) for all s ∈ S. Thus X∗
is an S-semigroup object of D . If X is faithful in C then X∗ is faithful in D .
Further, if XG is CG-minimal, then in a similar way to that of Theorem 3.3, one
can finalize that X∗ is D-minimal.

This can be summarized as the second approximation theorem as follows:

Theorem 3.6. The object X∗ of D is an S-semigroup object and if X is faithful
then X∗ is faithful. Moreover, if X is C -minimal then X∗ is D-minimal.

Further, if X has G-closed S-subsemigroups in C then each of which gives
an approximation theorem in the following way.

Theorem 3.7. Let (Yi, ui) be G-closed S-subsemigroups of X for i = 1, 2, . . . , k
and Gi = AutS/ker τi

(Yi) for each i = 1, 2, . . . , k. Let Fi : CGi
−→ CG be an

appropriate embedding functor for each i = 1, 2, . . . , k. Consider the category

Dk = 〈CG, F1(CG1), F2(CG2), . . . , Fk(CGk
)〉.

If X is a C -minimal, faithful S-semigroup in C , then X can be given the struc-
ture of a Dk-minimal faithful S-semigroup in Dk.
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