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ABSTRACT

A non-perfect secret sharing scheme called MIX-SPLIT is a
substitution cipher created by mixing two statistically simi-
lar binary sequences (secrets) through a codebook. At the
heart of the algorithm are the hidden partitions which de-
fine the identity of the shares generated. By imposing certain
constraints on the codebook these partitions can be made in-
visible, opening up the possibility of constructing traceable
pseudonyms which are inherently frameproof. These codes
by virtue of their parental dependency (inheritance) can be
applied towards both content authentication as well as track-
ing.

Index Terms— MIX-SPLIT, non-perfect, frameproof
code, secret sharing

1. INTRODUCTION

In non-perfect secret sharing schemes the notion of an access
structure is loosely defined. In such schemes subsets of shares
derived from a particular parent secret have a tendency to leak
out some information regarding the secret. So far non-perfect
secret sharing schemes have been mostly of academic inter-
est focussing primarily on the development of a generalized
framework for representing such schemes. Ramp schemes
were first proposed by Blakley and Meadows [1] in which
three different types of sets were identified within the access
structure: access sets which reveal full information about the
secret, partial access sets which leak out some finite informa-
tion about the secret and non-access sets which do not reveal
anything about the secret. Since then, there has been a suf-
ficient body of literature [2][3][4] directed towards the struc-
ture of non-perfect schemes but very little towards finding a
set of feasible applications.

In our earlier work originating from [5], we were intent
on positioning an interesting substitution cipher called MIX-
SPLIT. The cipher created mixed shares of two different but
statistically similar parent secrets by controlling the mixing
through a codebook. Since the shares inherit the properties
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of the codebook, it was observed in [6] and [7] that one can
construct anti-collusion codes, authentication codes and joint
access schemes, opening up the possibility for a unified ap-
proach towards designing traitor tracing and non-perfect se-
cret sharing schemes. Conditional entropy can used to quan-
tify the extent of information leakage but, since, it is a scalar
quantity it does not tell us what portion of the secret is re-
vealed by the coalition of shares. For this a geometric view
was constructed in [8] which allowed us to assign a direction
to this leakage. This view is important since if each coalition
reveals a unique portion of the secret it can be used to either
construct a group authentication code or generate keys for se-
lective access. In this paper we open up the MIX-SPLIT al-
gorithm and study its application towards the construction of
frameproof codes. The concept of a c-frameproof code orig-
inated in the classic paper by Boneh and Shah [9]. Here we
propose an alternative but simplistic construction using MIX-
SPLIT where every share generated represents a fingerprint
which serves as a traceable pseudonym. Two parent secrets
which are mixed to form the shares, are broken down into v
hidden subsequences (also known as partitions). The iden-
tity of a share is buried in these partitions through a carefully
concealed inheritance directed by a secret codebook. Without
an unlocking sequence the partitions remain invisible and can
thus be used to form a frameproof code. These codes later on
will be shown to have a parental connection, allowing them to
be used for content authentication also.

Note that in sharp contrast, a perfect secret sharing
scheme is all white: i.e. the individual shares appear as
white noise both with respect to the secret and also in relation
to one another. None of the illegitimate coalitions can be
affiliated to the parent secret. Hence there is no scope for
pursuing traitor tracing within that framework.

In Section II, the basics of the MIX-SPLIT algorithm,
some definitions and properties are presented. The notion
called a hidden partition and conditions governing the visi-
bility of these partitions is discussed as a simple collection of
three rules in Section III. These rules are extended towards
the construction of a short frameproof code in Section IV.
Finally in Section V we close this paper with a collage of



properties and potential applications for MIX-SPLIT based
constructions.

2. MIX-SPLIT

Two compressed sources Src(X⃗) and Src(Y⃗ ) produce in-
dependent sequences of binary random variables, X⃗ =
(x1, x2, .., xL) and Y⃗ = (y1, y2, .., yL) respectively. Since
the sources are assumed to be fully compressed, xi⊥xj and
yi⊥yj , where ⊥ implies orthogonality. Further we state that
the symbols xi and yj are identically distributed, i.e., Pr(xi =
1) = Pr(yj = 1) = 0.5 and Pr(xi = 0) = Pr(yj = 0) = 0.5
∀i, j ∈ {1, 2, .., L}. A simple substitution cipher has been
proposed for generating a set of shares Si, i = 1, 2, ..n by
mixing the information from X⃗ and Y⃗ . Share generation
comprises of two steps:

Step1: Partitioning

v hidden partitions of X⃗ are created, i.e. X⃗ = [X⃗1||X⃗2||...||X⃗v],
where, ’||’ is the string concatenation cum mix operator. Cor-
responding to the L bits in X⃗ there are L unique bit positions
which are captured by the set P = {1, 2, 3, ...L}. This set
P is subdivided into v disjoint sets P1, P2, ..Pv such that
P = P1 ∪ P2 ∪ ..Pv , where Pj ⊂ P . For a given set
Pj , j = 1, 2, ..v, X⃗j = X⃗(Pj) represents the information
corresponding to the bit positions specified in Pj . P1, P2, ...
are chosen randomly to ensure good mixing of information.
Example for partitioning:

X⃗ = [x1, x2, x3, x4, x5, x6] is the chosen secret, with
xi ∈ {0, 1} and the set of all possible bit positions as,
P = {1, 2, 3, 4, 5, 6}. Let v = 3 be the number of parti-
tions. Choice of random partitions: P1 = {1, 5}, P2 = {3, 6}
and P3 = {2, 4}. The corresponding segments of X⃗ are:
X⃗1 = X⃗(P1) = [x1, x5], X⃗2 = X⃗(P2) = [x3, x6] and
X⃗3 = X⃗(P3) = [x2, x4]. Thus we shall define the string mix
cum concatenation operator ’||’, as, X⃗ = [X⃗1||X⃗2||X⃗3].

Similarly, v partitions of Y⃗ is created as Y⃗j = Y⃗ (Pj) for
j = 1..v.

Step2: Mixing X⃗ and Y⃗ and splitting into n shares

Each of the n shares can be written as,

Si = (Si1||Si2||...||Siv) (1)

where, the sequence Sij is chosen according to a pre-designed
codebook.

Sij = X⃗j if cij = 1

Sij = Y⃗j if cij = 0 (2)

The binary value cij ∈ {0, 1} is a part of the codebook,

C =


c11 c12 · · · c1v
c21 c22 · · · c2v
· · · · · · · · · · · ·
cn1 cn2 · · · cnv

 (3)

where, n represents the number of users and v the number
of partitions. If w is the hamming weight of the codeword
[ci1, ci2, ..., civ] for some row i in C, the proportion in which
the two secrets X⃗ and Y⃗ are mixed is determined by the ratio
w : (v − w) or the parameter α = w/v.

2.1. Hidden partitions and some definitions

The secrets which are concealed comprise of v hidden sub-
sequences, X⃗(Pj) and Y⃗ (Pj), where Pj are the partitions
created at the start of the share generation process. As long
as these partitions are hidden, each of the subsequences will
also remain hidden. It is proposed to reveal some of these
partitions through a share collusion process. But first we
have to examine the circumstances under which these par-
titions can be kept invisible. For the next two sections we
will enforce a condition that the binary sequence Y⃗ is de-
rived from X⃗ by taking its bit complement. For instance if
X⃗ = [1, 0, 0, 1, 1], Y⃗ = BIT CMP (X⃗) = [0, 1, 1, 0, 0],
where the BIT CMP (.) is the bit-complement function.
This constraint allows us to control the visibility of the
partitions through a plain share collusion, a feature that is
important for authentication and fingerprinting.

Every bit string contained in the partitions is mapped to
a real value in the interval [0, 1] and is referred to as a co-
ordinate. Note here that the knowledge of a particular parti-
tion completely specifies the co-ordinate. Hence the hidden
components of the secret are essentially the partitions of the
subsequences. Let X⃗j = X⃗(Pj) = [xj1 , xj2 , xj3 , ..., xjLp

],
where xjk ∈ {0, 1}. The co-ordinate corresponding to the
partition Pj is,

aj = String2Point(X⃗j)

=

Lp∑
r=1

xjr ·
[
1

2

]r
(4)

where, Lp = L/v is the length of each partition. The or-
dered set of co-ordinates [a1, a2, .., av] is a point inside a v-
dimensional UNIT hypercube. Note that an arbitrary collu-
sion of shares may reveal any k < v co-ordinates which im-
plies that the secret could lie anywhere amongst a set of dis-
crete points on a (v−k) dimensional hyperplane bound by the
unit hypercube. As the number of shares in the coalition is in-
creased the region of uncertainty will shrink. This is a perfect
example of a non-perfect secret sharing scheme in which the
conditional entropy H(X⃗|Bt) < H(X⃗) where, Bt is a coali-
tion of some t shares. Unfortunately conditional entropy is a



scalar quantity and does not tell us which portion of the secret
is leaked out by a particular coalition. For this we may have
to construct a geometric view discussed in [8].
Example: For a 3-out-of-3 sharing scheme with a X⃗ : Y⃗ mix
ratio of 2:1, we can use the codebook,

C =

 1 1 0
1 0 1
0 1 1

 (5)

The secret point [a1, a2, a3] becomes visible when all three
shares are stacked and a three-way bit comparison across
columns of the binary sequences is executed to extract the
bit-locations of the subsequences. Note that each of the three
columns in the codebook indicates a unique association be-
tween the three shares which leaks out the partitions PA, PB

and PC by virtue of a columnwise bit comparison as shown
below.

PA = P1 = {rA}, s.t. [(S1(rA) = S2(rA)] ̸= S3(rA)

PB = P2 = {rB}, s.t. [S1(rB) = S3(rB)] ̸= S2(rB)

PC = P3 = {rC}, s.t. [S2(rC) = S3(rC)] ̸= S1(rC)(6)

On the other hand a coalition of any two shares will reveal ex-
actly one co-ordinate ai which is called the visible co-ordinate
confining the secret to a plane parallel to one of the axes as
shown in Fig. 1(a). Thus the same example also represents

Fig. 1. Geometric interpretation of MIX-SPLIT. Illustra-
tion of selective leakage of information through share fusion.
When two shares are fused, the secret is confined to a plane
parallel to the X-axis. When all three shares are stacked, the
point having co-ordinates [a1, a2, a3] is revealed [8].

a (2,3)-selective access code. In such applications the parti-
tions can be destroyed immediately after the shares are cre-
ated. Simply stacking and performing a bitwise comparison
will reveal the hidden partitions.

3. CONDITIONS FOR PARTITION INVISIBILITY

A codebook (or a portion of it) may be designed in such a
way that no matter which subset of shares are stacked, vir-
tually no information is revealed regarding the partitions.

Let A be a subdesign matrix obtained by row-sampling
the original codebook C, representing a subset of shares
Bt = {Si1 , Si2 , .., Sit}, where ik ∈ {1, 2, .., n}. Each
block matrix A can in turn be decomposed into columns,
A = [w̄1, w̄2, .., w̄v], where w̄j is a t× 1 binary column vec-
tor. We may define the set VC(Bt(A)) as the set of visible
co-ordinates (or partitions) obtained by stacking and com-
paring the coalition of t shares defined by matrix A. The
following three rules govern the invisibility of the partitions.

Rule 1: Complementary columns lead to inseparable par-
titions

VC[Bt(A)] = ∅ IF for every w̄j ∈ A, BIT CMP [w̄j ] ∈ A
even though w̄j may be distinct.
Example 1:

A =

 0 1 0 1
0 1 1 0
0 1 1 0

 (7)

In the above example, when users stack their three shares
Si1 , Si2 , Si3 , two sets of positions can be disclosed defined
by the sets PA and PB ,

PA = {rA}, s.t. [(Si1(rA) = Si2(rA) = Si3(rA)]

PB = {rB}, s.t. Si1(rB) ̸= [Si2(rB) = Si3(rB)]

where, PA = P1 ∪ P2 and PB = P3 ∪ P4. Since one cannot
separate P1 and P2 from P1 ∪ P2 this leaves the two parti-
tions mixed. A similar argument can be constructed for P3

and P4. In general depending on particular column w̄j (com-
bination of ones and zeroes) one can form a unique relation
between the shares in the stack. Complementing this column
does not alter the relationship. Thus a pair of complementary
columns result in a mixed set of partitions. In this example,
there are no visible co-ordinates, i.e. VC[Bt(A)] = ∅. Since
each stack comparison operation tends to narrow down the
search for the partitions Pi, i = 1, 2, 3, 4 this is a non-perfect
scheme. However for a sufficiently large set PA = P1 ∪ P2

it is very difficult to split this into two constituent partitions
P1, P2 without prior information. Thus no co-ordinates are
visible from complementary patterns.

Rule 2: Rowsampling of a complementary pattern is com-
plementary

IF VC[Bt(A)] = ∅, THEN VC[Bt−1(B)] = ∅
where, B is a sub-block obtained by rowsampling of A.
Example 2:

B =

(
0 1 0 1
0 1 1 0

)
(8)

By observation for coalitions of size t ≥ 3, if the parent coali-
tion A comprises of complementary columns (Example 1),
the rowsampled matrix B, derived from A, will also be made
up of complementary columns. Thus it follows from Rule 1,
that VC[Bt=2(B)] = ∅. There will be no visible co-ordinates.



Rule 3: Single share is always mixed (no partitions visible)

VC[Bt=1(A)] = ∅ irrespective of the choice of A.
Since a single share is a mixture of X⃗ and Y⃗ = BIT CMP (X⃗),
which are statistically similar, there is no way one can sep-
arate the partitions Pj from the mixture. As a result the
co-ordinates will always remain invisible for a single share.

4. FRAMEPROOF CODE CONSTRUCTION: THE
UNLOCKING SEQUENCE

We consider an application of the above three rules. First
note that in a MIX-SPLIT based construction a share may
comprise of the following two components:

• Subsequences X⃗(Pj) and Y⃗ (Pj), j = 1, 2, .., v.

• Codebook which decides the exact choice of subse-
quences and inheritance.

These components together make up the signature of a par-
ticular share. The codebook and partitions are destroyed im-
mediately after the co-ordinates aj = String2Point(X⃗(Pj))
are determined prior to share distribution. These co-ordinates
are retained for verification. If the shares Si, i = 1, 2, ..n
represent fingerprints of n users, it is expected that no point
should it be possible for one user (say user i) to frame another
(user j) even if he/she manages to acquire his/her exact fin-
gerprint code sequence Si. To generalize this to a coalition of
t < n users, it should not be possible for a coalition t or fewer
traitors to frame a user outside the group. Since the heart of
a MIX-SPLIT share is a partition, any illegitimate coalition
should not be able to determine the partitions. However these
partitions (some or all) should be revealed when a suitable
unlocking sequence is provided and this can be used not only
for tracing but also for content authentication as the shares
possess an identifiable parent property (IPP).

We present a n-frameproof code with n = 4. Note that
the this codebook satisfies rules 1-3, i.e, every column has a
complementary counterpart. The codebook is,

C4 =


1 1 1 0 0 0
1 0 0 1 1 0
0 0 1 1 0 1
0 1 0 0 1 1

 (9)

and the corresponding frameproof fingerprints are,
S1

S2

S3

S4

 =


X⃗(P1) X⃗(P2) X⃗(P3) Y⃗ (P4) Y⃗ (P5) Y⃗ (P6)

X⃗(P1) Y⃗ (P2) Y⃗ (P3) X⃗(P4) X⃗(P5) Y⃗ (P6)

Y⃗ (P1) Y⃗ (P2) X⃗(P3) X⃗(P4) Y⃗ (P5) X⃗(P6)

Y⃗ (P1) X⃗(P2) Y⃗ (P3) Y⃗ (P4) X⃗(P5) X⃗(P6)


(10)

where, Y⃗ = BIT CMP [X⃗]. Note that this incidentally is
also a (K = 3, n = 4) anti-collusion code useful for detect-
ing three or fewer colluders amongst a small user group of
four users [7]. Take any coalition, say of some three shares

Bt=3 = {S1, S3, S4}, the corresponding block matrix A also
satisfies Rule 1. Note that every column in A has a comple-
mentary counterpart e.g. col-1 with col-6, col-2 with col-4
and col-3 with col-5.

A =

 1 1 1 0 0 0
0 0 1 1 0 1
0 1 0 0 1 1

 (11)

This holds true even for coalitions of size t = 1, 2, i.e.
VC[Bt(A)] = ∅, t ≤ n. However if one appends a code
[1, 1, 1, 1, 1, 1] to A, the three rules are no longer applicable
and one can extract the partitions by stacking the four se-
quences. Note here that the fourth sequence which serves as
the unlocking sequence is the parent X⃗ itself (which lies with
the distributor or source).

Bapp =


1 1 1 1 1 1
1 1 1 0 0 0
0 0 1 1 0 1
0 1 0 0 1 1

 (12)

Observe that every column in the new matrix Bapp is unique,
hence six different stack relations will yield all the six par-
titions P1, P2, .., P6. This holds true for any three out of
four shares. On the other hand when the unlocking sequence
is applied to a stack of two shares exactly two partitions
are revealed. This unlocking aspect is illustrated using Ta-
ble. 1. Notice that with the help of the unlocking sequence
X⃗ ≡ [1, 1, 1, 1, 1, 1] the identity of each one of the individual
shares can be confirmed as they can be uniquely linked with
X⃗ (uncertainty region is a unique cluster of points within a 6-
dimensional unit hypercube). The first row in Table. 1 shows
that standalone coalitions of shares (without the unlocking
sequence X⃗) will not release any partition (Rules 1-3).

Table 1. Visible partitions for the C4 frameproof code.
Information stacked Visible partitions VC(Bt)

Bt ⊂ {S1, S2, S3, S4} (t ≤ 4) ∅ (Rules 1-3)
{S1, S2, X⃗} P1, P6

{S1, S3, X⃗} P3, P5

{S1, S4, X⃗} P2, P4

{S2, S3, X⃗} P4, P2

{S2, S4, X⃗} P5, P3

{S3, S4, X⃗} P6, P1

Bt=3, X⃗ P1, P2, P3, P4, P5, P6

5. CONCEALED INHERITANCE AND OTHER
PROPERTIES OF MIX-SPLIT

In a MIX-SPLIT construction, the shares and the parent se-
crets form a dependence graph as shown in Fig. 2. The code-
book which is used to mix X⃗ and Y⃗ creates different real-
izations of the parents. These realizations can be termed as



children as they inherit the characteristics of the parents. We
revert to the original definition in Section. 2, which starts with
the assumption that X⃗ and Y⃗ are I.I.D. sequences of random
variables (analogy: referred to as traits here). The partitions
Pj ⊂ {1, 2, 3, .., L} define a group of traits which are collec-
tively inherited by a share (or child node). These traits are
concealed at the time of birth (i.e. while creating the shares).
Consequently the exact identity of the parents are hidden from
the shareholders or children (anonymity). This is a special
case of concealed inheritance where every standalone share is
an anonymous representation of two unknown parents. How-
ever in the presence of the parents one can establish a link
between the shares and the secrets.

Given the pairs [X⃗, S] and [Y⃗ , S] and the bi-polar one-to-
one mappings X⃗b = 2X⃗ − 1̄, Y⃗b = 2Y⃗ − 1̄ and Sb = 2S − 1̄,

Corr(X⃗b, Sb) =
X⃗b · [S⃗b]

T

L
≈ α

Corr(Y⃗b, Sb) =
Y⃗b · [S⃗b]

T

L
≈ 1− α

S can be easily linked to its parents X⃗ and Y⃗ since the code-
book controls the correlation between the derived share S and
the secret. Here, 1̄ represents the all one vector. However,
a stand-alone share S does not reveal its heritage as it is a
mixture of two statistically similar sequences, i.e. parents
remain anonymous. This duality associated with the MIX-
SPLIT constructions opens up applications such as e-Voting.

Fig. 2. Multicolored shares and dependencies.

Fig. 2 encompasses some of the following application sce-
narios:

• Selective access tokens: Each node Si may represent a
unique colored sequence from X⃗, Y⃗ . Si and its children

can be used to generate keys for selective access [6]. An
example is the (2,3) selective access code discussed in
Section. 2.1 where every 2-coalition (out of a total of
three users) leaks out a unique component of the secret
(i.e. a specific partition becomes visible). Thus each
share becomes an access token and a subset of such
tokens can be used for releasing a key to a portion of
a secured sensitive record. Fine grained access control
can thus be a potential application.

• Anti-collusion codes: Since every child node (share)
is a unique realization obtained by mixing two par-
ents they can represent fingerprints for traitor tracing.
A careful association can be built between the child
shares and this inter-connection becomes essential for
constructing anti-collusion codes. This aspect is dis-
cussed in brief in Section. 5.1.

• Authentication with traceability: Parental depen-
dency on the other hand allows authentication and
cross-linking. Since the child nodes inherit some of
the parent’s traits, each share can be used both as an
authentication watermark as well as a fingerprint for
tracking a particular document.

• Anonymity, joint authentication and tracing: The
simultaneous mixing and splitting of two disparate data
sets can be used for anonymous fingerprinting in which
the [creator, buyer] pair is imprinted in copies of some
digital portrait without revealing either identity [6].
Here we apply the property that a share S which is
derived by mixing two statistically similar secrets X⃗
and Y⃗ becomes a traceable pseudonym.

• Joint access with tracing: Since MIX-SPLIT was
originally designed as a n-out-of-n non-perfect secret
sharing scheme, one imminent application is that of
joint access with tracking of all illegitimate share fu-
sions Bt s.t. t < n. For images, which cannot tolerate
even moderate distortion levels, this scheme provides
dual protection. A 3-out-of-3 or 5-out-of-5 ”access
control + tracing scheme” can be implemented using
the codebooks [7],

C3,3 =

 1 1 0
1 0 1
0 1 1

 (13)

C5,5 =


1 1 1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1 0 0
1 0 0 1 1 1 1 0 1 0
0 1 0 1 0 1 0 1 1 1
0 0 1 0 1 0 1 1 1 1


(14)

To reconstruct retrieve the secrets, all the n shares need
to stacked and a columnwise majority bit vote evaluated
to extract the parent X⃗ and a minority vote to extract Y⃗ .



5.1. Associations between shares

Contrary to a perfect secret sharing scheme, through MIX-
SPLIT it is possible to induce dependencies between shares.
It is possible to create a unique association between any
subset of shares through a specific codebook, which can
be utilized for traitor tracing. The 5-out-of-5 codebook
(Eqn. 14) [7] can be depicted as an edge colored graph
(Fig. 3) in which each share Si, i ∈ {1, 2, 3, 4, 5} is rep-
resented by a vertex and each edge is an association between
two shares. The linking may take place through any of the
v = 10 different dimensions (corresponds to the 10 colors
used in the graph). Corresponding to these v colors, the se-
crets X⃗ and Y⃗ are subdivided into v disjoint parts. Any share
Si comprises of 6 parts from X⃗ and 4 parts from Y⃗ . Each
part of X⃗ (represented as color Vj , j = 1, 2, ..10) is mapped
as ’1’ and that of Y⃗ as ’0’ which in turn can be treated as the
absence of X⃗ .

It is easy to see that this codebook mimics an anti-
collusion code and by design a majority vote of any subset of
codewords will result in a unique binary pattern. Illegitimate
coalitions can be represented by a subgraph G(ST ), induced
by the vertices ST ⊂ {1, 2, 3, 4, 5}.

Fig. 3. Graph indicating associations between different shares
for a 5-out-of-5 non-perfect secret sharing scheme. The con-
struction also mimics an anti-collusion code for tracing all
subsets of traitors within a group of 5 users.

6. CONCLUSIONS

When perfect secrecy is compromised in secret sharing, this
opens up a pandora’s box which can be used to create a va-
riety of schemes such as anti-collusion codes, authentication
codes, joint access schemes and traceable pseudonyms. The
focal point of this paper is in the construction of traceable
pseudonyms for fingerprinting through a non-perfect secret
sharing scheme called MIX-SPLIT. A set of rules are dis-
cussed to make the construction frameproof.
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