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Abstract

The thesis aims at studying various structural properties of affine near-semirings over

Brandt semigroups. The study considers various aspects, viz. semigroup theoretic

properties, ring theoretic properties and formal language theoretic connections.

At the outset, the thesis classifies the elements of an affine near-semiring over

Brandt semigroup, denoted by A+(Bn), and finds the cardinality of A+(Bn), for an

arbitrary natural number n. In order to ascertain the semigroup theoretic properties

of A+(Bn), the thesis completely characterizes the Green’s relations on both of

its semigroup reducts. The thesis reveals that the additive semigroup reduct is

eventually regular and the multiplicative semigroup reduct is orthodox. Further, the

rank properties of these semigroup reducts are investigated in detail. By determining

all right ideals, ideals and radicals, the thesis studies the ring theoretic structure

of A+(Bn). The study establishes certain formal language theoretic connections to

A+(Bn) by showing that both of its semigroup reducts are syntactic semigroups.
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Introduction

The present thesis is in the broad area of general algebra. The thesis aims at studying

various structural properties of affine near-semirings over Brandt semigroups.

An algebraic structure (N ,+, ·) with two binary operations + and · is said to

be a near-semiring if (N ,+) and (N , ·) are semigroups and · is one-side, say left,

distributive over +, i.e. a · (b + c) = a · b + a · c, for all a, b, c ∈ N . The set M(S)

of all mappings on a semigroup (S,+) and certain subsets of M(S), with respect to

pointwise addition and composition of mappings, are among the typical examples

of near-semirings.

Since the work of van Hoorn and van Rootselaar [1967], many authors have

studied the algebraic structure of near-semirings in the literature. A class of near-

semirings, viz. basic process algebras, plays an important role in the construction

of algebra of communicating processes [Bergstra and Klop, 1990].

The properties of near-semirings have been studied in various aspects. Some

of the works are concentrated on ring theoretic properties through ideals and radi-

cals ([Krishna, 2005; van Hoorn, 1970]). Some authors have utilized the concept of

near-semiring in various applications ([Desharnais and Struth, 2008; Droste et al.,

2010; Krishna and Chatterjee, 2005]). Some other works focus to study the under-

lying semigroups ([Gilbert and Samman, 2010a,b; Weinert, 1982]). In [Gilbert and

Samman, 2010b], Gilbert and Samman have studied the Green’s classes of additive

1



2 Introduction

semigroup reducts of endomorphism near-semirings over Brandt semigroups.

For n ∈ N, write [n] = {1, 2, . . . , n}. A Brandt semigroup (Bn,+) has the

underlying set Bn = {ϑ} ∪ ([n]× [n]) with the operation + given by

(i, j) + (k, l) =

 (i, l), if j = k;

ϑ, if j ̸= k

and, for all α ∈ Bn, α + ϑ = ϑ + α = ϑ. The class of Brandt semigroups is

an important subclass of completely 0-simple inverse semigroups. In this thesis, we

consider a class of near-semirings, viz. affine near-semirings over Brandt semigroups.

An affine mapping over a vector space is a sum of a linear transformation and a

constant map. Blackett [1956] studied the near-ring of affine mappings over a vector

space. An abstract notion of affine near-rings is introduced by Gonshor [1964].

Authors have considered the study of affine near-rings in different contexts (e.g.

[Feigelstock, 1985; Malone, 1969]). Holcombe [1983, 1984] studied affine near-rings,

in the context of linear sequential machines. These notions are extended to near-

semirings by Krishna [2005]. Further, Krishna and Chatterjee [2005] have studied

affine near-semirings over generalized linear sequential machines.

A map on a semigroup (S,+) is said to be an affine map if it can be written as a

sum of an endomorphism and a constant map on S. The subnear-semiring of M(S)

generated by the set of all affine maps on S is said to be an affine near-semiring over

S and it is denoted by A+(S).

In order to study the structural properties of affine near-semirings over Brandt

semigroups, in the present thesis, we focus on semigroup theoretic properties of both

the semigroup reducts of A+(Bn). Further, to ascertain the ring theoretic properties

of A+(Bn), we study its ideals and radicals. In view of studying the formal language

theoretic connections to A+(Bn), we consider the syntactic semigroup problem for

both of its semigroup reducts.

After presenting the necessary preliminaries in Chapter 1, the main work of the

thesis has been organized into five chapters as described below:
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Chapter 2: The Near-Semiring A+(Bn)

Chapter 3: Semigroup Structure

Chapter 4: Rank Properties

Chapter 5: Ideals and Radicals

Chapter 6: Syntactic Semigroups

Chapter 2. In this chapter, we obtain certain fundamental properties of the ele-

ments of A+(Bn). First we ascertain that any endomorphism over Bn is either a

constant map whose image is an idempotent element or an automorphism (Theorem

2.1.4). Consequently, we characterize the set of affine maps over Bn and report its

size (Theorem 2.1.6). Finally, in this chapter, along with the cardinality of A+(Bn),

we classify its elements with respect to their supports (Theorem 2.2.10). In the

classification theorem, we show that A+(Bn) has only the singleton support maps,

constant maps and a special types of n-support maps. Most of the proofs in the

thesis make use of the classification theorem.

Chapter 3. Green’s relations play a vital role in structure theory of semigroups. In

this chapter, we completely characterize the Green’s relations for both the semigroup

reducts of A+(Bn) and find the sizes of respective Green’s classes. First we observe

that the set of constant maps over Bn and the set of singleton support maps includ-

ing the zero map form subsemigroups of the additive semigroup reduct A+(Bn)
+
.

Indeed, these subsemigroups are isomorphic to certain semigroup constructs over

Bn (Proposition 3.1.1). Consequently, we characterize the Green’s relations over

A+(Bn)
+
(Theorems 3.1.6, 3.1.7). In case of the multiplicative semigroup reduct

A+(Bn)
◦
, by including the zero map to the set of singleton support maps and to the

set of n-support maps, they form subsemigroups isomorphic to certain completely

0-simple inverse semigroups (Propositions 3.2.2, 3.2.4). In view of this, we char-

acterize the Green’s relations on A+(Bn)
◦
(Theorems 3.2.6, 3.2.7, 3.2.9). We also

investigate the regular and idempotent elements in both the semigroup reducts of
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A+(Bn) (Theorems 3.1.12, 3.2.10, 3.2.11) and find certain relevant subsemigroups

(Theorems 3.1.15, 3.2.13). Further, we ascertain that the additive semigroup reduct

is eventually regular (Proposition 3.1.14) and the multiplicative semigroup reduct

is orthodox (Theorem 3.2.12).

The work of chapters 2 and 3 has been accepted for publication in the journal

Communications in Algebra.

Chapter 4. The study of rank properties of an algebraic structure provide some

insight into the structure and its concrete description. The concept of rank for

general algebras is analogous to the concept of dimension in linear algebra. However,

for general algebras, in particular for semigroups, the minimum size of a generating

set need not be equal to the maximum size of an independent set. Accordingly, for

a finite semigroup S, Howie and Ribeiro [1999, 2000] have considered the following

five possible ranks, viz. small rank, lower rank, intermediate rank, upper rank and

large rank of S, denoted by r1(S), r2(S), r3(S), r4(S) and r5(S), respectively. Since

the work of Marczewski [1966], many authors have studied the rank properties of

various algebraic structures (e.g. [Cameron and Cara, 2002; Gomes and Howie,

1992; Minisker, 2009; Mitchell, 2002; Ruškuc, 1994]). In Chapter 4, we investigate

the rank properties of both the semigroup reducts of A+(Bn).

In order to find the large rank of a finite semigroup, we introduce a technique

using prime subsets (cf. Section 4.2). While this technique is useful for semigroups

of transformations, it is found to be more efficient for other semigroups too. The

technique to find the large rank of finite semigroup has been accepted for publication

in the journal Semigroup Forum.

In Section 4.3, we obtain small rank (Corollary 4.3.2), lower rank (Theorem

4.3.9), intermediate rank (Theorem 4.3.12) and large rank (Theorem 4.3.24) of the

additive semigroup reduct A+(Bn)
+
. While we obtain r4(A

+(Bn)
+
) for n ≥ 6 (The-

orem 4.3.21), we provide lower bounds of r4(A
+(Bn)

+
) for 2 ≤ n ≤ 5 (Theorems
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4.3.20, 4.3.13). We conjecture that these lower bounds are indeed the upper ranks

of the respective cases. The work embedded in this section has been presented at

the conference General Algebra and Its Applications: GAIA 2013, Melbourne, Aus-

tralia, July 15-19, 2013. Further, the work is communicated for publication in a

special issue, associated to GAIA 2013, of the journal Algebra Universalis.

For the multiplicative semigroup reduct A+(Bn)
◦
, we obtain small rank (Corol-

lary 4.4.1), lower rank (Theorems 4.4.5, 4.4.6) and large rank (Theorems 4.4.13,

4.4.14). Further, we give certain lower bounds of intermediate rank (Theorem 4.4.10)

and upper rank (Theorem 4.4.11) for A+(Bn)
◦
. The work on rank properties of

A+(Bn)
◦
has been communicated to the journal Semigroup Forum.

Chapter 5. van Hoorn and van Rootselaar [1967] have initiated the investigations

on ideals in near-semirings. Consequently, van Hoorn [1970] generalized the concept

of Jacobson radicals of rings to zero-symmetric near-semirings and identified four-

teen types of radicals. The properties of these radicals are further investigated in

[Krishna, 2005; Zulfiqar, 2009]. In this chapter, we focus on investigating the ideals

and radicals ofN – the zero-symmetric affine near-semiring over an arbitrary Brandt

semigroup. In this connection, after ascertaining the right ideals of N (Theorem

5.2.2), we obtain all the fourteen radicals of N (Theorems 5.3.10, 5.3.11, 5.3.12).

Finally, we determine all the congruences of N (Theorem 5.4.3) and, consequently,

report its ideals (Corollary 5.4.4).

Chapter 6. In order to ascertain the formal language theoretic connections to

A+(Bn), we consider the syntactic semigroup (monoid) problem. The syntactic

semigroup problem is to decide whether a given finite semigroup is syntactic or not.

The syntactic semigroup problem for various semigroups have been investigated by

many authors (cf. [Goralč́ık and Koubek, 1998; Goralč́ık et al., 1982; Lallement and

Milito, 1975]). In this chapter, we prove that both the semigroup reducts of A+(Bn)

are syntactic semigroups by utilizing different methods available in the literature.
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In this connection, we prove that the semigroup reducts of A+(B1) are syntactic

monoids by observing that they are transition monoids of some minimal automata

(Theorems 6.2.3, 6.3.3). For n ≥ 2, we prove that A+(Bn)
+
is isomorphic to the

syntactic semigroup of a language (Theorem 6.2.7). In case of A+(Bn)
◦
, for n ≥ 2,

we show that it contains a disjunctive subset (Theorem 6.3.4).

Epilogue. The present thesis considers a study of affine near-semirings over Brandt

semigroups in various aspects. In all the aspects under consideration, the thesis

shows a lot of scope for further studies in the present topic. As an immediate

work, one may target to extend the results of the thesis to a general class of affine

near-semirings over completely 0-simple inverse semigroups. There is a lot more to

know about affine near-semirings over arbitrary semigroups. One may explore the

possibilities of extending any of these results to abstract affine near-semirings.



1
Preliminaries

This chapter presents fundamentals of semigroups and near-semirings which are

useful throughout the thesis. The background material which is specific to certain

chapters is postponed to the respective chapters. The fundamentals of semigroups

are presented in Section 1.1. In this connection, we recall the notions and some

useful results on Green’s relations, regular semigroups and inverse semigroups in

various subsections. The notion on which the entire thesis is depending, viz. Brandt

semigroups, is explained in Subsection 1.1.4. The concept of support of a map

given in Subsection 1.1.5 plays a vital role in the thesis. Finally, near-semirings are

recalled in Section 1.2 with a special focus on affine near-semirings. This chapter

also concentrates on fixing various notations that are used in the thesis.

7



8 Preliminaries

1.1 Semigroups

In this section, we present the necessary fundamental notions of semigroups. The

material of this section can be found in any standard book on semigroup theory.

For example, see [Clifford and Preston, 1961; Grillet, 1995; Howie, 1976, 1995; Pin,

1986].

1.1.1 Definitions and basic results

We begin with the notion of semigroups and continue to present various required

concepts on semigroups.

Definition 1.1.1. An algebraic structure (S, ∗) is said to be a semigroup if ∗ is an

associative binary operation on S, i.e.

x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ S.

Example 1.1.2.

1. The set of natural numbers N with usual addition.

2. The set of natural numbers N with usual multiplication.

3. The set of integers Z with usual addition.

Example 1.1.3. Let X be a nonempty set. The set M(X) of all mappings on

X forms a semigroup under the composition of mappings1, i.e., for x ∈ X and

f, g ∈ M(X),

x(f ◦ g) = (xf)g.

In the thesis, the composition f ◦ g will simply be denoted by fg.

1In the thesis, we write an argument of a function on its left, e.g. xf is the value of a function

f at an argument x.



1.1 Semigroups 9

Notation 1.1.4. For f ∈ M(X), we define

Im(f) = {xf | x ∈ X}.

Example 1.1.5. For m,n ∈ N, consider a set Rm,n = {1, 2, . . . ,m} × {1, 2, . . . , n},

with the multiplication given by

(i, j)(k, l) = (i, l),

is a semigroup and it is known as a rectangular band.

We would also require the following type of special semigroups in the thesis.

Definition 1.1.6. Let (Sα, ∗α)α∈Λ be a family of semigroups each of which has a

zero element, say 0α. Consider the disjoint union

S = {0} ∪
∪
α∈Λ

(Sα \ {0α}),

where 0 is a new element which is not present in any Sα. Define a binary operation

∗ on S by, for x, y ∈ S,

x ∗ y =

 x ∗α y, if there exist α ∈ Λ such that x, y ∈ Sα and xy ̸= 0α;

0, otherwise.

Then (S, ∗) is a semigroup known as 0-direct union of the semigroups Sα.

In this thesis, unless it is required, algebraic structures (such as semigroups,

groups, near-semirings) will simply be referred by their underlying sets without

explicit mention of their operations.

Notation 1.1.7. Additive semigroup is meant a semigroup in which the binary op-

eration is +. Similarly, if · is a binary operation on a semigroup S, then we say S

is a multiplicative semigroup. In a multiplicative semigroup, the product x · y will

simply be denoted by xy.
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In the rest of the section, we consider multiplicative semigroups.

Definition 1.1.8. A semigroup S is said to be commutative if xy = yx, for all

x, y ∈ S.

Definition 1.1.9. If a semigroup S contains an element 1 with the property that

1x = x1 = x

for all x ∈ S, then 1 is called an identity element of S. A semigroup with an identity

element is said to be a monoid. If a semigroup contains an element 0 such that

x0 = 0x = 0

for all x ∈ S, then 0 is called a zero element or absorbing element of S.

Remark 1.1.10. A semigroup S can be extended to a monoid by adjoining an extra

element 1 together with the conditions 11 = 1 and 1x = x1 = x, for all x ∈ S.

Notation 1.1.11. We write S1 to denote the monoid which is obtained from a semi-

group S by adjoining an identity element, if necessary. That is, if S has an identity

element, then S1 = S; otherwise, S1 is the monoid which is obtained from S as per

Remark 1.1.10.

Definition 1.1.12. A nonempty subset T of a semigroup S is called a subsemigroup

of S if it is closed under the multiplication of S.

Remark 1.1.13. Let {Ti : i ∈ Λ} be a family of subsemigroups of a semigroup S

such that
∩
i∈Λ

Ti is nonempty. Then
∩
i∈Λ

Ti is a subsemigroup of S.

Definition 1.1.14. Let X be a nonempty subset of a semigroup S. The subsemi-

group of S generated by X, denoted by ⟨X⟩, is the intersection of all subsemigroups

of S containing X.
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Proposition 1.1.15. Let X be a nonempty subset of a semigroup S. Then

⟨X⟩ = {x1x2 · · · xn | xi ∈ X, i ∈ {1, 2, . . . , n} and n ∈ N},

the set of finite products of elements of X.

Definition 1.1.16. A right congruence on a semigroup S is an equivalence relation

≡ which is compatible from right, i.e. for x, y ∈ S,

x ≡ y ⇒ ∀z(xz ≡ yz).

Similarly, left congruence can be defined. A relation which is both left and right

congruences is called a congruence on S.

Definition 1.1.17. Let S and S ′ be semigroups. A function φ : S −→ S ′ is called

a homomorphism if

(xy)φ = (xφ)(yφ)

for all x, y ∈ S. Further, if φ is a bijection, then φ is said to be an isomorphism.

Two semigroups are said be isomorphic if there is an isomorphism between them.

A homomorphism from a semigroup to itself is called an endomorphism and if it is

an isomorphism, then it is called an automorphism.

Remark 1.1.18. The set of all endomorphisms of a semigroup S, denoted by

End(S), forms a monoid with respect to composition of maps. Similarly, the set

of all automorphisms of a semigroup S, denoted by Aut(S), forms a group.

Definition 1.1.19. Given a homomorphism φ : S −→ S ′ define

kerφ = {(x, y) ∈ S × S | xφ = yφ},

and it is called the kernel of a homomorphism φ.

Remark 1.1.20. kerφ of a semigroup homomorphism φ is a congruence relation.
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Theorem 1.1.21. If φ : S −→ S ′ is an onto-homomorphism, then the semigroup

S/kerφ is isomorphic to the semigroup S ′ under the assignment [x]kerφ 7→ xφ.

Notation 1.1.22. Let A and B be nonempty subsets of S. The subset

{ab | a ∈ A, b ∈ B}

of S is denoted by AB. Further, the subset {a}B is simply denoted by aB.

Definition 1.1.23. A nonempty subset I of a semigroup S is said to be a left ideal

of S if SI ⊆ I and it is called a right ideal if IS ⊆ I. The subset I is called an ideal

if it is both a left ideal and a right ideal of S.

Proposition 1.1.24. Let a be an element of a semigroup S. The set

1. aS1 is the smallest right ideal of S containing a,

2. S1a is the smallest left ideal of S containing a, and

3. S1aS1 is the smallest ideal of S containing a.

Definition 1.1.25. Let a be an element of a semigroup S. The right ideal aS1, left

ideal S1a, and ideal S1aS1 are, respectively, known as the principle right ideal, the

principle left ideal, and the principle ideal, generated by a.

1.1.2 Green’s relations

Green’s relations were first introduced in [Green, 1951]. These relations play a vital

role in the structure theory of semigroups. We now present Green’s relations viz.

R,L,J ,D and H along with their necessary properties from [Howie, 1995].

Definition 1.1.26 ([Green, 1951]). Let S be a semigroup and a, b ∈ S.

1. aLb if a and b generate the same principal left ideal, i.e. aLb ⇐⇒ S1a = S1b.

2. aRb if a and b generate the same principal right ideal, i.e. aRb ⇐⇒ aS1 = bS1.
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3. aJ b if a and b generate the same principal ideal, i.e. aJ b ⇐⇒ S1aS1 = S1bS1.

4. aHb if aLb and aRb.

5. aDb if there exists some x ∈ S such that aLx and xRb.

The Green’s relations are characterized in the following theorem.

Theorem 1.1.27. Let S be a semigroup and a, b ∈ S. Then

1. aLb if and only if there exist x, y ∈ S1 such that xa = b, yb = a.

2. aRb if and only if there exist x, y ∈ S1 such that ax = b, by = a.

3. aJ b if and only if there exist x, y, u, v ∈ S1 such that xay = b, ubv = a.

Proposition 1.1.28. The Green’s relations R,L,J ,D and H are equivalence rela-

tions. Furthermore, L is right congruence and R is a left congruence.

Remark 1.1.29. In a commutative semigroup, we have R = L = J = D = H.

Proposition 1.1.30. In a finite semigroup, we have D = J .

Notation 1.1.31. We denote the L-class, R-class, D-class and H-class of an element

a ∈ S by La, Ra, Da and Ha, respectively.

Definition 1.1.32. A semigroup S is said to be aperiodic, if for every x ∈ S, there

exist a nonnegative integer n such that xn = xn+1.

Proposition 1.1.33. Let S be a finite semigroup. The following statements are

equivalent.

1. S is aperiodic.

2. There exists m > 0 such that, for every x ∈ S, xm = xm+1.

3. The groups in S are trivial.

4. S is H-trivial, i.e. H is the equality relation on S.
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1.1.3 Regular and inverse semigroups

In this section, we present some important classes of semigroups, viz. regular semi-

groups and inverse semigroups. Accordingly, we state relations between them. Fur-

ther, we also recall some well known semigroups which are useful to understand the

work embedded in the thesis.

Definition 1.1.34. An element a of a semigroup S is regular if there exists an

element x ∈ S such that axa = a. A semigroup is called regular if all of its elements

are regular. A semigroup S is said to be eventually regular if for every a ∈ S there

exists a positive integer n such that an is regular.

Remark 1.1.35. Every regular semigroup is eventually regular.

Notation 1.1.36. For a semigroup S, we write I(S) = {a ∈ S | a2 = a}, the set of

all idempotent elements of S.

Definition 1.1.37. A semigroup S is said to be a band if I(S) = S.

Example 1.1.38. Rectangular band (cf. Example 1.1.5 ) is a band.

Definition 1.1.39. A semigroup S is said to be orthodox if it is regular and I(S)

is a subsemigroup of S.

Definition 1.1.40. An element b of a semigroup S is said to be an inverse of an

element a ∈ S, if aba = a and bab = b.

Remark 1.1.41. An element a of a semigroup S is regular if and only if a has an

inverse in S.

Remark 1.1.42. An element may have more than one inverse in a semigroup.

For instance, the elements (1, 2) and (2, 2) are inverses of the element (1, 2) in the

rectangular band R2,2.
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Definition 1.1.43. A semigroup S is called an inverse semigroup if every element

of S has a unique inverse.

Theorem 1.1.44. A regular semigroup is inverse if and only if its idempotents

commute.

1.1.4 Brandt semigroups

The Brandt semigroups is an important class of inverse semigroups and it has its own

importance in semigroup theory. The work presented in the thesis is essentially based

on the Brandt semigroups. In this subsection, we present fundamental definitions

and results on the Brandt semigroups from Howie [1976, 1995]. In this subsection,

S denotes a semigroup with zero element 0.

Definition 1.1.45. A semigroup S is called 0-simple if {0} and S are its only ideals

and S2 ̸= {0}.

Definition 1.1.46. A nonzero idempotent in S is said to be primitive if it is a

minimal element in I(S) \ {0} with respect to the partial order relation ≤ on I(S)

defined by, for a, b ∈ I(S),

a ≤ b ⇐⇒ ab = ba = a.

Definition 1.1.47. A semigroup S is said to be completely 0-simple if it is 0-simple

and has a primitive idempotent.

Definition 1.1.48. Given a finite group G and a natural number n, write [n] =

{1, 2, . . . , n} and B(G,n) = ([n] × G × [n]) ∪ {ϑ}. Define a binary operation (say,

addition) on B(G,n) by

(i, a, j) + (k, b, l) =

 (i, ab, l) if j = k;

ϑ otherwise,

and ϑ+ (i, a, j) = (i, a, j) + ϑ = ϑ+ ϑ = ϑ.
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With the above defined addition, B(G,n) is a semigroup known as the Brandt

semigroup.

When G is the trivial group, the Brandt semigroup B({e}, n) is denoted by Bn.

Instead of writing the identity element e ∈ G in the triplets of elements of Bn, we

use the following description in the definition of Bn.

Definition 1.1.49. For a natural number n, the Brandt semigroup (Bn,+), where

Bn = ([n]× [n]) ∪ {ϑ} and the operation + is given by

(i, j) + (k, l) =

 (i, l) if j = k;

ϑ if j ̸= k

and, for all α ∈ Bn, α+ ϑ = ϑ+α = ϑ. Note that ϑ is the (two sided) zero element

in Bn.

Remark 1.1.50.

1. For each α ∈ Bn, we have α + α = α + α + α. Thus, by Proposition 1.1.33,

the Brandt semigroup Bn is aperiodic.

2. I(Bn) = {(k, k) | k ∈ [n]} ∪ {ϑ}.

The Green’s relations in the Brandt semigroups is characterized as follows.

Lemma 1.1.51 ([Howie, 1976]). Let (i, a, j), (k, b, l) ∈ B(G, n). Then

1. (i, a, j)R(k, b, l) if and only if i = k.

2. (i, a, j)L(k, b, l) if and only if j = l.

3. (i, a, j)H(k, b, l) if and only if i = k and j = l.

Remark 1.1.52. All the nonzero elements of B(G,n) are D-related.
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Remark 1.1.53. For nonzero elements of Bn, the relation R (or L) is the equality

on the first coordinate (or on the second coordinate, respectively). Hence, other

than the class {ϑ}, the number of R or L classes in Bn is n. Consequently, any two

nonzero elements of Bn are D-related.

Theorem 1.1.54. A semigroup S is both completely 0-simple and an inverse semi-

group if and only if S is isomorphic to the semigroup B(G,n), for some group G

and some n.

1.1.5 Support of a map

In this subsection, we present some concepts on mappings which are useful in the

subsequent chapters and fix our notation. We begin with the following definition

which plays a vital role in the thesis. In this subsection, (S,+) is a semigroup with

zero element ϑ.

Definition 1.1.55. For f ∈ M(S), the support of f , denoted by supp(f), is defined

by the set

supp(f) = {x ∈ S | xf ̸= ϑ}.

Definition 1.1.56. A function f ∈ M(S) is said to be of k-support if the cardinality

of supp(f) is k, i.e. |supp(f)| = k. If k = |S| or k = 1, then f is said to be of full

support or singleton support, respectively.

Notation 1.1.57.

1. For X ⊆ M(S), we write Xk to denote the set of all mappings of k-support in

X, i.e.

Xk = {f ∈ X | f is of k-support}.
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2. For a ∈ S, the constant map ξa on S is defined by xξa = a for all x ∈ S. If we

are not specific about the constant image, we may simply write ξ to denote a

constant map. For X ⊆ S, we write

CX = {ξa ∈ M(S) | a ∈ X}.

We would require the following lemma at various places in the thesis.

Lemma 1.1.58. If f, g ∈ M(S), then supp(f + g) ⊆ supp(f) ∩ supp(g), where

x(f + g) = xf + xg, for all x ∈ S. Moreover, for f ∈ M(S)k, we have

|supp(f + g)| ≤ k and |supp(g + f)| ≤ k.

Proof. Let x ∈ supp(f + g). Then xf + xg ̸= ϑ so that xf ̸= ϑ and xg ̸= ϑ.

Thus, x ∈ supp(f) ∩ supp(g). Further, If f ∈ M(S)k, then, for any g ∈ M(S),

|supp(f + g)| ≤ k and |supp(g + f)| ≤ k. For instance, if x /∈ supp(f), then

x /∈ supp(f + g) and also x /∈ supp(g + f).

1.2 Near-semirings

In this section, we present the required notions on near-semirings. For more details

one may refer to [Krishna, 2005; van Hoorn and van Rootselaar, 1967].

Definition 1.2.1. An algebraic structure (N ,+, ·) is said to be a near-semiring if

1. (N ,+) is a semigroup,

2. (N , ·) is a semigroup, and

3. a(b+ c) = ab+ ac, for all a, b, c ∈ N .
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Example 1.2.2. Let (S,+) be a semigroup. The algebraic structure (M(S),+, ◦)

is a near-semiring, where + is point-wise addition and ◦ is composition of mappings,

i.e., for x ∈ S and f, g ∈ M(S),

x(f + g) = xf + xg and x(f ◦ g) = (xf)g.

Definition 1.2.3. A nonempty subset of a near-semiring N is called a subnear-

semiring of N if it is closed under both the operations of N .

Example 1.2.4. The set CS of all constant mappings on S is a subnear-semiring of

M(S).

Definition 1.2.5. A near-semiring (N ,+, ·) is said to be zero-symmetric, if

1. (N ,+) is a monoid with identity 0,

2. a0 = 0a = 0 for all a ∈ N .

1.2.1 Affine near-semiring

Now, we recall the notion of affine maps and affine near-semirings from [Krishna,

2005].

Definition 1.2.6. An element f ∈ M(S) is said to be an affine map if f = g + h,

for some g ∈ End(S) and h ∈ CS. We call this sum as an affine decomposition of f .

Remark 1.2.7. Sum of two affine maps on a semigroup S need not be an affine

map, unless S is commutative.

Notation 1.2.8. The set Aff(S) denotes the set of all affine maps on a semigroup S.

Further, the set of finite sums of affine maps is denoted by A+(S), i.e.

A+(S) =

{
k∑

i=1

fi

∣∣∣∣∣ fi ∈ Aff(S), k ≥ 1

}
.
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Remark 1.2.9. The setA+(S) is the subsemigroup generated by Aff(S) in (M(S),+).

Definition 1.2.10. The subnear-semiring generated by Aff(S) in M(S) is said to

be an affine near-semiring over S.

Proposition 1.2.11. For any semigroup S, A+(S) is an affine near-semiring.

Proof. In view of Remark 1.2.9 A+(S) is closed with respect to addition. It is a

routine verification to show that A+(S) is closed with respect to composition.



2
The Near-Semiring A+(Bn)

This chapter introduces the main object of study of the thesis, viz. A+(Bn), the

affine near-semiring over Brandt semigroup Bn. In a systematic approach, the chap-

ter characterizes, classifies and counts the elements of A+(Bn). In this connection,

first we characterize the elements of Aff(Bn) in Section 2.1 and then proceed to

the elements of A+(Bn) in Section 2.2. The classification is done in terms of the

supports of mappings in A+(Bn). Further, the chapter reports the cardinality of

A+(Bn), for an arbitrary natural number n. Certain fundamental properties of the

elements of A+(Bn) are described through various results in the chapter. These

results are useful throughout the thesis.

21
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2.1 Affine maps over Bn

In this section, first we characterize the elements of endomorphisms over Bn using

a result of Gilbert and Samman [2010b]. Then we ascertain that the constant

functions and affine maps of n-support are only the elements of Aff(Bn) and find its

cardinality (cf. Theorem 2.1.6).

We characterize End(Bn) by extending the corresponding result for Endϑ(Bn) in

[Gilbert and Samman, 2010b]. As per Proposition 2.1.1, they have shown that the

semigroup

Endϑ(Bn) = {f ∈ End(Bn) | ϑf = ϑ},

with respect to composition of mappings, is isomorphic to the semigroup S0
n, the

symmetric group Sn of degree n is adjoined by the zero element 0.

Proposition 2.1.1 ([Gilbert and Samman, 2010b]). Endϑ(Bn) is isomorphic to S0
n.

Sketch of the Proof. Let f ∈ Endϑ(Bn) \ {ξϑ}. Then f determines two functions

f1, f2 : [n]× [n] −→ [n] such that

(i, j)f = ((i, j)f1, (i, j)f2).

It can be observed that f1 depends only on the first coordinate and f2 depends

only on the second coordinate, i.e. (i, j)f1 = (i, k)f1 and (i, j)f2 = (k, j)f2, for all

j, k ∈ [n]. Moreover, for i ∈ [n], (i, k)f1 = (l, i)f2. Now, define a permutation σ on

[n] by, for i ∈ [n],

iσ = (i, k)f1 = (l, i)f2.

Thus, there exists a permutation σ ∈ Sn such that (i, j)f = (iσ, jσ). Further, for

any permutation σ ∈ Sn, the mapping ϕσ : Bn −→ Bn such that (i, j) 7→ (iσ, jσ),

ϑ 7→ ϑ is an endomorphism over Bn. Now, it can be observed that the assignment

0 7→ ξϑ and σ 7→ ϕσ : S0
n −→ Endϑ(Bn)

is an isomorphism.
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We observe the following remark regarding the function ϕσ given in the proof of

Proposition 2.1.1.

Remark 2.1.2. For σ ∈ Sn, the mapping ϕσ : Bn −→ Bn defined by

(i, j)ϕσ = (iσ, jσ) and ϑϕσ = ϑ

is an automorphism over Bn.

In view of Remark 2.1.2, we have the following corollary of Proposition 2.1.1.

Corollary 2.1.3. Aut(Bn) is isomorphic to Sn.

Now, we characterize the elements of End(Bn) and find its size.

Theorem 2.1.4. End(Bn) = Aut(Bn) ∪ CI(Bn). Hence, |End(Bn)| = n! + n+ 1.

Proof. Clearly, Aut(Bn) ∪ CI(Bn) ⊆ End(Bn). Let f ∈ End(Bn). If f = ξϑ, then

clearly f ∈ CI(Bn). Otherwise, if ϑf = ϑ, then by Proposition 2.1.1, f ∈ Aut(Bn)

and f = ϕσ for some σ ∈ Sn. If ϑf ̸= ϑ, then ϑf = (k, k) for some k ∈ [n]. Now,

for any (i, j) ∈ Bn,

(k, k) = ϑf = ((i, j) + ϑ)f = (i, j)f + (k, k)

so that (i, j)f = (k, k). Thus, if ϑf ̸= ϑ, then f ∈ CI(Bn). Hence,

End(Bn) = Aut(Bn) ∪ CI(Bn).

Since Aut(Bn) ∩ CI(Bn) = ∅, |CI(Bn)| = n+ 1 (cf. Remark 1.1.50) and |Aut(Bn)|

= |Sn| = n! (cf. Corollary 2.1.3), we have |End(Bn)| = n! + n+ 1.

Remark 2.1.5. Every constant map over Bn is an affine map. For instance, the

zero map ξϑ can be written as ξ(p,p) + ξϑ. Similarly, a nonzero constant map ξ(p,q)

can be decomposed as ξ(p,p) + ξ(p,q).

Now, we are ready to classify the affine maps over Bn. Indeed, we shall prove

that constant maps and n-support affine maps are precisely the affine maps over Bn.
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Theorem 2.1.6. Aff(Bn) = Aff(Bn)n ∪ CBn. Moreover, |Aff(Bn)| = (n! + 1)n2 + 1.

Proof. Since every constant map over Bn is an affine map, we have

Aff(Bn)n ∪ CBn ⊆ Aff(Bn).

Let f ∈ Aff(Bn). If f = ξϑ, then clearly f ∈ CBn . Otherwise, write f = g+ ξ(p,q) for

some g ∈ End(Bn) \ {ξϑ}. By Theorem 2.1.4, g can be either ξ(k,k) for some k ∈ [n]

or ϕσ for some σ ∈ Sn.

In case g = ξ(k,k) for some k ∈ [n], since f ̸= ξϑ, we have k = p so that

f = ξ(p,q) ∈ CBn . Further, as there are n possibilities each for p and q, we have n2

affine maps (of full support) in this case.

We may now suppose g = ϕσ for some σ ∈ Sn. Clearly, we have ϑf = ϑ, because

ϑϕσ = ϑ. Now for (i, j) ∈ Bn \ {ϑ}

(i, j)f = (iσ, jσ) + (p, q) =

 (iσ, q), if j = pσ−1;

ϑ, otherwise.

Hence, supp(f) = {(i, pσ−1) : i ∈ [n]} so that f ∈ Aff(Bn)n. Consequently,

Aff(Bn) = Aff(Bn)n ∪ CBn .

Since the above union is disjoint and |CBn| = n2 + 1, it remains to prove that

|Aff(Bn)n| = (n!)n2. As shown above, every affine map of n-support is precisely of

the form ϕσ+ξ(p,q), for some σ ∈ Sn and p, q ∈ [n]. Thus, |Aff(Bn)n| ≤ (n!)n2. Now,

let f = ϕσ + ξ(p,q) and g = ϕρ + ξ(s,t), for some σ, ρ ∈ Sn and p, q, s, t ∈ [n]. If q ̸= t,

then clearly Im(f) ̸= Im(g). If σ ̸= ρ, then there exists i0 ∈ [n] such that i0σ ̸= i0ρ.

If supp(f) ∩ supp(g) = ∅, then f ̸= g. Otherwise, for (i0, k) ∈ supp(f) ∩ supp(g),

(i0, k)f = (i0σ, q) ̸= (i0ρ, t) = (i0, k)g.

Assume σ = ρ but p ̸= s, then clearly supp(f) ̸= supp(g). Thus, distinct choices of

σ and (p, q) determine distinct affine maps of n-support. Hence the result.
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Following remarks are immediate from the proof of Theorem 2.1.6.

Remark 2.1.7. If f ∈ Aff(Bn) such that ϑ ∈ supp(f), then f is a nonzero constant

map.

Remark 2.1.8. Given f ∈ Aff(Bn)n, there exist k, q ∈ [n] and σ ∈ Sn such that

supp(f) = {(i, k) | i ∈ [n]}, Im(f) = {(iσ, q) | i ∈ [n]} ∪ {ϑ} and (i, k)f = (iσ, q),

for all i ∈ [n].

Definition 2.1.9. For f ∈ Aff(Bn)n, a representation of f is defined by a triplet

(k, q; σ), where the parameters k, q and σ are as per Remark 2.1.8.

Remark 2.1.10. An affine decomposition for (p, q; σ) is ϕσ + ξ(pσ,q), where ϕσ is as

per Remark 2.1.2. Furthermore, for f ∈ Aut(Bn), f + ξ(r,s) is an n-support map

represented by (rρ−1, s; ρ), where f = ϕρ, for some ρ ∈ Sn.

2.2 Classification of elements in A+(Bn)

In this section, first we study certain fundamental properties of elements in A+(Bn).

We conclude the section by obtaining the cardinality of A+(Bn) along with a clas-

sification of its elements (cf. Theorem 2.2.10).

Proposition 2.2.1. If f ∈ A+(Bn) and ϑ ∈ supp(f), then f is a nonzero constant

map.

Proof. For f ∈ A+(Bn), write f = f1+ · · ·+fm where each fj ∈ Aff(Bn). If ϑf ̸= ϑ,

then each fj must be a nonzero constant map (cf. Remark 2.1.7) and hence f is a

nonzero constant map.

It is clear that any nonzero constant map in M(Bn) is of full support. The

following corollary of Proposition 2.2.1 ascertains that the converse holds in case of

the elements in A+(Bn).
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Corollary 2.2.2. If f ∈ A+(Bn)n2+1, then f ∈ CBn. Hence, |A+(Bn)n2+1| = n2.

Proposition 2.2.3. If f, g ∈ Aff(Bn)n and (ξϑ ̸=) h ∈ CBn, then we have

1. |supp(g + f)| = 0 or 1,

2. |supp(h+ f)| = 1,

3. |supp(f + h)| = 0 or n.

Proof. Let (k, q;σ) and (k′, q′;σ′) be the representations of f and g, respectively and

h = ξ(r,s), for r, s ∈ [n].

1. If k ̸= k′, then supp(f) ∩ supp(g) = ∅ and clearly, |supp(g + f)| = 0.

Otherwise,

supp(f) = supp(g) = {(i, k) | 1 ≤ i ≤ n}.

Since σ is a permutation on [n], let j be the unique element in [n] such that

jσ = q′. Now,

(j, k)(g + f) = (jσ′, q′) + (jσ, q) = (jσ′, q)

and, for i ∈ [n] with i ̸= j, (i, k)(g + f) = ϑ. Thus, supp(g + f) = {(j, k)}.

2. Since σ is a permutation on [n], there is a unique t ∈ [n] such that tσ = s.

Now,

(t, k)(h+ f) = (t, k)ξ(r,s) + (t, k)f = (r, s) + (tσ, q) = (r, q)

and, for all α ∈ Bn \ {(t, k)}, α(h+ f) = ϑ. Thus, |supp(h+ f)| = 1.

3. If q ̸= r, then clearly, α(f + h) = ϑ, for all α ∈ Bn, so that |supp(f + h)| = 0.

Otherwise, for all 1 ≤ i ≤ n,

(i, k)(f + h) = (iσ, q) + (r, s) = (iσ, s)

and, for all α ∈ Bn \ supp(f), α(f + h) = ϑ. Hence, |supp(f + h)| = n.
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Lemma 2.2.4. For f ∈ M(Bn) and k, l, p, q ∈ [n], if (k, l)f = (p, q) and αf = ϑ

for all α ∈ Bn \ {(k, l)}, then f ∈ A+(Bn)1. Hence, |A+(Bn)1| = n4.

Proof. It is sufficient to prove that f is a finite sum of affine maps. Consider a

permutation σ on [n] such that kσ = q and then consider g ∈ Aff(Bn)n whose

representation is (l, q; σ). Note that ξ(p,q) + g ∈ A+(Bn). Moreover,

(k, l)(ξ(p,q) + g) = (p, q) + (kσ, q) = (p, q)

and, for (i, l) ∈ supp(g) with i ̸= k, (i, l)(ξ(p,q) + g) = (p, q) + (iσ, q) = ϑ, as iσ ̸= q.

Further, it is clear that α(ξ(p,q) + g) = ϑ, for all α /∈ supp(g). Hence, ξ(p,q) + g = f .

Consequently, |A+(Bn)1| is the number of choices of k, l, p, q ∈ [n], as desired.

Notation 2.2.5. We use (k,l)ζ(p,q) to denote the singleton support map f whose supp(f) =

{(k, l)} and Im(f) \ {ϑ} = {(p, q)}.

In view of the proof of Lemma 2.2.4, we have the following remark.

Remark 2.2.6. Every singleton support map can be written as sum of a constant

map and an n-support affine map. For instance, (k,l)ζ(p,q) = ξ(p,q) + g, where g =

(l, q; σ) such that kσ = q.

Lemma 2.2.7. If f ∈ A+(Bn) \ Aff(Bn), then |supp(f)| = 1.

Proof. Suppose that f = f1+· · ·+fm ∈ A+(Bn)\Aff(Bn) withm ≥ 2 and fi = gi+hi,

for some gi ∈ End(Bn) and hi ∈ CBn . In view of Theorem 2.1.6, for each i, either

fi ∈ CBn or fi ∈ Aff(Bn)n. Clearly, none of the fi’s can be ξϑ. For all i ≥ 2, if fi’s

are nonzero constant maps, then f = g1 + ξ, where ξ = h1 + f2 + · · ·+ fm ∈ CBn so

that f ∈ Aff(Bn); this contradicts the choice of f . On the other hand, fj ∈ Aff(Bn)n

for some j ≥ 2. Note that |supp(f)| ≤ |supp(hj−1 + fj)|. Hence, by Proposition

2.2.3(2), |supp(f)| ≤ 1; consequently, |supp(f)| = 1.

In view of Theorem 2.1.6, we have the following corollaries of Lemma 2.2.7.
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Corollary 2.2.8. For n ≥ 3 and 1 < k < n, A+(Bn)k = ∅.

Corollary 2.2.9. For n ≥ 1, f ∈ Aff(Bn)n ⇐⇒ f ∈ A+(Bn)n. Hence, |A+(Bn)n| =

(n!)n2.

Now, combining the results from Corollary 2.2.2 through Corollary 2.2.9, we have

the following main result of the section.

Theorem 2.2.10. For n ≥ 2, |A+(Bn)| = (n! + 1)n2 + n4 + 1. In fact, we have the

following breakup of the elements of A+(Bn).

1. The number of mappings of full support is n2.

2. The number of mappings of n-support is (n!)n2.

3. The number of mappings of singleton support is n4.

4. The number of mappings of 0-support is 1.

Remark 2.2.11. For n = 1, End(Bn) = Aff(Bn) = A+(Bn) = {(1, 1; id)} ∪ CBn ,

where id is the identity permutation on [n].



3
Semigroup Structure

In order to study the structure of the affine near-semiring over a Brandt semigroup,

this chapter considers its both the semigroup reducts and ascertain their structural

properties. In this connection, this work completely characterizes the Green’s classes

of the additive semigroup reduct in Section 3.1 and the multiplicative semigroup

reduct in Section 3.2. Along with these characterizations, the sizes of all Green’s

classes are reported. Further, in the respective sections, idempotent elements and

regular elements of the semigroup reducts of A+(Bn) have also been characterized

and studied some relevant semigroups in A+(Bn). It is also ascertained that the

additive semigroup reduct is eventually regular and the multiplicative semigroup

reduct is orthodox.

29
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3.1 The semigroup A+(Bn)
+

In what follows, the additive semigroup reduct (A+(Bn),+) of the affine near-

semiring (A+(Bn),+, ◦) is denoted by A+(Bn)
+
. Further, in a particular context, if

there is no emphasis on the semigroup, we may simply write A+(Bn).

3.1.1 Green’s classes

In this subsection, we study all the Green’s relations R, L, D, J and H on the

semigroup A+(Bn)
+
. Since A+(Bn)

+
is a finite semigroup, the Green’s relations J

and D coincide on A+(Bn)
+
(cf. Proposition 1.1.30). We begin with the following

result which is useful in characterizing the Green’s classes of A+(Bn)
+
.

Proposition 3.1.1. In A+(Bn)
+
, we have the following.

1. The set of constant maps CBn is a subsemigroup which is isomorphic to Bn.

2. The set A+(Bn)1 ∪ {ξϑ} is an ideal which is isomorphic to the 0-direct union

of n2 copies of Bn.

Hence, both the subsemigroups are regular.

Proof.

1. The assignment α 7→ ξα : Bn −→ CBn is an isomorphism.

2. Observe that, by Lemma 1.1.58, A+(Bn)1 ∪ {ξϑ} is an ideal. Consider the

semigroup Z which is 0-direct union of the collection {B(i,j)
n | (i, j) ∈ [n]× [n]}

of n2 copies of Bn indexed by [n] × [n]. For the nonzero elements of Z, we

write (p, q)(i,j) to denote the element (p, q) which is in the (i, j)th copy of Bn.

Now, the assignment (k,l)ζ(p,q) 7→ (p, q)(k,l) and ξϑ 7→ ϑ is clearly a semigroup

isomorphism from A+(Bn)1 ∪ {ξϑ} to Z.

Regularity of these semigroups follows from the regularity of Bn.
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Lemma 3.1.2. Let f and g be two mappings in the semigroup (M(Bn),+). If fRg

(or fLg), then supp(f) = supp(g).

Proof. If f = g, the result is straightforward. Otherwise, if fRg, then there exist

h, h′ ∈ M(Bn) such that f + h = g and g + h′ = f . By Lemma 1.1.58,

supp(g) = supp(f + h) ⊆ supp(f)

and

supp(f) = supp(g + h′) ⊆ supp(g).

Hence, supp(f) = supp(g). Similarly, if fLg, then supp(f) = supp(g).

Definition 3.1.3. For f ∈ M(Bn), an image invariant of f , denoted by ii(f), is

defined as the number q ∈ [n], if exists, such that

Im(f) \ {ϑ} = {(i, q) | i ∈ X}

for some X ⊆ [n].

Remark 3.1.4. From Theorem 2.2.10, it can be observed that every nonzero ele-

ment of A+(Bn) has an image invariant.

Definition 3.1.5. For 1 ≤ i ≤ 2, let πi : [n]× [n] → [n] be the ith projection map.

That is, (p, q)π1 = p and (p, q)π2 = q, for all (p, q) ∈ [n]× [n].

Now, we characterize the Green’s relations R, L and D on A+(Bn)
+
classified

by the supports of its elements.

Theorem 3.1.6. For f, g ∈ A+(Bn)1 ∪ A+(Bn)n2+1, we have

1. fRg if and only if supp(f) = supp(g) and αfπ1 = αgπ1, ∀α ∈ supp(f),

2. fLg if and only if supp(f) = supp(g) and αfπ2 = αgπ2, ∀α ∈ supp(f),

3. fDg if and only if supp(f) = supp(g).
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Proof.

1. In view of Lemma 3.1.2, if both f, g are in A+(Bn)n2+1 or in A+(Bn)1, the

characterization follows from Proposition 3.1.1 and Remark 1.1.53.

2. Similar to (1).

3. Clearly, fDg implies supp(f) = supp(g). The converse follows from Proposi-

tion 3.1.1 and Remark 1.1.53.

Theorem 3.1.7. For f, g ∈ A+(Bn)n, we have

1. fRg if and only if supp(f) = supp(g) and αfπ1 = αgπ1, ∀α ∈ supp(f),

2. Lf = {f},

3. fDg if and only if fRg.

Proof. Clearly, (3) follows from (2). We shall prove (1) and (2) in the following.

1. For f, g ∈ A+(Bn)n, by Proposition 2.2.3(3), fRg if and only if there exist

ξ, ξ′ ∈ CBn such that f = g+ξ and g = f +ξ′. This implies that αfπ1 = αgπ1,

for all α ∈ supp(f) (= supp(g), by Lemma 3.1.2). For the converse, let

ii(f) = l and ii(g) = m (cf. Remark 3.1.4). Choose the functions h = ξ(l,m)

and h′ = ξ(m,l). We show, simultaneously, that supp(f + h) = supp(g) and

α(f+h) = αg, for all α ∈ supp(g). Note that supp(f+h) ⊆ supp(f) = supp(g)

(cf. Lemma 1.1.58). Let α ∈ supp(g). Then, αf ̸= ϑ so that αf = (k, l) for

some k ∈ [n], as ii(f) = l. Thus, since αfπ1 = αgπ1 and ii(g) = m, we have

αg = (k,m). Now,

α(f + h) = αf + αh = (k, l) + (l,m) = (k,m) = αg.

Hence, α ∈ supp(f +h) and f +h = g. Similarly, we can prove that g+h′ = f

so that fRg.



3.1 The semigroup A+(Bn)
+

33

2. If n = 1, the result is straightforward. For n ≥ 2, let g ∈ Lf with g ̸= f . Then

there exists h ∈ A+(Bn) such that h+ f = g. However, by Proposition 2.2.3,

|supp(h+ f)| ≤ 1; a contradiction. Thus, Lf = {f}.

In view of Theorem 2.2.10, we have the following corollary of theorems 3.1.6 and

3.1.7.

Corollary 3.1.8. For n ≥ 2, we have the following.

1. The number of R-classes in A+(Bn)
+
is (n!)n+ n3 + n+ 1.

2. The number of L-classes in A+(Bn)
+
is (n!)n2 + n3 + n+ 1.

3. The number of D-classes in A+(Bn)
+
is (n!)n+ n2 + 2.

Proof.

1. Other than the class {ξϑ}, by Theorem 3.1.6(1), there are n and n3 R-classes

containing the full support maps and singleton support maps, respectively.

Further, by Theorem 3.1.7(1), (n!)n R-classes are present in A+(Bn)n (each is

of size n). Hence, we have the total number.

2. Similar to above (1), by Theorem 3.1.6(2), there are n3 + n + 1 L-classes

containing singleton support and constant maps. And the remaining number

(n!)n2 is the number of L-classes containing n-support maps (cf. Theorem

3.1.7(2)).

3. Other than the class {ξϑ}, by Theorem 3.1.6(3), all the full support elements

form a single D-class and there are n2 D-classes (each is of size n2) containing

singleton support elements. Including (n!)n D-classes which are present in

A+(Bn)n (cf. Theorem 3.1.7(3) and above (1)), we have (n!)n + n2 + 2 D-

classes in A+(Bn)
+
.
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Remark 3.1.9. Since α+α = α+α+α, for all α ∈ Bn, we have f+f = f+f+f , for

all f in the semigroup (M(Bn),+). Consequently, any subsemigroup of (M(Bn),+)

is aperiodic.

Hence, by Remark 3.1.9 and Proposition 1.1.33, we have the following proposi-

tion.

Proposition 3.1.10. The Green’s relation H is trivial on the semigroup A+(Bn)
+
.

Remark 3.1.11. Proposition 3.3(e) in [Gilbert and Samman, 2010b], given for

endomorphism near-semirings, also follows immediately from Remark 3.1.9.

3.1.2 Regular elements and idempotents

In this subsection, we characterize the regular and idempotent elements in A+(Bn)
+

and ascertain that A+(Bn)
+
is eventually regular. We observe that the set of regular

elements in A+(Bn)
+
forms an inverse semigroup.

Theorem 3.1.12. For n ≥ 2,

1. f ∈ A+(Bn)
+
is of k-support with k ̸= n if and only if f is regular;

2. I(A+(Bn)
+
) = {ξα |α ∈ I(Bn)} ∪

{
(i,j)ζ(k,k)

∣∣ i, j, k ∈ [n]
}
.

Proof.

1. In view of Proposition 3.1.1, it is sufficient to show that n-support elements are

not regular. For f ∈ A+(Bn)n, if there is a g ∈ A+(Bn) such that f+g+f = f ,

then, by Proposition 2.2.3, |supp(f + g+ f)| ≤ 1; a contradiction. Hence, f is

not regular.

2. Since I(Bn) = {(k, k) | k ∈ [n]} ∪ {ϑ}, by Proposition 3.1.1,

I(CBn) = {ξα | α ∈ I(Bn)}
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and

I(A+(Bn)1) =
{

(i,j)ζ(k,k)
∣∣ i, j, k ∈ [n]

}
.

Further, for f ∈ A+(Bn)n, since |supp(f+f)| = 1 (cf. Proposition 2.2.3), f+f

cannot be f . Hence, the idempotents of A+(Bn)
+
are merely in CBn∪A+(Bn)1.

Corollary 3.1.13. The semigroup A+(Bn)
+
has n3+n+1 idempotents and n4+n2+1

regular elements.

For n ≥ 2, since n-support elements in A+(Bn)
+
are not regular, the semigroup

A+(Bn)
+
is not a regular semigroup. However, in the following proposition, we prove

that A+(Bn)
+
is eventually regular, i.e. for every f ∈ A+(Bn)

+
, we observe that

there is a number m such that mf (= f + · · ·+ f for m times) is regular [Edwards,

1983].

Proposition 3.1.14. The semigroup A+(Bn)
+
is eventually regular.

Proof. In view of Theorem 3.1.12, it remains to show that, for each f ∈ A+(Bn)n,

there is a number m such that mf is regular. Now, for f ∈ A+(Bn)n, since f + f ∈

A+(Bn)1 (cf. Proposition 2.2.3), we have 2f is regular. Hence, the semigroup

A+(Bn)
+
is eventually regular.

For n ≥ 2, let K be the set of regular elements in A+(Bn)
+
. By Theorem 3.1.12,

K = A+(Bn) \ A+(Bn)n. Further, by Theorem 3.1.12(2), all the idempotents of

A+(Bn)
+
are in K. We prove the following theorem concerning the set K.

Theorem 3.1.15. The semigroup (K,+) is an inverse semigroup.

Proof. Let f, g ∈ K. If one of them is the zero map, then |supp(f + g)| = 0. If one

of them is of singleton support, then by Lemma 1.1.58, |supp(f + g)| ≤ 1. If both

f and g are of full support, then |supp(f + g)| = n2 + 1 or 0. Thus, in any case,

f + g ∈ K. Hence, (K,+) is a regular semigroup.
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Referring to Theorem 1.1.44, it is sufficient to show that the idempotents in K

commute. Let f, g ∈ I(K). If one of them is the zero map, then f + g = g+ f = ξϑ.

Otherwise, we have the following cases.

Case 1 |supp(f)| = |supp(g)|. Then,

f + g = g + f =

f if f = g;

ξϑ otherwise.

Case 2 |supp(f)| ̸= |supp(g)|. Say, |supp(f)| = n2 + 1 and |supp(g)| = 1. Then,

f + g = g + f =

g if Im(f) = Im(g) \ {ϑ};

ξϑ otherwise.

Thus, I(K) is commutative. Hence, (K,+) is an inverse semigroup

3.2 The semigroup A+(Bn)
◦

In the rest of the thesis, the multiplicative semigroup reduct (A+(Bn), ◦) of the

affine near-semiring (A+(Bn),+, ◦) is denoted by A+(Bn)
◦
. Further, in a particular

context, if there is no emphasis on the semigroup, we may simply write A+(Bn).

3.2.1 Green’s classes

As mentioned earlier in the case of A+(Bn)
+
, the Green’s relations J and D coincide

also on the semigroup A+(Bn)
◦
. In this subsection, we study the Green’s relations

R, L, D and H on A+(Bn)
◦
.

It is easy to observe that A+(Bn)1∪{ξϑ} and CBn are subsemigroups of A+(Bn)
◦
.

Further, in this subsection, we prove that A+(Bn)n ∪ {ξϑ} is also a subsemigroup of

A+(Bn)
◦
. We begin with the structural properties these subsemigroups of A+(Bn)

◦
.
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Remark 3.2.1. The semigroup (CBn , ◦) has right zero multiplication, i.e. fg = g,

for all f, g ∈ CBn . Consequently, (CBn , ◦) is regular.

Proposition 3.2.2. The semigroup (A+(Bn)1 ∪ {ξϑ}, ◦) is isomorphic to (Bn2 ,+).

Hence, (A+(Bn)1 ∪ {ξϑ}, ◦) is regular.

Proof. Clearly, the assignment (k,l)ζ(p,q) 7→ ((k, l), (p, q)) and ξϑ 7→ ϑ is a semigroup

isomorphism from (A+(Bn)1 ∪ {ξϑ}, ◦) to (Bn2 ,+). Hence, since the semigroup

(Bn2 ,+) is regular, (A+(Bn)1 ∪ {ξϑ}, ◦) is regular.

Lemma 3.2.3. For n ≥ 2, let f, gi(1 ≤ i ≤ k) ∈ A+(Bn) \ {ξϑ} such that f =

g1g2 · · · gk. Then, f ∈ A+(Bn)n if and only if gi ∈ A+(Bn)n for all i.

Proof. Suppose f ∈ A+(Bn)n. Clearly, gi /∈ CBn for all i. If gj ∈ A+(Bn)1, for some

j, then clearly |supp(f)| ≤ 1. Hence, by Theorem 2.2.10, we have gi ∈ A+(Bn)n for

all i. Conversely, for 1 ≤ i ≤ k, suppose gi = (pi, qi; σi). For 1 ≤ i ≤ k−1, note that

gigi+1 is either ξϑ or (pi, qi+1; σiσi+1), where qi = pi+1. Consequently, since f ̸= ξϑ,

we have f = (p1, qk; σ1σ2 · · ·σk) ∈ A+(Bn)n.

In view of Lemma 3.2.3, A+(Bn)n∪{ξϑ} is a subsemigroup of A+(Bn)
◦
. Further,

we have the following proposition regarding A+(Bn)n ∪ {ξϑ}.

Proposition 3.2.4. The semigroup A+(Bn)n∪{ξϑ} is isomorphic to the semigroup

(B(Sn, n),+).

Proof. Note that the assignment (i, j;σ) 7→ (i, σ, j) and ξϑ 7→ ϑ, for all i, j ∈ [n] and

σ ∈ Sn, is an isomorphism.

Lemma 3.2.5. If g is a nonconstant map in A+(Bn), then supp(fg) ⊆ supp(f).

Proof. If fg is the zero map, then the result is straightforward. Let fg ̸= ξϑ and

α ∈ supp(fg). Then, ϑ ̸= α(fg) = (αf)g so that αf ∈ supp(g). Since g is

not a constant map, by Proposition 2.2.1, αf ̸= ϑ so that α ∈ supp(f). Hence,

supp(fg) ⊆ supp(f).
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We present a characterization of the Green’s relation R on A+(Bn)
◦
in the fol-

lowing theorem.

Theorem 3.2.6. For f, g ∈ A+(Bn)
◦
, we have

1. if f, g ∈ CBn, then fRg;

2. if f, g ̸∈ CBn, then fRg ⇐⇒ supp(f) = supp(g).

Moreover, for n ≥ 2, the number of R-classes in A+(Bn)
◦
is n2 + n+ 1.

Proof.

1. By Remark 3.2.1, any two elements of CBn are R-related. Thus, CBn has a

single R-class containing all the constant maps.

2. If fRg with f ̸= g, then there exist h, h′ ∈ A+(Bn) such that fh = g and

gh′ = f . Note that h and h′ are nonconstant maps; otherwise, f and g will

be constant maps. Now, by Lemma 3.2.5, supp(g) = supp(fh) ⊆ supp(f) and

supp(f) = supp(gh′) ⊆ supp(g). Hence, supp(f) = supp(g).

Conversely, suppose supp(f) = supp(g). If f, g ∈ A+(Bn)1, by Remark 1.1.53

and Proposition 3.2.2, we get fRg. Consequently, A+(Bn)1 has n2 R-classes

each of size n2. On the other hand, f, g ∈ A+(Bn)n. Then, by Proposition

3.2.4 and Lemma 1.1.51, we have fRg. Consequently, A+(Bn)n contains n

R-classes each of size (n!)n.

Hence, for n ≥ 2, the number of R-classes in A+(Bn)
◦
is n2 + n+ 1.

We present a characterization of the Green’s relation L on A+(Bn)
◦
in the fol-

lowing theorem.

Theorem 3.2.7. For f, g ∈ A+(Bn)
◦
, fLg ⇐⇒ Im(f) = Im(g). Moreover, for

n ≥ 2, the number of L-classes in A+(Bn)
◦
is 2n2 + n+ 1.
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Proof. If fLg with f ̸= g, then there exist h, h′ ∈ A+(Bn) such that hf = g and

h′g = f . Since Im(g) = Im(hf) ⊆ Im(f) and Im(f) = Im(h′g) ⊆ Im(g), we have

Im(f) = Im(g).

Conversely, suppose Im(f) = Im(g) so that |supp(f)| = |supp(g)|. Clearly,

the L-classes in CBn are singletons. Consequently, CBn has n2 + 1 L-classes. If

f, g ∈ A+(Bn)1, by Remark 1.1.53 and Proposition 3.2.2, we have fLg and hence,

there are n2 L-classes in A+(Bn)1 each is of size n2. Otherwise, f, g ∈ A+(Bn)n.

Then, by Proposition 3.2.4 and Lemma 1.1.51, we have fLg. Consequently, we have

n R-classes containing n-support elements each is of size (n!)n.

Hence, for n ≥ 2, the number of L-classes in A+(Bn)
◦
is 2n2 + n+ 1.

Following characterization of the Green’s relation H on A+(Bn)
◦
is a corollary

of theorems 3.2.6 and 3.2.7.

Corollary 3.2.8. For f, g ∈ A+(Bn)
◦
, fHg if and only if Im(f) = Im(g) and

supp(f) = supp(g). Moreover, for n ≥ 2, the number of H-classes in A+(Bn)
◦
is

n4 + 2n2 + 1.

We characterize the Green’s relation D in the following theorem.

Theorem 3.2.9. For f, g ∈ A+(Bn)
◦
, fDg ⇐⇒ |supp(f)| = |supp(g)| or f, g ∈

CBn. Hence, for n ≥ 2, the number of D-classes in A+(Bn)
◦
is 3.

Proof. For f, g ∈ A+(Bn)
◦
, observe that

fDg ⇒ there exists h ∈ A+(Bn)
◦
such that fLh and hRg

⇒ Im(f) = Im(h) and hRg (by Theorem 3.2.7)

⇒ |supp(f)| = |supp(h)| and (either supp(h) = supp(g) or h, g ∈ CBn)

(by Theorem 3.2.6)

⇒ either |supp(f)| = |supp(g)| or f, g ∈ CBn
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Conversely, if f, g ∈ CBn , then by Theorem 3.2.6, fRg so that fDg. If f, g ∈

A+(Bn)1, then, by Remark 1.1.53 and Proposition 3.2.2, fDg. Finally, let f, g ∈

A+(Bn)n. Then, by Proposition 3.2.4 and Remark 1.1.52, we have fDg.

Hence, for n ≥ 2, A+(Bn)
◦
has three D-classes, viz. CBn , A

+(Bn)1 and A+(Bn)n.

3.2.2 Regular elements and idempotents

In this subsection, we characterize the regular and idempotent elements in A+(Bn)
◦

and ascertain that A+(Bn)
◦
is regular. Moreover, it is an orthodox semigroup. We

observe that the set excluding the full support elements in A+(Bn)
◦
forms an inverse

semigroup.

Theorem 3.2.10. The semigroup A+(Bn)
◦
is regular.

Proof. The result follows from Remark 3.2.1, Proposition 3.2.2 and Proposition

3.2.4.

Now, in the following theorem, we identify the idempotent elements in A+(Bn)
◦

and count their number.

Theorem 3.2.11. For n ≥ 2,

I(A+(Bn)
◦
) = {ξα | α ∈ Bn} ∪ {(k, k; id) | k ∈ [n]} ∪

{
(i,j)ζ(i,j)

∣∣ i, j ∈ [n]
}
.

Hence, |I(A+(Bn)
◦
)| = 2n2 + n+ 1.

Proof. By Remark 3.2.1, clearly, all the n2+1 elements of (CBn , ◦) are idempotents.

Since nonzero idempotents in Bn2 are of the form ((i, j), (i, j)), we have, n2 elements

of the form (i,j)ζ(i,j) are idempotents in A+(Bn)1. Observe that the idempotent

elements in A+(Bn)n are of the form (k, k; id), where k ∈ [n] and id is the identity

permutation on [n]. Thus, there are n idempotent elements in A+(Bn)n. Hence, for

n ≥ 2, the number of idempotents in A+(Bn)
◦
is 2n2 + n+ 1.
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Theorem 3.2.12. The semigroup A+(Bn)
◦
is orthodox.

Proof. In view of Theorem 3.2.10, it is sufficient to prove that I(A+(Bn)
◦
) is a

subsemigroup of A+(Bn)
◦
. Let f, g ∈ I(A+(Bn)

◦
). Note that if f or g is a constant

map, then fg is also a constant map and hence, fg is an idempotent element.

Otherwise, we consider the following cases to show that fg ∈ I(A+(Bn)
◦
).

Case 1 f, g ∈ A+(Bn)l, for l ∈ {1, n}. It can be observed that if f = g, then fg = f ;

otherwise, fg = ξϑ.

Case 2 f = (i,j)ζ(i,j) and g = (k, k; id). Observe that if j = k, then fg = gf = f ;

otherwise, fg = gf = ξϑ.

Thus, the set I(A+(Bn)
◦
) is closed with respect to composition. Hence, A+(Bn)

◦
is

an orthodox semigroup.

For n ≥ 2, let N = A+(Bn)\A+(Bn)n2+1. If f, g ∈ N , then by Proposition 2.2.1,

ϑ /∈ supp(f) ∩ supp(g). Hence, ϑ(fg) = ϑ so that |supp(fg)| ̸= n2 + 1. Thus, N

is closed with respect to composition. From the proof of Theorem 3.2.10, it can be

observed that (N, ◦) is regular. Also, from the proof of Theorem 3.2.12, the set I(N)

is closed with respect to composition. Further, note that (I(N), ◦) is a commutative

semigroup. Hence, we have the following theorem.

Theorem 3.2.13. The semigroup (N, ◦) is an inverse semigroup.

3.3 An example: A+(B2)

In this section, we illustrate our results using the affine near-semiring A+(B2). First

note that A+(B2) has 29 elements (cf. Theorem 2.2.10). The number of D-classes in

A+(B2)
+
is 10 and it is 3 in A+(B2)

◦
(cf. Corollary 3.1.8 and Theorem 3.2.9). The

number of L-classes in A+(B2)
+
is 19 and it is 11 in A+(B2)

◦
(cf. Corollary 3.1.8 and

Theorem 3.2.7). The number of R-classes in A+(B2)
+
is 15 and it is 7 in A+(B2)

◦
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* ξϑ

* ξ(1,1) ξ(1,2)

ξ(2,1) * ξ(2,2)

(1, 1; id) (1, 2; id)

(1, 1;σ) (1, 2;σ)

(2, 1; id) (2, 2; id)

(2, 1;σ) (2, 2;σ)

* (1,1)ζ(1,1)
(1,1)ζ(1,2)

(1,1)ζ(2,1) * (1,1)ζ(2,2)

* (1,2)ζ(1,1)
(1,2)ζ(1,2)

(1,2)ζ(2,1) * (1,2)ζ(2,2)

* (2,1)ζ(1,1)
(2,1)ζ(1,2)

(2,1)ζ(2,1) * (2,1)ζ(2,2)

* (2,2)ζ(1,1)
(2,2)ζ(1,2)

(2,2)ζ(2,1) * (2,2)ζ(2,2)

A+(B2)
+

* ξϑ * ξ(1,1) * ξ(1,2) * ξ(2,1) * ξ(2,2)

(1, 1;σ), * (1, 1; id) (1, 2; id), (1, 2;σ)

(2, 1; id), (2, 1;σ) (2, 2;σ), * (2, 2; id)

* (1,1)ζ(1,1)
(1,1)ζ(1,2)

(1,1)ζ(2,1)
(1,1)ζ(2,2)

(1,2)ζ(1,1) * (1,2)ζ(1,2)
(1,2)ζ(2,1)

(1,2)ζ(2,2)

(2,1)ζ(1,1)
(2,1)ζ(1,2) * (2,1)ζ(2,1)

(2,1)ζ(2,2)

(2,2)ζ(1,1)
(2,2)ζ(1,2)

(2,2)ζ(2,1) * (2,2)ζ(2,2)

A+(B2)
◦

The permutation σ maps 1 7→ 2 and 2 7→ 1; and id is the identity map on [2].

Figure 3.1: Egg-box Diagrams for A+(B2)
+
(left) and A+(B2)

◦
(right)

(cf. Corollary 3.1.8 and Theorem 3.2.6). Since the H-relation is trivial on A+(B2)
+
,

all the 29 elements are in 29 different classes. The number of H-classes in A+(B2)
◦

is 25 (cf. Corollary 3.2.8). All this information along with the respective Green’s
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classes of both the semigroups A+(B2)
+
and A+(B2)

◦
are shown in Figure 3.1 using

egg-box diagrams. Here, following the notations/representaions introduced in this

thesis, the elements of A+(B2) are displayed with their supports and images. Thus,

the characterizations of the respective Green’s relations can also be crosschecked in

this figure. Further, in the figure, the idempotents elements in these semigroups are

marked with a * on their left-top corner.





4
Rank Properties

In order to study the rank properties of a finite semigroup, Howie and Ribeiro [1999,

2000] have considered the notions of small rank, lower rank, intermediate rank,

upper rank and large rank of a finite semigroup. Many authors have studied the

rank properties of various semigroups (e.g. Cameron and Cara [2002]; Gomes and

Howie [1987, 1992]; Minisker [2009]; Mitchell [2002]; Ruškuc [1994]). In this chapter,

we investigate the rank properties of both the semigroup reducts of A+(Bn). After

recalling the requisite notions in Section 4.1, we introduce a novel approach to find

the large rank of a finite semigroup in Section 4.2. We obtain the five ranks for the

additive semigroup reduct in Section 4.3. The rank properties of the multiplicative

semigroup reduct are investigated in Section 4.4.

45
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4.1 Ranks of a semigroup

In this section, we recall various types of ranks of a finite semigroup from [Howie

and Ribeiro, 1999, 2000]. These ranks depend on the concept of independent sets in

general algebras by Marczewski [1966]. We will begin with the notion of independent

set in semigroups.

Definition 4.1.1. A subset U of a semigroup S is said to be independent if every

element of U is not in the subsemigroup generated by the remaining elements of U ,

i.e.

∀a ∈ U, a /∈ ⟨U \ {a}⟩.

Remark 4.1.2. Though the notion of independence is analogous to that of in linear

algebra, the minimum size of a generating set need not be equal to the maximum

size of an independent set in general algebras, in particular in a semigroup. Please

see Example 4.1.3.

Example 4.1.3. The subset {2, 3} of the (additive) cyclic group Z6 is independent,

but the minimum cardinality of a generating set for Z6 is one.

In view of Remark 4.1.2, Howie and Ribeiro [1999, 2000] have considered the

following possible definitions of ranks for a finite semigroup.

Definition 4.1.4. The ranks of a finite semigroup S are defined as follows.

1. r1(S) = max{k : every subset U of cardinality k in S is independent},

2. r2(S) = min{|U | : U ⊆ S, ⟨U⟩ = S},

3. r3(S) = max{|U | : U ⊆ S, ⟨U⟩ = S, U is independent},

4. r4(S) = max{|U | : U ⊆ S, U is independent},

5. r5(S) = min{k : every subset U of cardinality k in S generates S}.
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The following proposition by Howie and Ribeiro [1999, 2000] is immediate from

Definition 4.1.4.

Proposition 4.1.5. For a finite semigroup S, we have

r1(S) ≤ r2(S) ≤ r3(S) ≤ r4(S) ≤ r5(S).

In view of Proposition 4.1.5, the following nomenclature is adopted by Howie

and Ribeiro [1999, 2000] for the ranks of a finite semigroup.

Definition 4.1.6. For a finite semigroup S, the ranks r1(S), r2(S), r3(S), r4(S) and

r5(S) are, respectively, known as small rank, lower rank, intermediate rank, upper

rank and large rank of S. The lower rank is commonly known as the rank of a

semigroup.

Further, we use the following terminology in this chapter.

Notation 4.1.7.

1. An independent set with maximum cardinality is called as maximum indepen-

dent set.

2. An independent generating with maximum cardinality is called as maximum

independent generating set.

3. A generating set with minimum cardinality will be termed as a minimum

generating set.

4.2 A novel approach for large rank

We consider the complementary concept of subsemigroups, called prime subsets,

and give an approach to find the large rank of a finite semigroup. In this section, S

denotes a finite multiplicative semigroup.
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Definition 4.2.1. An element a of a semigroup S is said to be indecomposable if

there do not exist b, c ∈ S \ {a} such that a = bc.

The following result by Howie and Ribeiro provides us the connection between

the size of ceratin subsemigroups and the large rank of a finite semigroup.

Theorem 4.2.2 ([Howie and Ribeiro, 2000]). Let S be a finite semigroup and let V

be a proper subsemigroup of S with the largest possible size. Then r5(S) = |V | + 1.

Hence, r5(S) = |S| if and only if S contains an indecomposable element.

Using Theorem 4.2.2, Howie and Ribeiro obtained the large rank of Brandt semi-

group B(G,n) in a graph theoretic approach. Though their approach reveals nice

connection between digraphs and Brandt semigroups ([Howie and Ribeiro, 2000]),

the approach has its own limitations with respect to semigroups of transformations.

In a complementary approach using prime subsets of a semigroup, we propose to

overcome such a limitation.

Definition 4.2.3. A nonempty subset U of a semigroup S is said to be prime if,

for all a, b ∈ S,

ab ∈ U implies a ∈ U or b ∈ U.

Proposition 4.2.4. Let V be a proper subset of a finite semigroup S. Then V is a

smallest prime subset of S if and only if S \ V is a largest subsemigroup of S.

Proof. Note that S\V is not a subsemigroup of S if and only if there exist a, b ∈ S\V

such that ab ̸∈ S \V if and only if there exist a, b ̸∈ V such that ab ∈ V if and only if

V is not a prime subset. Now, for any X, Y ⊂ S, since |X|+ |S \X| = |Y |+ |S \Y |,

we have |X| < |Y | if and only if |S \ Y | < |S \X|. Hence, we have the result.

In view of Theorem 4.2.2, we have the following corollary of Proposition 4.2.4.

Corollary 4.2.5. Let V be a smallest proper prime subset of a finite semigroup S.

Then r5(S) = |S \ V |+ 1.
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Thus, the problem of finding the large rank of a finite semigroup is now reduced

to the problem of finding a smallest proper prime subset of the semigroup. We use

this technique to find the large ranks of both the semigroup reducts of A+(Bn) in

sections 4.3 and 4.4.

Other than the semigroups of transformations considered in this thesis, using

this technique, the large rank for the semigroup of order-preserving singular maps

is obtained in [Kumar and Krishna, 2014b]. Further, in that paper, it is observed

that the approach gives much shorter proof for the large rank of Brandt semigroup

B(G, n) than the proof given by Howie and Ribeiro [2000].

4.3 The semigroup A+(Bn)
+

In this section, after establishing certain useful properties for minimum generating

set and for maximum independent generating set, we investigates the rank properties

of the semigroup A+(Bn)
+
.

4.3.1 Small rank and lower rank

In this subsection, after quickly ascertaining the small rank r1 of A+(Bn)
+
, we will

obtain its lower rank r2. In view of Remark 2.2.11, it can be easily observed that

A+(B1) is an independent set and none of its proper subsets generates A+(B1).

Hence, for 1 ≤ i ≤ 5, we have

ri(A
+(B1)

+

) = |A+(B1)| = 3.

In the rest of the section, we shall investigate the ranks of A+(Bn)
+
, for n > 1.

The small rank of A+(Bn)
+
comes as a consequence of the following result due

to Howie and Ribeiro.

Theorem 4.3.1 ([Howie and Ribeiro, 2000]). Let S be a finite semigroup, with

|S| ≥ 2. If S is not a band, then r1(S) = 1.



50 Rank Properties

Owing to the fact that A+(Bn)
+
(for n ≥ 2) have some non idempotent elements,

it is not a band. For instance, the constant maps ξ(p,q) with p ̸= q in A+(Bn)
+
are

not idempotent. Hence, we have the following corollary of Theorem 4.3.1.

Corollary 4.3.2. For n ≥ 2, r1(A
+(Bn)

+
) = 1.

Now, in the remaining subsection, we construct a minimum generating set of

A+(Bn)
+
and obtain its lower rank in Theorem 4.3.9. Consider the subsets

S = {ξ(i,i+1) | i ∈ [n− 1]} ∪ {ξ(n,1)}

and

T = {g + h | g ∈ Aut(Bn), h ∈ S}

of A+(Bn). We develop a proof of Theorem 4.3.9 through a sequence of lemmas by

showing that the set S ∪ T serves our purpose.

Lemma 4.3.3. For n ≥ 2, ⟨S⟩ = CBn.

Proof. Let f ∈ CBn ; then, either f = ξϑ or f = ξ(i,j). If f = ξϑ, then, for p ∈ [n− 1],

write ξϑ = ξ(p,p+1) + ξ(p,p+1) so that f ∈ ⟨S⟩. If f = ξ(i,j), then, for i < j, we have

ξ(i,j) = ξ(i,i+1) + ξ(i+1,i+2) + · · ·+ ξ(j−1,j),

and, for i ≥ j,

ξ(i,j) = ξ(i,i+1) + ξ(i+1,i+2) + · · ·+ ξ(n−1,n) + ξ(n,1) + ξ(1,2) + · · ·+ ξ(j−1,j)

so that f ∈ ⟨S⟩.

Lemma 4.3.4. If X ⊆ A+(Bn) such that ⟨X⟩ = CBn, then ⟨X ∪ T ⟩ = A+(Bn)
+
.

Proof. Since the constant maps of A+(Bn) are generated by X, in view of Theorem

2.2.10, it is sufficient to prove that the n-support and singleton support elements

are generated by X ∪ T . However, since every singleton support map is a sum of a
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constant map and an n-support map (cf. Remark 2.2.6), we will now observe that

X ∪ T generates the n-support maps of A+(Bn).

Let f ∈ A+(Bn)n. By Remark 2.1.10 and Corollary 2.2.9, f = g + ξc for some

g ∈ Aut(Bn) and c ∈ Bn \ {ϑ}. By Lemma 4.3.3, write ξc =
k∑

i=1

fi, for some fi’s

from S so that

f = g +
k∑

i=1

fi = g + f1 +
k∑

i=2

fi.

Note that g+f1 ∈ T and each fi is a sum of elements of X. Hence, f ∈ ⟨X∪T ⟩.

Lemma 4.3.5. For g1, g2, g3 ∈ Aut(Bn) with g2 ̸= g3 and p, q, s, t ∈ [n] such that

p ̸= s, we have the following.

1. If f1 = g1 + ξ(p,q) and f ′
1 = g1 + ξ(s,t), then f1 ̸= f ′

1.

2. If f2 = g2 + ξ(p,q) and f3 = g3 + ξ(p,q), then f2 ̸= f3.

Hence, |T | = n(n!).

Proof. As per Corollary 2.1.3, for 1 ≤ i ≤ 3, let gi = ϕσi
so that f1, f

′
1, f2, f3 are

n-support maps represented by

(pσ−1
1 , q; σ1), (sσ

−1
1 , t;σ1), (pσ

−1
2 , q;σ2) and (pσ−1

3 , q; σ3),

respectively (cf. Remark 2.1.10).

(1) Since p ̸= s and σ1 is a permutation on [n], f1 and f ′
1 have different support

so that f1 ̸= f ′
1.

(2) If pσ−1
2 ̸= pσ−1

3 , then we are done. Otherwise, since σ2 ̸= σ3, there exists

i0 ∈ [n] such that i0σ2 ̸= i0σ3. Now,

(i0, pσ
−1
2 )f2 = (i0σ2, q) ̸= (i0σ3, q) = (i0, pσ

−1
3 )f3

so that f2 ̸= f3.

Now, since |Aut(Bn)| = n! (cf. Corollary 2.1.3) and there are n elements in S,

we have |T | = n(n!).
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Lemma 4.3.6. For n ≥ 2 and 1 ≤ i ≤ k, let f, fi ∈ A+(Bn) such that f =
k∑

i=1

fi.

1. If f ∈ A+(Bn)n2+1, then f1 ∈ Rf and fk ∈ Lf .

2. If f ∈ A+(Bn)n, then f1 ∈ Rf .

Proof. (1) If f ∈ A+(Bn)n2+1, then fi ∈ A+(Bn)n2+1, for all i (cf. Lemma 1.1.58).

Let f = ξ(p,q) and fi = ξ(pi,qi) so that

ξ(p,q) =
k∑

i=1

ξ(pi,qi).

Then clearly, for 1 ≤ i ≤ k − 1, qi = pi+1 and p1 = p, qk = q. Hence, by Theorem

3.1.6, f1 ∈ Rf and fk ∈ Lf .

(2) If f ∈ A+(Bn)n, then |supp(fi)| ≥ n, for all i (cf. Lemma 1.1.58). Then,

for each i, |supp(fi)| = n or n2 + 1 (cf. Theorem 2.2.10). Note that, there exists

j (1 ≤ j ≤ k) such that |supp(fj)| = n; otherwise, f will be a constant map. If

j ≥ 2, then, by Proposition 2.2.3, |supp(fj−1 + fj)| ≤ 1 so that |supp(f)| ≤ 1; a

contradiction. Thus, we have j = 1 and, for all i > 1, |supp(fi)| = n2 + 1.

Let (k, q; σ) and (k′, p; τ) be the representations of f and f1, respectively, and

k∑
i=2

fi = ξ(r,s)

for some r, s ∈ [n]. Then, note that p = r, k′ = k, τ = σ and s = q. Thus, f1 =

(k, r; σ) and
k∑

i=2

fi = ξ(r,q) for some r ∈ [n]. Hence, by Theorem 3.1.7, f1 ∈ Rf .

Lemma 4.3.7. Every generating subset of A+(Bn)
+
contains at least

1. n elements of full support, and

2. n(n!) elements of n-support.
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Proof. Let V be a generating subset of A+(Bn)
+
. For f ∈ A+(Bn), write f =

k∑
i=1

fi,

for some fi ∈ V .

(1) If f ∈ S, then by Lemma 4.3.6(1), f1 ∈ Rf so that Rf ∩ V ̸= ∅. Further,

one can observe that if g, h ∈ S with g ̸= h, then Rg ∩ Rh = ∅ (cf. Theorem

3.1.6(1)). Hence, for every element f ∈ S, the corresponding f1 is in V with the

above specified property. Consequently, since S has n full support elements, V will

have at least n full support elements.

(2) If f ∈ T , then by Lemma 4.3.6(2), we have Rf ∩ V ̸= ∅. For g, h ∈ T

with g ̸= h, we show that Rg ∩ Rh = ∅. In view of Remark 2.1.10, by considering

n mod n = n, write g = (rσ−1, r + 1 mod n;σ) and h = (sρ−1, s + 1 mod n; ρ).

Since g ̸= h, either σ ̸= ρ or r ̸= s. Hence, by Theorem 3.1.7(1), Rg ̸= Rh in either

case. Hence, for every element f ∈ T , the corresponding f1 is in V with the above

specified property so that |V | ≥ |T | = (n!)n.

In view of lemmas 4.3.3 and 4.3.4, we have the following corollary of Lemma

4.3.7.

Corollary 4.3.8. |S ∪ T | is the minimum such that ⟨S ∪ T ⟩ = A+(Bn)
+
.

Combining the results from Lemma 4.3.3 through Corollary 4.3.8, we have the

following main theorem of the subsection.

Theorem 4.3.9. For n ≥ 2, r2(A
+(Bn)

+
) = n(n! + 1).

4.3.2 Intermediate rank

In this subsection, after ascertaining certain relevant properties of independent gen-

erating sets of A+(Bn)
+
, we obtain its intermediate rank. We require the following

theorem regarding the intermediate rank of Bn in the sequel.

Theorem 4.3.10 ([Howie and Ribeiro, 1999]). For n ≥ 2, r3(Bn) = 2n− 2.
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Lemma 4.3.11. Let U be an independent generating subset of A+(Bn)
+
; then

1. A+(Bn)1 ∩ U = ∅,

2. |A+(Bn)n ∩ U | = n(n!),

3. n ≤ |A+(Bn)n2+1 ∩ U | ≤ 2n− 2.

Hence, |U | ≤ n(n!) + 2n− 2.

Proof.

1. Let f = (k,l)ζ(p,q) ∈ A+(Bn)1 ∩ U . Since U is a generating set, we have

ξ(p,r) ∈ ⟨U \ {f}⟩ and, for kσ = r, (l, q;σ) ∈ ⟨U \ {f}⟩ (cf. Lemma 1.1.58).

Note that f = ξ(p,r) + (l, q;σ) so that f ∈ ⟨U \ {f}⟩; a contradiction to U is

an independent set.

2. By Lemma 4.3.7(2), |A+(Bn)n ∩ U | ≥ n(n!). Since A+(Bn)n contains only

n(n!) R-classes (cf. Corollary 3.1.8), if U contain more than n(n!) elements of

n-support, then there exist distinct f, g ∈ A+(Bn)n ∩ U such that fRg. By

Theorem 3.1.7(1), f = (k, p;σ) and g = (k, p′; σ), for some σ ∈ Sn. Note that,

g = f + ξ(p,p′), where ξ(p,p′) ∈ ⟨U \ {g}⟩, so that g ∈ ⟨U \ {g}⟩; a contradiction

to independence of U . Hence, there are exactly n(n!) elements of n-support in

U .

3. By Lemma 4.3.7(1), |A+(Bn)n2+1 ∩U | ≥ n. Since Bn is isomorphic to CBn (cf.

Proposition 3.1.1), by Theorem 4.3.10, we have |A+(Bn)n2+1 ∩ U | ≤ 2n− 2.

Theorem 4.3.12. For n ≥ 2, r3(A
+(Bn)

+
) = n(n!) + 2n− 2.

Proof. First note that the set

S ′ = {ξ(1,i) | 2 ≤ i ≤ n} ∪ {ξ(j,1) | 2 ≤ j ≤ n}
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generates all constant maps in A+(Bn)
+
. For instance, ξϑ = ξ(1,2)+ξ(1,2) and ξ(1,1) =

ξ(1,2) + ξ(2,1). Now, for p, q ∈ [n], clearly ξ(1,p) and ξ(q,1) ∈ ⟨S ′⟩. Further, since

ξ(p,q) = ξ(p,1) + ξ(1,q), we have ξ(p,q) ∈ ⟨S ′⟩.

Hence, by Lemma 4.3.4, the set V = S ′ ∪ T is a generating set of A+(Bn)
+
. We

show that V is also an independent set. Since |V | = n(n!) + 2n − 2, by Lemma

4.3.11, the theorem follows.

V is an independent set : For f ∈ V , suppose f =
k∑

i=1

fi with fi ∈ V \ {f}.

Then, by Lemma 4.3.6, f1 ∈ Rf . If f ∈ S ′ ∪ T , in the following, we observe that

f = f1; which is a contradiction so that f /∈ ⟨V \ {f}⟩.

If f = ξ(q,1) ∈ S ′ (for some 2 ≤ q ≤ n), then f1 = ξ(q,l), for some l ∈ [n] (cf.

Theorem 3.1.6(1)). Hence, f1 = f (cf. construction of S ′). For 2 ≤ p ≤ n, if

f = ξ(1,p), the argument is similar.

If f = (k, p;σ) ∈ T (for some k, p ∈ [n], σ ∈ Sn), again by Theorem 3.1.7(1),

f1 = (k, s; σ) for some s ∈ [n]. Consequently, f = f1 (cf. construction of T ).

4.3.3 Upper rank

It is always difficult to identify the upper rank of a semigroup and we observe

that A+(Bn)
+

is also not an exception. In order to investigate the upper rank

r4(A
+(Bn)

+
), in this subsection, first we obtain a lower bound for the upper rank

and eventually we prove that this lower bound is indeed the r4(A
+(Bn)

+
), for n ≥ 6.

We also report an independent set of 14 elements in A+(B2)
+
.

Theorem 4.3.13. For n ≥ 2, I = A+(Bn)n ∪ {ξ(i,i) : i ∈ [n]} is an independent set

in A+(Bn)
+
. Hence, by Theorem 2.2.10, r4(A

+(Bn)
+
) ≥ (n!)n2 + n.

Proof. For f ∈ I, suppose f =
k∑

j=1

fj, for fj ∈ I. We prove that f1 = f so that

f /∈ ⟨I \ {f}⟩. Let f = ξ(i,i); then clearly fj = f for all j. We may now suppose

f ∈ A+(Bn)n and (k, p; σ) be the representation of f . By Lemma 4.3.6(2), f1 ∈ Rf
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and
k∑

i=2

fi = ξ(s,p) for some s ∈ [n]. Note that f1 = (k, s; σ) (cf. Theorem 3.1.7). If

s ̸= p, then ξ(s,p) /∈ ⟨I⟩; a contradiction. Hence, s = p so that f1 = f .

Corollary 4.3.14. A+(Bn)n is an independent subset of size (n!)n2 in A+(Bn)
+
.

Lemma 4.3.15. Let Q be an independent subset of Bn and

Q′ =
{
(k,l)ζα

∣∣ k, l ∈ [n] and α ∈ Q
}
;

then Q′ is an independent subset of A+(Bn)
+
.

Proof. For (k,l)ζα ∈ Q′, kj, lj ∈ [n] and αj ∈ Q suppose

(k,l)ζα =
k∑

j=1

(kj ,lj)ζαj
.

Clearly kj = k, lj = l for all j, and α =
k∑

j=1

αj. Since Q is independent, we have

α = αi for some i (1 ≤ i ≤ k). Consequently, (k,l)ζα /∈ ⟨Q′ \ {(k,l)ζα}⟩ so that Q′ is an

independent set.

Using the upper rank of Bn given in the following theorem, we would obtain the

upper rank of CBn in Remark 4.3.17.

Theorem 4.3.16 (Howie and Ribeiro [1999]). For n ≥ 2, r4(Bn) = ⌊n2/4⌋ + n.

Remark 4.3.17. Since Bn is isomorphic to the semigroup CBn , we have

r4(CBn) = ⌊n2/4⌋ + n.

In view of Remark 4.3.17, we have the following corollary of Lemma 4.3.15.

Corollary 4.3.18. For n ≥ 2, the maximum size of an independent subset in

A+(Bn)1 is n2(⌊n2/4⌋ + n).

Remark 4.3.19. For fi ∈ A+(Bn), if
r∑

i=1

fi + ξ(p,p) +
s∑

i=r+1

fi is nonzero, then the

sum equals
s∑

i=1

fi.
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For n = 2, we provide a better lower bound in the following theorem.

Theorem 4.3.20. r4(A
+(B2)

+
) ≥ 14.

Proof. We claim that the 14-element set

P =
{
(k,l)ζα

∣∣ k, l ∈ [2] and α ∈ Q
}
∪ {ξ(1,1), ξ(2,2)},

where Q = {(1, 1), (1, 2), (2, 2)}, is an independent subset of the semigroup A+(B2)
+
.

For f ∈ P , suppose f =
k∑

j=1

fj, for fj ∈ P . If f = ξ(i,i), then fj = f for all j so

that f /∈ ⟨P \{f}⟩. Otherwise, f = (k,l)ζα for α ∈ Q. By Remark 4.3.19, the sum for

f can be reduced to a sum with only the singleton support elements of P . Hence,

from the proof of Lemma 4.3.15, P is independent.

Theorem 4.3.21. For n ≥ 6, r4(A
+(Bn)

+
) = (n!)n2 + n.

Proof. For n ≥ 6, if an independent subset K of A+(Bn)
+
contains a single support

map or a full support map of the form ξ(p,q), for p ̸= q, then

|K| < (n!)n2 + n.

Hence, the result follows by Theorem 4.3.13.

LetK be an independent subset of A+(Bn)
+
. By Corollary 4.3.14, Remark 4.3.17

and Corollary 4.3.18, we have |K| ≤ κ, where

κ = (n!)n2 +
⌊
n2/4

⌋
+ n+ n2(

⌊
n2/4

⌋
+ n).

Through the following cases, we observe that, out of κ (the maximum possible

number) elements, at least (n− 1)!(n− 1) elements will not be in K. Hence, since

n ≥ 6,

|K| ≤ κ− (n− 1)!(n− 1) < (n!)n2 + n.

Case 1: ξ(p,q) ∈ K with p ̸= q. For each σ ∈ Sn and l ∈ [n], since

(l, q;σ) = (l, p;σ) + ξ(p,q),
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the independent set K cannot contain (l, q; σ) and (l, p;σ) together. Thus, out of κ

elements, at least (n!)n elements will not be in K.

Case 2: (r,s)ζ(p,q) ∈ K. For each t ∈ [n] and σ, ρ ∈ Sn such that rσ = p and

rρ = t, since

(r,s)ζ(p,q) = (s, t; σ) + (s, q; ρ),

the independent set K cannot contain (s, t;σ) and (s, q; ρ) together.

Subcase 2.1 p = q. Except at t = q, for all other choices, none of the first terms is

equal to any of the second terms in the sums (s, t; σ)+(s, q; ρ). Thus, out of κ

elements, at least (n− 1)!(n− 1) elements (either first terms or second terms

in the sums) will not be in K.

Subcase 2.2 p ̸= q. In the similar lines of Subcase 2.1, at least (n − 1)!(n − 2)

elements will not be in K for the choices of t ∈ [n] \ {p, q}. If t ∈ {p, q}, the

set of second terms of the sums for t = p is equal to the set of first terms of the

sums for t = q, which is of size (n− 1)!. Thus, for t ∈ {p, q}, at least (n− 1)!

elements will not be in K. Hence, a total of at least (n− 1)!(n− 1) elements

will not be in K.

4.3.4 Large rank

In this subsection, we obtain the large rank of the semigroup A+(Bn)
+
. In view of

Theorem 4.2.2, we have the following remark regarding r5(A
+(B2)

+
).

Remark 4.3.22. Since ξ(1,2) is an indecomposable element in A+(B2)
+
, we have

r5(A
+(B2)

+

) = |A+(B2)| = 29.

However, as shown in the following proposition, there is no indecomposable ele-

ment in A+(Bn)
+
, for n ≥ 3.
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Proposition 4.3.23. For n ≥ 3, all the elements of A+(Bn)
+
are decomposable.

Proof. Refereing to Theorem 2.2.10, we give a decomposition of each element f ∈

A+(Bn)
+
in the following cases.

1. f is the zero map: ξϑ = ξ(p,q) + ξ(r,s), for q ̸= r.

2. f is a full or singleton support element: Let Im(f) \ {ϑ} = {(p, q)}. We have

f = g + h, where g, h ∈ A+(Bn) such that supp(f) = supp(g) = supp(h) and

Im(g) \ {ϑ} = {(p, r)}, Im(h) \ {ϑ} = {(r, q)}, for some r ̸= p, q.

3. f is an n-support map: Let f = (k, p; σ). Note that f = (k, q; σ) + ξ(q,p), for

q ̸= p.

Using Proposition 4.2.4 and Theorem 4.2.2, now we obtain the large rank of

A+(Bn)
+
in the following theorem.

Theorem 4.3.24. For n ≥ 2, r5(A
+(Bn)

+
) = (n!)n2 + n2 + n4 − n+ 3.

Proof. We show that the set V = {ξ(n,k) | 1 ≤ k ≤ n− 1} is a smallest prime subset

of A+(Bn)
+
. Since, |V | = n− 1, the result follows from Theorem 2.2.10.

V is a prime subset : For ξ(i,j), ξ(l,k) ∈ A+(Bn), if ξ(i,j) + ξ(l,k) ∈ V , then i = n,

j = l and 1 ≤ k ≤ n− 1. If l = n, then clearly ξ(l,k) ∈ V ; otherwise, ξ(i,j) ∈ V .

V is a smallest prime subset : Let U be a prime subset of A+(Bn)
+
such that

|U | < |V |. If U ⊂ V , then let ξ(n,q) ∈ V \ U . Now, for ξ(n,p) ∈ U and for all i ∈ [n],

clearly we have

ξ(n,p) = ξ(n,i) + ξ(i,p).

Note that, for i = q, neither ξ(n,i) nor ξ(i,p) is in U ; a contradiction to U is a prime

set.

Otherwise, we have U ̸⊂ V . Let f ∈ U \ V ; then, f can be (i) ξϑ, (ii) ξ(n,n), (iii)

ξ(p,q), for some p ∈ [n−1], q ∈ [n], (iv) an n-support map, or (v) a singleton support
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map. In all the five cases we observe that |U | ≥ n − 1, which is a contradiction to

the choice of U .

(i) f = ξϑ: For each i ∈ [n], since ξ(i,1) + ξ(2,i) = ξϑ, there are at least n elements

in U .

(ii) f = ξ(n,n): For each i ∈ [n − 1], since ξ(n,i) + ξ(i,n) = ξ(n,n), there are at least

n− 1 elements in U .

(iii) f = ξ(p,q), for some p ∈ [n − 1], q ∈ [n]: First note that, for each i ∈ [n],

we have ξ(p,i) + ξ(i,q) = ξ(p,q). If p = q, the argument is similar to above (ii).

Otherwise, corresponding to n − 2 different choices of i ̸= p, q, there are at

least n− 2 elements in U . Now, including f , we have |U | ≥ n− 1.

(iv) f is an n-support map: Let f = (k, p; σ). For q ∈ [n] \ {p}, since

(k, p;σ) = (k, q;σ) + ξ(q,p),

there are at least n− 1 elements in U .

(v) f is a singleton support map: Let f = (k,l)ζ(p,q). For s ∈ [n] \ {p, q}, since

(k,l)ζ(p,q) =
(k,l)ζ(p,s) +

(k,l)ζ(s,q),

there are at least n− 2 elements in U . Since f ∈ U , we have |U | ≥ n− 1.

4.4 The semigroup A+(Bn)
◦

In this section, we obtain the small rank, lower rank and large rank of the semigroup

A+(Bn)
◦
. We also obtain lower bounds for intermediate and upper ranks of A+(Bn)

◦
.



4.4 The semigroup A+(Bn)
◦

61

4.4.1 Small rank

In view of Remark 2.2.11, it can be easily observed that A+(B1) is an independent

set and none of its proper subsets generate A+(B1)
◦
. Hence, for 1 ≤ i ≤ 5, we have

ri(A
+(B1)

◦
) = |A+(B1)| = 3.

In the rest of the section, we shall investigate the ranks of A+(Bn), for n > 1. We

obtain the small rank of A+(Bn)
◦
.

Owing to the fact that A+(Bn)
◦
, for n ≥ 2, have some non idempotent elements,

it is not a band. For instance, the singleton support maps (k,l)ζ(p,q) with (k, l) ̸= (p, q)

in A+(Bn)
◦
are not idempotents. Hence, we have the following corollory of Theorem

4.3.1.

Corollary 4.4.1. For n ≥ 2, r1(A
+(Bn)

◦
) = 1.

4.4.2 Lower rank

Recall our result that the set of n-support elements of A+(Bn) along with ξϑ forms a

subsemigroup which is isomorphic to the Brandt semigroupB(Sn, n) (cf. Proposition

3.2.4). Using this key result we obtain the lower rank of the semigroup A+(Bn)
◦
.

Lemma 4.4.2. For n ≥ 2, let f, gi(1 ≤ i ≤ k) ∈ A+(Bn) \ {ξϑ} such that f =

g1g2 · · · gk. Then,

1. f ∈ A+(Bn)n2+1 if and only if gj ∈ A+(Bn)n2+1 for some j; and

2. if f ∈ A+(Bn)1 then gj ∈ A+(Bn)1 for some j.

Proof.

1. If gi /∈ A+(Bn)n2+1 for all i, then, by Proposition 2.2.1, ϑ /∈ supp(gi) so that

ϑ /∈ supp(f) and hence f ̸∈ A+(Bn)n2+1. Since the composition of a constant

map with any map is a constant map, we have the converse.
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2. Follows from (1) and Lemma 3.2.3.

In view of Lemma 3.2.3, we have the following corollary of Lemma 4.4.2.

Corollary 4.4.3. Any generating subset of A+(Bn)
◦
contains at least a singleton

support element and a full support element.

Lemma 4.4.4. Let σ be the cycle (1 2 · · · n) and τ be the transposition (1 2) in Sn.

The following are minimum generating subsets of the semigroups A+(Bn)n ∪ {ξϑ},

for n ≥ 2.

1. If n ≥ 3, P = {(1, 1;σ), (1, 2; τ), (2, 3; id), · · · (n− 1, n; id), (n, 1; id)}.

2. If n = 2, P ′ = {(1, 2;σ), (2, 1; id)}.

Proof. Given a minimum generating set {g1, . . . , gr} of a finite group G with the

identity element e, by [Garba, 1994b, Proposition 2.4], the set

{(1, g1, 1), . . . (1, gr−1, 1), (1, gr, 2), (2, e, 3), . . . , (n− 1, e, n), (n, e, 1)}

of r + n − 1 elements is a minimum generating set of Brandt semigroup B(G,n).

For n ≥ 2, since {σ, τ} is a minimum generating subset of the symmetric group Sn,

by Proposition 3.2.4, the result follows.

Theorem 4.4.5. For n ≥ 3, r2(A
+(Bn)

◦
) = n+ 3.

Proof. We prove that

Q = P ∪
{
ξ(1,1),

(1,1)ζ(1,1)
}

is a minimum generating set of A+(Bn)
◦
so that the result follows.

By Lemma 4.4.4(1),Q generates all n-support maps and the zero map inA+(Bn)
◦
.

For f ∈ A+(Bn), if f = (k,l)ζ(p,q), then write

(k,l)ζ(p,q) = (l, 1;σ)(1,1)ζ(1,1)(1, q; ρ)
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or if f = ξ(p,q), then write

ξ(p,q) = ξ(1,1)(1, q; ρ),

where kσ = 1 and 1ρ = p, so that f ∈ ⟨Q⟩. Hence, by Theorem 2.2.10, we have

⟨Q⟩ = A+(Bn)
◦
.

Let V be a generating subset of A+(Bn)
◦
. By Proposition 3.2.4 and Lemma

4.4.4, V must contain at least n+1 elements of n-support to generate all n-support

elements in A+(Bn). Further, by Corollary 4.4.3, V contains at least a singleton

support element and a full support element so that |V | ≥ n+3. Hence, the result.

Theorem 4.4.6. r2(A
+(B2)

◦
) = 4.

Proof. In the similar lines of the proof of Theorem 4.4.5, note that the set

P ′ ∪
{
ξ(1,1),

(1,1)ζ(1,1)
}
is a minimum generating set of the semigroup A+(B2)

◦
.

4.4.3 Intermediate and upper rank

In this subsection, we will only provide lower bounds for intermediate and upper

ranks of A+(Bn)
◦
. In view of Proposition 3.2.4, we shall rely on some known lower

bounds of respective ranks for B(G,n). First we recall the required results and

proceed to give the lower bounds in theorems 4.4.10 and 4.4.11.

Theorem 4.4.7 ([Mitchell, 2004]). Let X be a maximum independent generating

set in a finite group G with identity element e and {I, J} be a partition of the set

[n] such that |I| = ⌈n/2⌉ and |J | = ⌊n/2⌋. Then, in B(G,n),

1. {(2, e, 3), (3, e, 4), . . . , (n−1, e, n), (n, e, 1)}∪{(1, x, 2) | x ∈ X} is an indepen-

dent generating set, and

2. {(i, e, i) | i ∈ [n]} ∪ {(i, g, j) | i ∈ I, j ∈ J, g ∈ G} is an independent set.

Theorem 4.4.8 ([Whiston, 2000]). For n ≥ 2, the set of transpositions T =

{(1 2), (2 3), · · · , (n − 1 n)} is a maximum independent generating set in Sn and

hence r3(Sn) = n− 1.
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Now we prove the following lemma regarding an independent generating subset

of A+(Bn)
◦
.

Lemma 4.4.9. Any independent generating subset of A+(Bn)
◦
contains

1. exactly one singleton support element, and

2. exactly one full support element.

Proof. In view of Corollary 4.4.3, let f = (k,l)ζ(p,q) and g = ξ(m,r) are in U .

1. Suppose there is another singleton support map, say f ′ = (s,t)ζ(u,v) ∈ U . Con-

sider the n-support maps h = (t, l;σ) with sσ = k and h′ = (q, v; τ) with

pτ = u. Since U is a generating set, we have h, h′ ∈ ⟨U \ {f ′}⟩. Now observe

that f ′ = hfh′ so that f ′ ∈ ⟨U \ {f ′}⟩; a contradiction to U is an independent

set.

2. Suppose there is another full support map, say g′ = ξ(u,v) ∈ U . Consider the

n-support map h′ = (r, v; τ) with mτ = u and note that h′ ∈ ⟨U \ {g′}⟩ (cf.

Lemma 3.2.3). However, since g′ = gh′, we have g′ ∈ ⟨U \{g′}⟩; a contradiction

to U is an independent set.

Theorem 4.4.10. For n ≥ 2, r3(A
+(Bn)

◦
) ≥ 2n.

Proof. Recall that T = {(1 2), (2 3), · · · , (n − 1 n)} is a maximum independent

generating subset of Sn (cf. Theorem 4.4.8). We observe that the set X = X ′ ∪{
ξ(1,1),

(1,1)ζ(1,1)
}
, where

X ′ = {(2, 3; id), (3, 4; id), . . . , (n− 1, n; id), (n, 1; id)} ∪ {(1, 2;σ) | σ ∈ T }

is an independent generating set in A+(Bn)
◦
so that r3(A

+(Bn)
◦
) ≥ |X | = 2n. By

Theorem 4.4.7(1) and Proposition 3.2.4, the set X ′ generates all n-support maps
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and the zero map in A+(Bn)
◦
. Now, in the similar lines of proof of Theorem 4.4.5,

one can prove that ⟨X ⟩ = A+(Bn)
◦
. Further, in view of Lemma 4.4.9 and Theorem

4.4.7(1), X is an independent subset in A+(Bn)
◦
.

Though Theorem 4.4.10 gives us a lower bound for upper rank of A+(Bn)
◦
, in

the following theorem we provide a better lower bound for r4(A
+(Bn)

◦
).

Theorem 4.4.11. For n ≥ 2, r4(A
+(Bn)

◦
) ≥ n! ⌊n2/4⌋ + n+ 2.

Proof. Using Theorem 4.4.7(2), Proposition 3.2.4 and Lemma 4.4.9, one can observe

that the set

{(i, i; id) | i ∈ [n]} ∪ {(i, j; σ) | i ∈ I, j ∈ J, σ ∈ Sn} ∪
{
ξ(1,1),

(1,1)ζ(1,1)
}
,

where I and J are as in Theorem 4.4.7, is an independent subset in A+(Bn)
◦
.

4.4.4 Large rank

In this subsection, first we observe that there are no indecomposable elements in

A+(Bn)
◦
, for n ≥ 2, so that r5(A

+(Bn)
◦
) < |A+(Bn)| (cf. Theorem 4.2.2). Then,

using the technique introduced in Section 4.2, we proceed to obtain the large rank

of A+(Bn)
◦
.

Proposition 4.4.12. For n ≥ 2, all the elements of A+(Bn)
◦
are decomposable.

Proof. Refereing to Theorem 2.2.10, we give a decomposition for each element f ∈

A+(Bn)
◦
in the following cases.

1. f is the zero map: ξϑ = (k,l)ζ(p,q)
(m,r)ζ(s,t), for(p, q) ̸= (m, r).

2. f is of full support: Let f = ξ(p,q). Then ξ(p,q) = ξ(m,r)
(m,r)ζ(p,q), for (m, r) ̸=

(p, q).
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3. f is of singleton support: Let f = (k,l)ζ(p,q). Then f = (k,l)ζ(m,r)
(m,r)ζ(p,q), for

(m, r) ̸∈ {(p, q), (k, l)}.

4. f is an n-support map: Let f = (k, p;σ). Note that f = (k, q; τ)(q, p; τ−1σ),

for q ̸= p and τ ̸= id.

Using Proposition 4.2.4 and Theorem 4.2.2, now we obtain the large rank of

A+(Bn)
◦
.

Theorem 4.4.13. r5(A
+(B2)

◦
) = 28.

Proof. We show that the set V = {(1, 2; id), (1, 2;σ)}, where σ is the cycle (1 2) in

S2, is a smallest prime subset of A+(B2)
◦
so that r5(A

+(B2)
◦
) = 28. Observe that

(1, 2; id) = (1, 1; id)(1, 2; id) = (1, 2; id)(2, 2; id) = (1, 1;σ)(1, 2;σ) = (1, 2;σ)(2, 2;σ)

and

(1, 2;σ) = (1, 1; id)(1, 2;σ) = (1, 2; id)(2, 2;σ) = (1, 1;σ)(1, 2; id) = (1, 2;σ)(2, 2; id)

are all the possible decompositions of (1, 2; id) and (1, 2;σ), respectively, with the

elements of A+(B2)
◦
. Note that, every decomposition has at least one element from

V so that V is a prime subset.

If U is a prime subset of A+(B2)
◦
with |U | < |V |, then |U | = 1. Hence, the

element of U will be indecomposable; a contradiction to Proposition 4.4.12. Conse-

quently, V is a smallest prime subset of A+(B2)
◦
.

Theorem 4.4.14. For n ≥ 3, r5(A
+(Bn)

◦
) = (n!)n2 + n4 + 2.

Proof. We prove that V = {ξ(i,j) | i, j ∈ [n]} is a smallest prime subset of A+(Bn)
◦
.

Since |V | = n2, the result follows from Theorem 2.2.10.

By Lemma 4.4.2(1), V is a prime subset of A+(Bn)
◦
. Let U be a prime subset

of A+(Bn)
◦
such that |U | < |V |. If U ⊂ V , then let g = ξ(p,q) ∈ V \ U . Now, for
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h = ξ(s,t) ∈ U , we have h′ =(p,q)ζ(s,t) such that h = gh′; which is not possible with U .

Thus, U ̸⊂ V .

Let f ∈ U \ V . Then, f can be (i) ξϑ, (ii) a singleton support map, or (iii) an

n-support map. In all the cases we observe that |U | ≥ n2, which is a contradiction

to the choice of U .

(i) f = ξϑ: Note that f = ξ(p,q)
(m,r)ζ(p,q), where (p, q) ̸= (m, r). For each pair

(p, q) we have one such decomposition of f and hence there are at least n2 such

decompositions. From each decomposition one of the components, viz. a map with

the image set {(p, q)} ∪ {ϑ} is in U so that |U | ≥ n2.

(ii) f is singleton support map: Let f = (k,l)ζ(p,q). Note that f =(k,l)ζ(m,r)
(m,r)ζ(p,q).

For (m, r) ̸= (k, l), we have n2−1 such decompositions of f . Being a prime subset, U

must contain at least one component from each decomposition so that |U | ≥ n2− 1.

Further, consider the decomposition

(k,l)ζ(p,q) =
(k,l)ζ(k,l)(l, q;σ),

where kσ = p. One more element from the above decomposition should be in U .

Thus, |U | ≥ n2.

(iii) f is an n-support map: Let f = (k, p;σ). Since n ≥ 3, for fixed q ̸∈ {p, k},

consider the decomposition

(k, p;σ) = (k, q; τ)(q, p; τ−1σ)

one for each τ ∈ Sn so that there are n! such decompositions of f . Consequently,

|U | ≥ n! so that |U | > n2, for n ≥ 4. For n = 3, in addition to above-mentioned six

elements, we observe that there are another three elements in U . For instance, for

each τ ∈ S3, none of the components in the decomposition

(k, p;σ) = (k, k; τ)(k, p; τ−1σ)

are covered in any of the above-mentioned decompositions. Even if a left component

reoccurs as a right component in any of the decompositions, at least three of them

will be in U . Hence, for n ≥ 3, |U | ≥ n2.
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4.5 Conclusion

In this chapter, we have investigated the ranks of the semigroup reducts of A+(Bn).

While we obtained the small, lower, intermediate and large ranks of A+(Bn)
+
, for

all n ≥ 1, the upper rank r4(A
+(Bn)

+
) was found for the semigroups with n ≥ 6.

For 2 ≤ n ≤ 5, through an explicit construction of an independent set, we reported

a lower bound for r4(A
+(Bn)

+
). While 14 is the lower bound for the case n = 2, it

is (n!)n2 + n for the other cases. We conjecture that these lower bounds are indeed

the upper ranks of the respective cases.

Further, we have investigated the ranks of multiplicative semigroup reductA+(Bn)
◦

of A+(Bn), and obtained the small, lower and large ranks of A+(Bn)
◦
, for all n ≥ 1.

While intermediate and upper ranks of A+(Bn)
◦
are not yet known, we have provided

some lower bounds for these ranks.

In view of Theorem 2.1.6, the results embedded in this chapter shall give us

the respective ranks of the semigroup of affine transformations Aff(Bn) as per the

following.

Remark 4.5.1. SinceA+(B1) = Aff(B1) (cf. Remark 2.2.11), we have ri(Aff(B1)) =

3, for 1 ≤ i ≤ 5.

Remark 4.5.2. For n ≥ 2, observe that the n-support elements (k, p;σ) with p ̸= k

are not idempotent so that r1(Aff(Bn)) = 1 (cf. Theorem 4.3.1).

Remark 4.5.3.

1. Lower and large ranks of Aff(B2) are 3 (cf. Theorem 4.4.6) and 12 (cf. Theo-

rem 4.4.13), respectively.

2. For n ≥ 3, r2(Aff(Bn)) = n + 2 (cf. Theorem 4.4.5) and r5(Aff(Bn)) =

(n!)n2 + 2 (cf. Theorem 4.4.14).
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Ideals and Radicals

The radicals Jν , for ν = 0, 1, 2, of near-rings and consequently, the Jacobson radicals

of rings are extended to zero-symmetric near-semirings by van Hoorn [1970]. In

that process van Hoorn found fourteen radicals and studied some relations between

them. The properties of these radicals are further investigated in the literature (e.g.

[Krishna, 2005; Zulfiqar, 2009]). The objective of this chapter is to study the ideals

and radicals of N , the zero-symmetric affine near-semiring over Brandt semigroup.

First we present the necessary background material in Section 5.1. We obtain all

the right ideals of N in Section 5.2. We investigate all the radicals of N in Section

5.3. Further, we study all the congruences on N and consequently, we obtain all of

its ideals in Section 5.4.

69
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5.1 Preliminaries

In this section, we present the necessary background materials on theory of near-

semirings. For more details one may refer to [Krishna, 2005; van Hoorn, 1970; van

Hoorn and van Rootselaar, 1967]. We begin with the definition of N -semigroup. It

is known that the concept of N -semigroup and the representation of a near-semiring

N are equivalent (cf. [Krishna and Chatterjee, 2007]). In this chapter, unless it is

specified otherwise, N always denotes a zero-symmetric near-semiring.

Definition 5.1.1. A semigroup (S,+) with identity 0S is said to be an N -semigroup

if there exists a composition

(s, a) 7→ sa : S ×N −→ S

such that, for all a, b ∈ N and s ∈ S,

1. s(a+ b) = sa+ sb,

2. s(ab) = (sa)b, and

3. s0 = 0S.

Example 5.1.2. The semigroup (N ,+) of a near-semiring (N ,+, ·) is anN -semigroup.

We denote this N -semigroup by N+.

Definition 5.1.3. A subsemigroup T of anN -semigroup S is said to beN -subsemigroup

of S if and only if 0S ∈ T and TN ⊆ T .

5.1.1 Ideals

Unlike the case of rings and near-rings, the concept of ideal in near-semirings is not

straightforward through internal structure. Thus, it is natural to adopt universal

algebraic techniques and define ideals through homomorphisms. The concept of

ideals is originally from the work of van Hoorn and van Rootselaar [1967] which
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they defined for the case of zero-symmetric near-semirings. Later it is adopted to

near-semirings by Krishna [2005].

Definition 5.1.4. Let N ,N ′ be near-semirings. A mapping ϕ : N −→ N ′ is said

to be a homomorphism if, for all a, b ∈ N ,

(a+ b)ϕ = aϕ+ bϕ,

(ab)ϕ = (aϕ)(bϕ).

Definition 5.1.5. The kernel of a homomorphism of N is called an ideal of N .

Definition 5.1.6. An N -morphism of an N -semigroup S is a semigroup homomor-

phism ϕ of S into an N -semigroup S ′ such that

(sa)ϕ = (sϕ)a

for all a ∈ N and s ∈ S. The kernel of an N -morphism is called an N -kernel of an

N -semigroup S.

Definition 5.1.7. The N -kernels of the N -semigroup N+ are called right ideals of

N .

Definition 5.1.8. A right admissible morphism of anN -semigroup S is a semigroup

homomorphism ϕ of S, such that

sϕ = s′ϕ =⇒ (sa)ϕ = (s′a)ϕ

for all a ∈ N and s, s′ ∈ S.

Remark 5.1.9. Any N -semigroup S contains two trivial N -kernels {0} and S; the

first one being the kernel of the identity mapping of S and second one is the kernel

of the zero morphism.
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Definition 5.1.10. An equivalence relation ∼ is said to be a congruence relation

on near-semiring (N ,+, ·) if ∼ is a congruence relation on semigroup reducts (N ,+)

and (N , ·), respectively. A congruence relation other than the equality relation and

the universal relation N × N will be called as a nontrivial congruence relation on

N .

Definition 5.1.11. Let S be an N -semigroup. A semigroup congruence ∼r of S is

said to be a congruence of N -semigroup S, if for all s, t ∈ S and a ∈ N ,

s ∼r t =⇒ sa ∼r ta.

Definition 5.1.12 ([Ljapin, 1963]). A nonempty subset T of a semigroup S is said

to be normal subsemigroup if for every t1, t2 ∈ T or empty symbols and s, s′ ∈ S or

empty symbols,

s+ t1 + s′ ∈ T =⇒ s+ t2 + s′ ∈ T.

Remark 5.1.13.

1. If S is a group, then its normal subsemigroups are normal subgroups.

2. 0S ∈ S, then any normal subsemigroup of S contains 0S.

3. The kernel of a semigroup homomorphism is a normal subsemigroup. Hence,

right ideals of near-semiring N are normal subsemigroups of N+.

Definition 5.1.14. Let T be a normal subsemigroup of a semigroup S. The relation

nT on S is defined by

α nT β ⇐⇒ α, β ∈ s+ T + s′

for some s, s′ ∈ S.

Remark 5.1.15. The relation nT is a two sidedly stable (compatible) reflexive and

symmetric relation. Then the transitive closure n′′T of nT is a congruence relation on
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S. Moreover, the kernel of congruence n′′T , i.e. the congruence class containing 0S,

is equals to T .

Notation 5.1.16. The semigroup homomorphism corresponding to n′′T will be denoted

by λT .

Remark 5.1.17. For the right ideal {0}, the congruence relation n′′{0} is the equality

relation on N+.

Definition 5.1.18. A normal subsemigroup T of an N -semigroup S is said to have

the property Q if the following condition holds: for all s, s′ ∈ S, t ∈ T and a ∈ N ,

(s+ t+ s′)a n′′T (s+ s′)a

Remark 5.1.19. The right ideal {0} satisfies property Q.

Definition 5.1.20. Strong (right) ideals of N are the (right) ideals with property

Q.

Definition 5.1.21. A homomorphism φ of N+ is called modular if there is a left

identity modulo φ, i.e. an element u such that aφ = (ua)φ for any a ∈ N .

Definition 5.1.22. A right ideal D ̸= N is called modular if D is the kernel of a

right admissible modular ϕ, and it is called λ-modular if λD is right admissible and

modular.

Definition 5.1.23. Let S1, S2 be subsets of an N -semigroup S. The Noetherian

quotient (S1 : S2) is defined as the set {a ∈ N | S2a ⊆ S1}.

Notation 5.1.24. The set ({s} : T ) simply be denoted by (s : T ). Similarly, for

(T : s).

Definition 5.1.25. The set (0S : T ) is said to be the annihilator of T , and it is

denoted by A(T ).
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Remark 5.1.26. For any nonvoid T ⊆ S,A(T ) =
∩
t∈T

A(t).

Theorem 5.1.27 ([Krishna, 2005]). The annihilator A(S) of an N -semigroup S is

an ideal of N .

5.1.2 Types of N -semigroups and radicals

In this subsection, first we recall various types of N -semigroups. Accordingly, we

shall present the notion of radicals for near-semirings. van Hoorn [1970] introduced

these radical for zero-symmetric near-semirings as a generalization of the notion of

Jacobson radicals of rings.

Definition 5.1.28. An N -semigroup S is called monogenic if there exists s ∈ S

such that sN = S (then s is called a generator for S) and it is called strongly

monogenic if SN ̸= {0S} and for any element s ∈ S, sN = S or sN = {0S} holds.

Definition 5.1.29. An N -semigroup S ̸= {0S} with S and {0S} as the only N -

subsemigroup is calledminimal . Moreover, if SN ̸= {0S} then S is called essentially

minimal .

Definition 5.1.30. An N -semigroup S ̸= {0S} with S and {0S} as the only N -

kernels is called irreducible.

Theorem 5.1.31. A right ideal D of N is modular if and only if there is a mono-

genic N -semigroup S ̸= {0S} with generator s such that D = A(s).

Theorem 5.1.32. If S is a monogenic N -semigroup ̸= {0S} with generator s and

A(s) is a maximal right ideal in N , then S is irreducible.

Definition 5.1.33. An N -semigroup S ̸= {0S} is said to be of

– type (0, 0), if S is monogenic and irreducible

– type (0, 1), if S is monogenic and if for any generator s, A(s) is a maximal

right ideal
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– type (0, 2), if S is monogenic and if for any generator s, A(s) is a maximal

strong right ideal

– type (0, 3), if S is monogenic and if for any generator s, A(s) is a strong

maximal right ideal

– type (1, 0), if S is strongly monogenic and irreducible

– type (1, 1), if S is strongly monogenic and if for any generator s, A(s) is a

maximal right ideal

– type (1, 2), if S is strongly monogenic and if for any generator s, A(s) is a

maximal strong right ideal

– type (1, 3), if S is strongly monogenic and if for any generator s, A(s) is a

strong maximal right ideal

– type (2, 0), if S is essentially minimal

– type (2, 1), if S is monogenic and if for any generator s, A(s) is a maximal

N -subsemigroup of S.

Definition 5.1.34.

1. R0(N ) is the intersection of all maximal modular right ideals of N .

2. R1(N ) is the intersection of all modular maximal right ideals of N .

3. R2(N ) is the intersection of all maximal λ-modular right ideals of N .

4. R3(N ) is the intersection of all λ-modular maximal right ideals of N .

Definition 5.1.35. For ν = 0, 1 with µ = 0,1,2,3 and ν = 2 with µ = 0,1

J(ν,µ)(N ) =
∩

S is of type(ν,µ)

A(S).

In all cases, the intersection of any empty collection of subsets of N is N .
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J(2,0) // J(2,1)

J(1,0) //

OO

J(1,1)

OO

88
J(1,2) // J(1,3)

J(0,0) //

OO

##G
GG

GG
GG

G
J(0,1)

OO

88
J(0,2) //

OO

J(0,3)

OO

R0
// R1 99

]]

R2
// R3

Figure 5.1: Relation between various radicals of a near-semiring

Remark 5.1.36 ([Betsch, 1963]). If N is a near-ring, then J(0,µ)(N ), µ = 0, 1, 2, 3

are the radical J0(N ); J(1,µ)(N ), µ = 0,1,2,3 are the radical J1(N ); J(2,µ)(N ), µ =

0,1, are the radical J2(N ); and Rν(N ), ν = 0, 1, 2, 3 are the radical D(N ) of Betsch.

Remark 5.1.37 ([Jacobson, 1964]). If N is a ring, then all the fourteen radicals

are the radical of Jacobson.

Definition 5.1.38. A zero-symmetric near-semiring N is called (ν, µ)-primitive if

N has an N -semigroup S of type (ν, µ) with A(S) = {0}.

Before concluding the section, in the following we state the result without proof,

which gives the relation between the radicals according to van Hoorn [1970].

Theorem 5.1.39. For the radicals of a zero-symmetric near-semiring N we have

the relations illustrated in the Figure 5.1 (A → B means A ⊂ B).

Now, we are ready to investigate radicals and ideals of the object of the thesis

– affine near-semirings over Brandt semigroups. Since the radicals are only known

in the context of zero-symmetric near-semirings, we extend the semigroup reduct
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(A+(Bn),+) to monoid by adjoining 0 and make the resultant near-semiring zero-

symmetric. Hereafter, in this chapter, N denotes this near-semiring, that is, N =

A+(Bn) ∪ {0} such that

1. (N ,+) is a monoid with identity element 0,

2. (N , ◦) is a semigroup,

3. 0f = f0 = 0, for all f ∈ N , and

4. f(g + h) = fg + fh, for all f, g, h ∈ N .

5.2 Right ideals

In this section, we obtain all the right ideals of the affine near-semiring N by ascer-

taining the concerning congruences of N -semigroups. We begin with the following

lemma.

Lemma 5.2.1. Let ∼ be a nontrivial congruence over the semigroup (N ,+) and

f ∈ A+(Bn)n2+1. If f ∼ ξϑ, then ∼ = (A+(Bn)× A+(Bn)) ∪ {(0, 0)}.

Proof. First note that (A+(Bn)×A+(Bn))∪ {(0, 0)} is a congruence relation of the

semigroup (N ,+). Let f = ξ(p0,q0) and ξ(p,q) be an arbitrary full support map. Since

ξ(p,q) = ξ(p,p0) + ξ(p0,q0) + ξ(q0,q) ∼ ξ(p,p0) + ξϑ + ξ(q0,q) = ξϑ,

we have ξ(p,q) ∼ ξϑ for all p, q ∈ [n]. Further, given an arbitrary n-support map

(k, l; σ), since ξ(p,l) ∼ ξϑ, we have

(k, l;σ) = (k, p; σ) + ξ(p,l) ∼ (k, p;σ) + ξϑ = ξϑ.

Thus, all n-support maps are related to the absorbing map 1 under ∼. Similarly,

given an arbitrary (k,l)ζ(p,q) ∈ A+(Bn)1, since ξ(p,q) ∼ ξϑ, for σ ∈ Sn such that kσ = q,

1To avoid any confusion between the newly adjoined zero element 0 and the existing zero map

ξϑ, in this chapter, we call ξϑ as an absorbing map of N .
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we have

(k,l)ζ(p,q) = ξ(p,q) + (l, q; σ) ∼ ξϑ + (l, q;σ) = ξϑ.

Hence, all elements of A+(Bn) are related to each other under ∼.

Now, using Lemma 5.2.1, we determine the right ideals of N in the following

theorem.

Theorem 5.2.2. N and {0} are only the right ideals of N .

Proof. Let I ̸= {0} be a right ideal of N so that I = kerφ, where φ : N+ −→ S

is an N -morphism. Note that I = [0]∼r , where ∼r is the congruence over the N -

semigroup N+ defined by a ∼r b if and only if aφ = bφ, i.e. the relation ∼r on N

is compatible with respect to + and if a ∼r b then ac ∼r bc for all c ∈ N .

Let f be a nonzero element of N such that f ∼r 0. First note that

ξϑ = fξϑ ∼r 0ξϑ = 0.

Further, for any full support map ξ(p,q), we have

ξ(p,q) = fξ(p,q) ∼r 0ξ(p,q) = 0

so that, by transitivity, ξ(p,q) ∼r ξϑ. Hence, by Lemma 5.2.1, ∼r= N × N so that

I = N .

Remark 5.2.3. The ideal {0} is the maximal right ideal of N .

5.3 Radicals

This section aims to ascertain that N is (ν, µ)-primitive and to find all the radicals

of N . We shall achieve the target through the additive semigroup of constant maps

in N , whose properties are systematically developed and presented in the key result

Theorem 5.3.8.

Consider the subsemigroup C = CBn ∪ {0} of (N ,+). We shall observe the

following properties of C.
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Remark 5.3.1. The semigroup C is an N -semigroup with respect to the multipli-

cation in N .

Lemma 5.3.2. The N -semigroup C is monogenic and its every nonzero element is

a generator.

Proof. Let g ∈ CBn . We observe that g generates the N -semigroup C. Note that

gN ⊆ C because the product of a constant map with any map is a constant map.

Conversely, for f ∈ C, since gf = f , we have gN = C. Thus, C is monogenic and

gN = C for all g ∈ C \ {0}.

Further, since 0N = {0} and CN = C ≠ {0}, we have the following remark.

Remark 5.3.3. The N -semigroup C is strongly monogenic.

Lemma 5.3.4. The N -semigroup C is essentially minimal.

Proof. The semigroups C and {0} are the only N -subsemigroups of C. For instance,

let T be an N -subsemigroup of C such that {0} ̸= T ( C. Then there exist f (̸=

0) ∈ T and g ∈ C \ T . Since fg = g ̸∈ T , we have TN * T ; a contradiction to T is

an N -subsemigroup. Consequently, C is minimal. Moreover, CN = C ̸= {0} so that

C is essentially minimal.

Since C and {0} are the only N -subsemigroups of C, we have the following

corollary of Lemma 5.3.4.

Corollary 5.3.5. The subsemigroup {0} is the maximal N -subsemigroup of C.

For g ∈ C \ {0}, since {a ∈ N | ga = 0} = {0}, we have the following remark.

Remark 5.3.6. A(g) = {0} for all g ∈ C \ {0}. Hence, A(C) = {0} (cf. Remark

5.1.26).

Lemma 5.3.7. The N -semigroup C is irreducible.
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Proof. By Lemma 5.3.2, the N -semigroup C is monogenic with any nonzero element

g as generator. Now, by Remark 5.3.6, A(g) = {0}; thus, A(g) is maximal right

ideal in N (cf. Remark 5.2.3). Hence, by Theorem 5.1.32, C is irreducible.

We are now ready to present a key result of this section.

Theorem 5.3.8. For ν = 0, 1 with µ = 0, 1, 2, 3 and ν = 2 with µ = 0, 1, the

N -semigroup C is of type (ν, µ).

Proof. In view of Theorem 5.1.39, though it is sufficient to discuss for some of the

types, for the sake of completeness we prove all the cases in the following.

Type (0, µ): Note that, by Lemma 5.3.2, the N -semigroup C is monogenic.

1. By Lemma 5.3.7, we have C is irreducible. Hence, C is of type (0, 0).

2. By Lemma 5.3.2, Remark 5.3.6 and Remark 5.2.3, for any generator g,

A(g) is a maximal right ideal. Hence, C is of type (0, 1).

3. The ideal {0} is strong right ideal (cf. Remark 5.1.19) so that, for any

generator g, A(g) is a strong maximal right ideal (see 2 above). Further,

note that A(g) is a maximal strong right ideal (cf. Remark 5.2.3). Hence,

C is of type (0, 2) and (0, 3).

Type (1, µ): Note that, by Remark 5.3.3, theN -semigroup C is strongly monogenic.

By above 1, 2 and 3, theN -semigroup C is of type (1, 0), (1, 1), (1, 2) and (1, 3).

Type (2, µ): By Lemma 5.3.4, N -semigroup C is of type (2, 0). Further, C is mono-

genic and, for any generator g of C, A(g) is a maximal N -subsemigroup of C

(cf. Corollary 5.3.5 and Remark 5.3.6). Hence, C is of type (2, 1).

In view of Remark 5.3.6 and Theorem 5.3.8, we have the following:

Corollary 5.3.9. The near-semiring N is (ν, µ)-primitive for all ν and µ.
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Theorem 5.3.10. For ν = 0, 1 with µ = 0, 1, 2, 3 and ν = 2 with µ = 0, 1. We have

J(ν,µ)(N ) = {0}.

Theorem 5.3.11. For ν = 0, 1, we have Rν(N ) = {0}.

Proof. We prove that result by showing that the right ideal {0} is a modular maximal

right ideal as well as a maximal modular right ideal. By Lemma 5.3.2 and 5.3.6, the

N -semigroup C is monogenic and has a generator g such that A(g) = {0}. Hence,

the right ideal {0} is modular (cf. Theorem 5.1.31). Further, since {0} is a maximal

right ideal (cf. Remark 5.2.3), we have {0} is a modular maximal right ideal and

also a maximal modular right ideal.

Theorem 5.3.12. For ν = 2, 3, we have Rν(N ) = N .

Proof. In view Theorem 5.2.2, we prove that λ{0} is not modular. By Remark 5.1.17,

the congruence relation n′′{0} is the equality relation on (N ,+) so that the semigroup

homomorphism λ{0} is an identity map on (N ,+). If the morphism λ{0} is modular,

then there is an element u ∈ N such that x = ux for all x ∈ N , but there is no

left identity element in N . Consequently, λ{0} is not modular. Thus, there is no

maximal λ-modular right ideal and λ-modular maximal right ideal of N . Hence, for

ν = 2, 3, we have Rν(N ) = N .

5.4 Ideals

In this section, to obtain the ideals of N , first we identify all the congruences on N .

Lemma 5.4.1. Let ∼ be a nontrivial congruence over the near-semiring N and

f ∈ N \ {0, ξϑ}. If f ∼ ξϑ, then ∼ = (A+(Bn)× A+(Bn)) ∪ {(0, 0)}.

Proof. First note that (A+(Bn)×A+(Bn))∪ {(0, 0)} is a congruence relation of the

near-semiring N . If f ∈ A+(Bn)n2+1, since ∼ is a congruence of the semigroup
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(N ,+), by Lemma 5.2.1, we have the result. Otherwise, we reduce the problem to

Lemma 5.2.1 in the following cases.

Case 1 f is of singleton support. Let f = (k,l)ζ(p,q). Since
(k,l)ζ(p,q) ∼ ξϑ we have

ξ(k,l)
(k,l)ζ(p,q) ∼ ξ(k,l)ξϑ

so that ξ(p,q) ∼ ξϑ.

Case 2 f is of n-support. Let f = (p, q;σ). Since (p, q;σ) ∼ ξϑ we have

ξ(k,p)(p, q;σ) ∼ ξ(k,p)ξϑ

so that ξ(kσ,q) ∼ ξϑ.

Lemma 5.4.2. If two nonzero elements are in one class under a nontrivial congru-

ence over N , then the congruence is (A+(Bn)× A+(Bn)) ∪ {(0, 0)}.

Proof. Let f, g ∈ N \ {0} such that f ∼ g under a congruence ∼ over N . If f or g

is the absorbing map ξϑ, then by Lemma 5.4.1, we have the result. Otherwise, we

consider the following six cases classified by the supports of f and g. In each case,

we show that there is an element h ∈ A+(Bn) \ {ξϑ} such that h ∼ ξϑ so that the

result follows from Lemma 5.4.1.

Case 1 f, g ∈ A+(Bn)1. Let f = (i,j)ζ(k,l) and g = (s,t)ζ(u,v). If (i, j) ̸= (s, t), we have

ξϑ = (i,j)ζ(k,l) +
(s,t)ζ(v,v) ∼ (s,t)ζ(u,v) +

(s,t)ζ(v,v) =
(s,t)ζ(u,v).

Otherwise, (i, j) = (s, t) so that (k, l) ̸= (u, v). Now, if k ̸= u, then we have

(i,j)ζ(k,l) =
(i,j)ζ(k,k) +

(i,j)ζ(k,l) ∼ (i,j)ζ(k,k) +
(i,j)ζ(u,v) = ξϑ.

Similarly, if l ̸= v, we have

ξϑ = (i,j)ζ(k,l) +
(i,j)ζ(v,v) ∼ (i,j)ζ(u,v) +

(i,j)ζ(v,v) =
(i,j)ζ(u,v).
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Case 2 f, g ∈ A+(Bn)n2+1. Let f = ξ(k,l) and g = ξ(u,v). By considering full support

maps whose images are the same as in various subcases of Case 1, we can show

that there is an element in A+(Bn) \ {ξϑ} that is related to ξϑ under ∼.

Case 3 f, g ∈ A+(Bn)n. Let f = (i, j;σ) and g = (k, l; ρ). If l ̸= j, then

(i, j; σ) = (i, j; σ) + ξ(j,j) ∼ (k, l; ρ) + ξ(j,j) = ξϑ.

Otherwise, we have (i, j; σ) ∼ (k, j; ρ). Now, if i ̸= k, then

ξϑ = (k, k; id)(i, j; σ) ∼ (k, k; id)(k, j; ρ) = (k, j; ρ).

In case i = k, we have σ ̸= ρ. Thus, there exists t ∈ [n] such that tσ ̸= tρ.

Now, (i, j;σ) ∼ (i, j; ρ) implies ξ(k,i)(i, j;σ) ∼ ξ(k,i)(i, j; ρ), i.e. ξ(kσ,j) ∼ ξ(kρ,j).

Consequently,

ξ(kσ,j) = ξ(kσ,kσ) + ξ(kσ,j) ∼ ξ(kσ,kσ) + ξ(kρ,j) = ξϑ.

Case 4 f ∈ A+(Bn)1, g ∈ A+(Bn)n2+1. Let f = (k,l)ζ(p,q) and g = ξ(i,j). Now, for

(s, t) ̸= (k, l), we have

ξϑ = ξ(s,t)f ∼ ξ(s,t)g = ξ(i,j).

Case 5 f ∈ A+(Bn)n2+1, g ∈ A+(Bn)n. Let f = ξ(p,q) and g = (i, j;σ). Now, for

l ̸= i, we have

(k,l)ζ(p,q) =
(k,l)ζ(p,p) + f ∼ (k,l)ζ(p,p) + g = ξϑ.

Case 6 f ∈ A+(Bn)1, g ∈ A+(Bn)n. Let f = (k,l)ζ(p,q) and g = (i, j;σ). Now, for

l ̸= i, we have

ξϑ = ξ(i,i)f ∼ ξ(i,i)g = ξ(iσ,j).
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In view of Lemma 5.4.1 and Lemma 5.4.2, we obtained all the congruences on

N in the following theorem.

Theorem 5.4.3. The near-semiring N has precisely the following congruences.

1. Equality relation.

2. N ×N .

3. (A+(Bn)× A+(Bn)) ∪ {(0, 0)}.

Now, we are ready to report the ideals of N in the following corollary.

Corollary 5.4.4. N and {0} are the only ideals of the near-semiring N .



6
Syntactic Semigroups

This chapter explores formal language theoretic connections to A+(Bn). In this

direction, the chapter considers the syntactic semigroup problem of A+(Bn). The

syntactic semigroup problem is to decide whether a given finite semigroup is syn-

tactic or not. The syntactic semigroup problem for various semigroups have been

investigated by many authors (cf. Goralč́ık and Koubek [1998]; Goralč́ık et al.

[1982]; Lallement and Milito [1975]). This chapter ascertains that both the semi-

group reducts of A+(Bn) are syntactic semigroups. In this connection, Section 6.1

recalls the necessary preliminaries of the chapter. Then the syntactic semigroup

problem for the additive semigroup reduct and the multiplicative semigroup reduct

are studied in Section 6.2 and Section 6.3, respectively.
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6.1 Preliminaries of formal languages

In this section, we present a necessary background material for subsequent sections.

For more details one may refer to [Lawson, 2004].

Definition 6.1.1. Let Σ be a nonempty finite set called an alphabet and its elements

are called letters/symbols. A word over Σ is a finite sequence of letters written by

juxtaposing them. The set of all words over Σ forms a monoid with respect to

concatenation of words, called the free monoid over Σ and it is denoted by Σ∗. The

identity of Σ∗ is the empty word (the empty sequence of letters), which is denoted

by ε. The (free) semigroup of all nonempty words over Σ is denoted by Σ+. A

language L over Σ is a subset of the free monoid Σ∗.

In what follows, Σ always denotes an alphabet.

Definition 6.1.2. An automaton is a quintuple A = (Q,Σ, q0, T, δ), where Q is a

nonempty finite set called the set of states, Σ is an input alphabet, q0 ∈ Q called the

initial state and T is a subsets of Q, called the set of final states, and δ : Q×Σ → Q

is a function, called the transition function.

Clearly, by denoting the states as vertices/nodes and the transitions as labeled

arcs, an automaton can be represented by a directed graph (digraph) in which initial

and final states shall be distinguished appropriately.

Definition 6.1.3. LetA = (Q,Σ, q0, T, δ) be an automaton. For every word x ∈ Σ∗,

the function fx : Q → Q is defined inductively as follows. For q ∈ Q,

(i) if x = ε, then qfx = q;

(ii) if x = a for a ∈ Σ, then qfa = (q, a)δ;

(iii) if x = ay for y ∈ Σ∗ and a ∈ Σ, then qfx = qfafy.

Remark 6.1.4. For an automaton A, the set T (A) = {fx | x ∈ Σ∗} forms a

monoid under the composition of functions.
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Definition 6.1.5. The monoid T (A) is called the transition monoid of the automa-

ton A.

Definition 6.1.6. Let A be an automaton. The language accepted/ recognized by

A, denoted by L(A), defined by

L(A) = {x ∈ Σ∗ | q0fx ∈ T}.

Definition 6.1.7. An automaton A is said to be minimal if the number of states

of A is less than or equal to the number of states of any other automaton accepting

L(A).

Definition 6.1.8. Let S be a semigroup and let L ⊆ S be an arbitrary subset. The

equivalence relation ≈L on S defined by

x ≈L y iff uxv ∈ L ⇐⇒ uyv ∈ L for all u, v ∈ S

is a congruence known as the syntactic congruence of L.

Definition 6.1.9. For L ⊆ Σ+, the quotient semigroup Σ+/≈L
is known as the

syntactic semigroup of the language L. Further, the quotient monoid Σ∗/≈L
is

called the syntactic monoid of the language L.

Theorem 6.1.10. Let L be a recognizable language over Σ. The syntactic monoid

of L is isomorphic to the transition monoid of the minimal automaton accepting L.

Definition 6.1.11. A subset D of a semigroup S is called disjunctive in S if the

congruence ≈D is the equality relation on S.

Now we have a characterization for a finite semigroup to be a syntactic semigroup

in the following theorem.

Theorem 6.1.12. A finite semigroup is the syntactic semigroup of a recognizable

language if and only if it contains a disjunctive subset.
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Definition 6.1.13. A star-free expression over an alphabet Σ is defined inductively

as follows.

(i) ∅ and ε are star-free expressions representing the languages ∅ and {ε}, re-

spectively.

(ii) For a ∈ Σ, a is a star-free expression representing the language {a}.

(iii) If r and s are star-free expressions representing the languages R and S, re-

spectively, then (r + s), (rs) and r{ are star-free expressions representing the

languages R ∪ S,RS and R{, respectively. Here, R{ denotes the complement

of R in Σ∗.

A language is said to be star-free if it can be represented by a star-free expression.

Remark 6.1.14.

1. Σ∗ is star-free and ∅{ is its star-free expression.

2. If B ( Σ, then B∗ is star-free. For instance, let Σ \B = {a1, . . . , ak}. Then(
∅{(a1 + · · ·+ ak)∅{

){

is a star-free expression of B∗.

Example 6.1.15. For Σ = {a, b}, the language (ab)∗ is star-free and

(b∅{ +∅{a+∅{aa∅{ +∅{bb∅{){

is a star-free expression of (ab)∗.

Theorem 6.1.16 ([Schützenberger, 1965]). A recognizable language is star-free if

and only if its syntactic monoid is aperiodic.
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6.2 The semigroup A+(Bn)
+

In this section, we prove that the semigroup A+(Bn)
+
is syntactic. We prove the

result in the following two subsections, for the case n = 1 and n ≥ 2, respectively.

6.2.1 The case n = 1

Note that A+(B1)
+
is a monoid with the identity element ξ(1,1). In this subsection,

we show that A+(B1)
+
is the syntactic monoid of a recognizable star-free language.

Let Σ = {a, b, c} and consider the language Lb = {x ∈ {a, b}∗ | x has at least one b}

over Σ.

Remark 6.2.1. The language Lb is recognizable. For instance, the automaton Ab

given in Figure 6.1 accepts the language Lb. Furthermore, Ab is minimal.

// GFED@ABCq0

a
��

c

++

b

'' GFED@ABC?>=<89:;q1

a, b

vv

c
ssGFED@ABCq2

a, b, c

JJ

Figure 6.1: The automation Ab accepting the language Lb

Since Ab is minimal, by Theorem 6.1.10, we have the following remark.

Remark 6.2.2. The transition monoid T (Ab), given in Table 6.1, of the automaton

Ab is syntactic.

Theorem 6.2.3. The monoid A+(B1)
+
is a syntactic monoid.

Proof. The mapping ϕ : T (A) −→ A+(B1)
+

which assigns fa 7→ ξ(1,1), fb 7→

(1, 1; id) and fc 7→ ξϑ is an isomorphism. Hence, the monoid A+(B1)
+
is syntactic

monoid.
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fa fb fc

fa fa fb fc

fb fb fb fc

fc fc fc fc

Table 6.1: The Cayley table for T (Ab)

Note that A+(B1)
+
is aperiodic. Hence, by Theorem 6.1.16, the language Lb is

star-free. Indeed, a star-free expression for the language Lb is given by

(∅{c∅{){b(∅{c∅{){.

6.2.2 The case n ≥ 2

In this subsection, we show that the semigroup A+(Bn)
+
is isomorphic to the syn-

tactic semigroup of some language (cf. Theorem 6.2.7).

Let Σ = Aff(Bn). For x = f1f2 · · · fk ∈ Σ+, write x̂ = f1 + f2 + · · · + fk. Note

that x̂ ∈ A+(Bn).

Remark 6.2.4. For x, y ∈ Σ+, we have x̂y = x̂+ ŷ. Hence, the function

φ : Σ+ −→ A+(Bn)
+

defined by xφ = x̂ is an onto homomorphism of semigroups.

Consider the language

L = {x ∈ Σ+ | x̂ ∈ P},

where P = {ξ(1,2)} ∪
{
(k,l)ζ(1,1) | k, l ∈ [n]

}
. Now we characterize the syntactic con-

gruence of the language L in the following theorem.

Theorem 6.2.5. For x, y ∈ Σ+, x ≈L y if and only if x̂ = ŷ.
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Proof. (:⇐) Suppose x̂ = ŷ. For u, v ∈ Σ+,

uxv ∈ L ⇐⇒ ûxv ∈ P ⇐⇒ û+ x̂+ v̂ ∈ P

⇐⇒ û+ ŷ + v̂ ∈ P

⇐⇒ ûyv ∈ P ⇐⇒ uyv ∈ L.

Hence, x ≈L y.

(⇒:) Suppose x̂ ̸= ŷ. We claim that there exist u and v in Σ+ such that

û + x̂ + v̂ ∈ P , whereas û + ŷ + v̂ ̸∈ P . Consequently, uxv ∈ L but uyv ̸∈ L

so that x ̸≈L y. In view of Theorem 2.2.10, we prove our claim in the following

cases.

Case 1 x̂ is of full support, say ξ(p,q). Choose u, v ∈ Σ+ such that û = ξ(1,p) and

v̂ = ξ(q,2) (cf. Remark 6.2.4). Note that

û+ x̂+ v̂ = ξ(1,p) + ξ(p,q) + ξ(q,2) = ξ(1,2) ∈ P.

However, as shown below, û+ ŷ + v̂ ̸∈ P , for any possibility of ŷ ∈ A+(Bn).

Subcase 1.1 If ŷ = ξϑ, then clearly û+ ŷ + v̂ = ξϑ ̸∈ P .

Subcase 1.2 Let ŷ be of full support, say ξ(r,s). In either of the cases, p ̸= r or

q ̸= s, we can clearly observe that

û+ ŷ + v̂ = ξ(1,p) + ξ(r,s) + ξ(q,2) = ξϑ ̸∈ P.

Subcase 1.3 Let ŷ be of n-support, say (k, l;σ). Let j ∈ [n] such that jσ = p.

Note that

û+ ŷ + v̂ = ξ(1,p) + (k, l;σ) + ξ(q,2) =

 ξϑ if l ̸= q;

(j,k)ζ(1,2) if l = q.

Subcase 1.4 Let ŷ be of singleton support, say (k,l)ζ(r,s). Note that

û+ ŷ + v̂ = ξ(1,p) +
(k,l)ζ(r,s) + ξ(q,2) =

 ξϑ if p ̸= r or q ̸= s;

(k,l)ζ(1,2) otherwise.
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Case 2 x̂ is of n-support, say (p, q;σ).

Subcase 2.1 Let ŷ be of n-support, say (k, l; τ). Choose u, v ∈ Σ+ such that

û = (l,p)ζ(1,lσ) and v̂ = ξ(q,1). Note that

û+ x̂+ v̂ = (l,p)ζ(1,lσ) + (p, q; σ) + ξ(q,1) =
(l,p)ζ(1,1) ∈ P.

If p ̸= k or q ̸= l, we have

û+ ŷ + v̂ = (l,p)ζ(1,lσ) + (k, l; τ) + ξ(q,1) = ξϑ ̸∈ P.

Otherwise, we have σ ̸= τ . there exists j0 ∈ [n] such that j0σ ̸= j0τ .

Now choose u, v ∈ Σ+ such that û = (j0,p)ζ(1,j0σ) and v̂ = ξ(q,1). Note that

û+ x̂+ v̂ = (j0,p)ζ(1,1) ∈ P , whereas

û+ ŷ + v̂ = (j0,p)ζ(1,j0σ) + (p, q; τ) + ξ(q,1) = ξϑ ̸∈ P

.

Subcase 2.2 Let ŷ be of singleton support, say (j,k)ζ(m,r). Choose u, v ∈ Σ+

such that û = (l,p)ζ(1,lσ) (with lσ ̸= m) and v̂ = ξ(q,1). Note that

û+ x̂+ v̂ = (l,p)ζ(1,1) ∈ P,

whereas

û+ ŷ + v̂ = (l,p)ζ(1,lσ) +
(j,k)ζ(m,r) + ξ(q,1) = ξϑ ̸∈ P.

Subcase 2.3 If ŷ = ξϑ, then, for û = (l,p)ζ(1,lσ) and v̂ = ξ(q,1) we have û+x̂+ v̂ =

(l,p)ζ(1,1) ∈ P , but û+ ŷ + v̂ = ξϑ ̸∈ P .

Case 3 x̂ is of singleton support, say (p,q)ζ(r,s). Choose u, v ∈ Σ+ such that û =

(p,q)ζ(1,r) and v̂ = (p,q)ζ(s,1) so that

û+ x̂+ v̂ = (p,q)ζ(1,r) +
(p,q)ζ(r,s) +

(p,q)ζ(s,1) =
(p,q)ζ(1,1) ∈ P.
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Subcase 3.1 ŷ is of singleton support, say (j,k)ζ(l,m). Since x̂ ̸= ŷ, we have

û+ ŷ + v̂ = (p,q)ζ(1,r) +
(j,k)ζ(l,m) +

(p,q)ζ(s,1) = ξϑ ̸∈ P.

Subcase 3.2 If ŷ = ξϑ, then clearly û+ ŷ + v̂ = ξϑ ̸∈ P .

In view of Remark 6.2.4, we have the following corollary of Theorem 6.2.5.

Corollary 6.2.6. The syntactic congruence ≈L and the kernel of the homomorphism

φ are identical, i.e. ≈L= kerφ.

Now we have the following main theorem of the section.

Theorem 6.2.7. For n ≥ 2, the semigroup A+(Bn)
+
is syntactic.

Proof. Using fundamental theorem of homomorphisms of semigroups, by Theorem

1.1.21 and Remark 6.2.4, we have Σ+/kerφ is isomorphic to A+(Bn)
+
. However, by

Corollary 6.2.6, we have Σ+/≈L
and A+(Bn)

+
are isomorphic. Hence, A+(Bn)

+
is a

syntactic semigroup of the language L.

In view of Remark 3.1.9 and Theorem 6.1.16, we have the following corollary of

Theorem 6.2.7

Corollary 6.2.8. The language L is star-free.

6.3 The semigroup A+(Bn)
◦

In this section, we prove that the semigroup A+(Bn)
◦
is syntactic. We prove the

result in the following two subsections, for the case n = 1 and n ≥ 2, respectively.
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6.3.1 The case n = 1

Note that A+(B1)
◦
is monoid with the identity element (1, 1; id). In this subsection,

we show that A+(B1)
◦
is the syntactic monoid of a recognizable star-free language.

Let Σ = {a, b, c} and consider the language La = {xabn | x ∈ Σ∗ and n ≥ 0}

over Σ.

Remark 6.3.1. The language La is recognizable. For instance, the automaton Aa

given in Figure 6.2 accepts the language La. Furthermore, Aa is minimal.

// GFED@ABCq0

b, c
��

a
'' GFED@ABC?>=<89:;q1

a, b

vv

c

gg

Figure 6.2: The automation Aa accepting the language La

Since Aa is minimal, by Theorem 6.1.10, we have the following remark.

Remark 6.3.2. The transition monoid T (Aa), given in Table 6.2, of the automaton

Aa is syntactic.

fa fb fc

fa fa fa fc

fb fa fb fc

fc fa fc fc

Table 6.2: The Cayley table for T (Aa)

Theorem 6.3.3. The monoid A+(B1)
◦
is a syntactic monoid.

Proof. The mapping ϕ : T (A) −→ A+(B1)
◦
which assigns fa 7→ ξ(1,1), fb 7→ (1, 1; id)

and fc 7→ ξϑ is an isomorphism. Hence, the monoid A+(B1)
◦
is syntactic monoid.

Note that A+(B1)
◦
is aperiodic. Hence, by Theorem 6.1.16, the language La is

star-free. Indeed, a star-free expression for the language La is given by

∅{a(∅{(a+ c)∅{){.
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6.3.2 The case n ≥ 2

In this subsection, we prove that the semigroup A+(Bn)
◦
is syntactic by constructing

a disjunctive subset (cf. Theorem 6.1.12).

Theorem 6.3.4. The set D = {(1, 1; id)}∪{ξ(p,q) | p, q ∈ [n]} is a disjunctive subset

of the semigroup A+(Bn)
◦
. Hence, A+(Bn)

◦
is a syntactic semigroup.

Proof. Let f, g ∈ A+(Bn)
◦
such that f ̸= g. We claim that there exist h and h′ in

A+(Bn)
◦
such that only one among hfh′ and hgh′ is in D so that f ̸≈D g. Since

f and g are arbitrary, it follows that ≈D is the equality relation on A+(Bn)
◦
. We

prove our claim in various cases on supports of f and g (cf. Theorem 2.2.10).

Case 1 f is of n-support, say (p, q;σ). Choose h = (1, p; id) and h′ = (q, 1;σ−1).

Note that

hfh′ = (1, p; id)(p, q;σ)(q, 1;σ−1) = (1, 1; id) ∈ D.

If g = ξϑ, then clearly hgh′ = ξϑ ̸∈ D. If g is of n-support, say (k, l; τ), then

hgh′ = (1, p; id)(k, l; τ)(q, 1;σ−1) =

 ξϑ if p ̸= k or q ̸= l

(1, 1; τσ−1) otherwise

so that hgh′ ̸∈ D. In case g is of singleton support, say (r,s)ζ(u,v),

hgh′ = (1, p; id)(r,s)ζ(u,v)(q, 1;σ
−1) is either ξϑ or in A+(Bn)1

so that hgh′ ̸∈ D. Finally, let g be a full support element, say g = ξ(k,l). Now,

for h = ξϑ and h′ = (k,l)ζ(s,t), we have

hgh′ = ξϑξ(k,l)
(k,l)ζ(s,t) = ξ(s,t) ∈ D

whereas

hfh′ = ξϑ(p, q; σ)
(k,l)ζ(s,t) = ξϑ ̸∈ D.
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Case 2 f is of full support, say ξ(p,q). If g is a constant map, then choose h = ξ(p,q)

and h′ = (p,q)ζ(u,v) so that

hfh′ = ξ(p,q)ξ(p,q)
(p,q)ζ(u,v) = ξ(u,v) ∈ D

but

hgh′ = ξ(p,q)g
(p,q)ζ(u,v) = ξϑ ̸∈ D.

In case g is of singleton support, say (r,s)ζ(u,v), choose h = ξϑ and h′ = (q, q; id).

Note that

hfh′ = ξϑξ(p,q)(q, q; id) = ξ(p,q) ∈ D

whereas

hgh′ = ξϑ
(r,s)ζ(u,v)(q, q; id) = ξϑ ̸∈ D.

Case 3 f is of singleton support, say (p,q)ζ(r,s). Now, we will only assume g is a

singleton support map, say (k,l)ζ(u,v), or the zero map. In any case, for h = ξ(p,q)

and h′ = (r,s)ζ(u,v), we have hgh′ = ξ(p,q)g
(r,s)ζ(u,v) = ξϑ ̸∈ D, whereas

hfh′ = ξ(p,q)
(p,q)ζ(r,s)

(r,s)ζ(u,v) = ξ(u,v) ∈ D.

6.4 Conclusion

In this chapter, we have shown that both the semigroup reducts of A+(Bn) are

syntactic semigroups. In addition to the basic definition of syntactic semigroup, we

have deployed various techniques, viz. minimal automata and disjunctive subsets, for

various cases to ascertain that these semigroups are syntactic. While A+(B1)
+
and

A+(B1)
◦
are shown as the transition monoids of some minimal automata, for n ≥ 2,

we proved that A+(Bn)
+
is isomorphic to the syntactic semigroup of a language. In

case of A+(Bn)
◦
, for n ≥ 2, we have shown that it contains a disjunctive subset.
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