4 | Turing Machines

41 THE DEFINITION OF A TURING MACHINE

We have seen in the last two chapters that neither finite automata nor pushdown
automata can be regarded as truly general models for computers, since they are
not capable of recognizing even such simple languages as fa®b"c" in 2 0}. In
this chapter we take up the study of devices that can recognize this and many
more complicated languages. Although these devices, called Turing machines
after their inventor Alan Turing (1912-1954), are more general than the au-
tomata previously studied, their basic appearance is similar to those automata.
A Turing machine consists of a finite control, a tape, and a head that can be
used for reading or writing on that tape. The formal definitions of Turing ma-
chines and their operatibn are in the same mathematical style as those used for
fnite and pushdown automata. So in order to gain the additional computa-
tional power and generality of function that Turing machines poSSess, we shall
not move to an entirely new sort of model for a computer.

Nevertheless, Turing machines are not simply one more class of automata,
to be replaced later on by a yet more powerful type. We shall see in this chapter
that, as primitive as Turing machines seem to be, attempts to strengthen them
do not have any effect. For example, we also study Turing machines with many
tapes, or machines with fancier memory devices that can be read or written
in a random access mode reminiscent of actual computers; significantly, these
devices turn out to be no stronger in terms of computing power than basic Turing
machines. We show results of this kind by simulation methods: We can convert
any “augmented” machine into a standard Turing machine which functions in
an analogous way. Thus any computation that can be carried out on the fancier
type of machine can actually be carried out on a Turing machine of the standard
variety. Furthermore, towards the end of this chapter we define a certain kind of

179

180 - ' /Chapter 4: TURING MACHINES

language generator, a substantial generalization of context-free grammars, which
is also shown to be equivalent to the Turing machine. From a totally different
perspective, we also pursue the question of when to regard a numerical function
(such as 2 4+ z*) as computable, and end up with a notion that is once more
equivalent to Turing machines! -

So the Turing machines seem to form a stable and mazimal class of com-
putational devices, in terms of the computations they can perform. In fact, in
the next chapter we shall advance the widely accepted view that any reasonable
way of formalizing the idea of an “algorithm” must be ultimately equivalent to
the idea of a Turing machine.

But this is getting ahead of our story. The important points to remem-
ber by way of introduction are that Turing machines are designed to satisfy
simultaneously these three criteria: :

(a) They should be automata; that is, their construction and function should
be in the same general spirit as the devices previously studied.

(b) They should be as simple as possible to describe, define formally, and reason
about.

(c) They should be as general as possible in terms of the computations they
can carry out.

Now let us look more closely at these machines. In essence, a Turing machine
consists of a finite-state control unit and a tape (see Figure 4-1). Communication
between the two is provided by a single head, which reads symbols from the tape
and is also used to change the symbols on the tape. The control unit operates
in discrete steps; at each step it performs two functions in a way that depends
on its current state and the tape symbol currently scanned by the read/write.
head:

(1) Put the control unit in a new state.
(2) FEither:
(a) Write a symbol in the tape square currently scanned, replacing the one
already there; or
(b) Move the read/write head one tape square to the left or right.

The tape has a left end, but it extends mdeﬁmtely to the right. To prevent
the machine from moving its head off the left end of the tape, we assume that the
leftmost end of the tape is always marked by a special symbol denoted by >; we
assume further that all of our Turing machines are so designed that, whenever
the head reads a », it immediately moves to the right. Also, we shall use the
distinct symbols < and — to denote movement of the head to the left or right;
we assume that these two symbols are not members of any alphabet we consider.

A Turing machine is supplied with input by inscribing that input string
on tape squares at the left end of the tape, immediately to the right of the

4.1: The definition of a Turing Machine 181

ba‘baa‘{

Read/write head
(moves in both directions)

o
h
— Finite control
93
95
Figure 4-1

symbol. The rest of the tape initially contains blank symbols, denoted LI. The
machine is free to alter its input in any way it sees fit, as well as to write on the
unlimited blank portion of the tape to the right. Since the machine can move its
head only one Square at a time, after any finite computation only finitely many
tape squares will have been visited. ;

We can now present the formal definition of a Turing machine.

Definition 4.1.1: A Turing machine is a quintuple (K, 3,4, s, H), where
K is a finite set of states; .
2 is an alphabet, containing the blank symbol L) and the left end symbol
>, but not containing the symbols + and —;
$ € K is the initial state:
H C K is the set of halting states;
d, the transition function, is a function from (K—H)xY to K x (Bu{«
,—}) such that,
(a) forallg e K — H. if 0(g,>) = (p,d), then b =—s
(b) forallge K — H and a X, if §(¢,a) = (p,b) then b # b

Itge K—H,a € ¥, and d(g,a) = (p,b), then M, when in state ¢ and
scanning symbol a, will enter state p, and (1) if b is a symbol in X, M will
rewrite the currently scanned symbol a as b, or (2) if b is « or —, M will move
its head in direction b. Since § is a function, the operation of M is deterministic
and will stop only when M enters 2 halting state. Notice the requirement (a)
on 9: When it sees the left end of the tape b, it must move right. This way the
leftmost > is never erased, and M never falls off the left end of its tape. By (b),
M never writes a b, and therefore p is the unmistakable sign of the left end of

182 Chapter 4: TURING MACHINES

the tape. In other words, we can think of » simply as a “protective barrier” that
prevents the head of M from inadvertently falling off the left end, which does
not interfere with the computation of M in any other way. Also notice that ¢ is
not defined on states in H; when the machine reaches a halting state, then its
operation stops.

Example 4.1.1: Consider the Turing machine M = (K, %, 5, s,{h}), where

K :{qosQI:'h}a
X :{aluib}!
8 =qo,

and ¢ is given by the following table.

¢, o | d(q,0)
qo a (QI) U)
do L (h,l_l)
do > (ql)a "_}') l
qQ a (90,a)
@ U | (g,-3) °
di="=F (q1,—)

When M is started in its initial state go, 1t scans its head to the right,
changing all a’s to U’s as it goes, until it finds a tape square already containing
U; then it halts. (Changing a nonblank symbol to the blank symbol will be
called erasing the nonblank symbol.) To be specific, suppose that M is started
with its head scanning the first of four a’s, the last of which is followed by a L.
Then M will go back and forth between states 90 and ¢; four times, alternately
changing an a to a U and moving the head right; the first and fifth lines of the
table for ¢ are the relevant ones during this sequence of moves. At this point,
M will find itself in state gq scanning U and, according to the second line of
the table, will halt. Note that the fourth line of the table, that is, the value
of d(qy,a), is irrelevant, since M can never be in state ¢, scanning an a if it is
started in state go. Nevertheless, some value must be associated with 4(q1,a)
since ¢ is required to be a function with domain- (K-H) x 2.$

Example 4.1.2: Consider the Turing machine M = (K, £, 6, s, H), where

K :{QOah}a
¥ ={a,U,p},
8 =(qo,

H ={h},

4.1: The definition of a Turing Machine 183

.01 0lq,0)
0 a | (go,+)
do U (h’} l—l)
o > | (9,—)

and ¢ is given by this table.

This machine scans to the left until it finds a LU and then halts. If every
tape square from the head position back to the left end of the tape contains an
a, and of course the left end of the tape contains a >, then M will go to the left
end of the tape, and from then on it will indefinitely go back and forth between
the left end and the square to its right. Unlike other deterministic devices that
we have encountered, the operation of a Turing machine may never stop.{

We now formalize the operation of a Turing machine.
To specify the status of a Turing machine computation, we need to specify

‘the state, the contents of the tape, and the position of the head. Since all

but a finite initial portion of the tape will be blank, the contents of the tape
can be specified by a finite string. We choose to break that string into two
pieces: the part to the left of the scanned square, including the single symbol
in the scanned square; and the part, possibly empty, to the right of the scanned
square. Moreover, so that no two such pairs of strings will correspond to the
same combination of head position and tape contents, we insist that the second
string not end with a blank (all tape squares to the right of the last one explicitly
represented are assumed to contain blanks anyway). These considerations lead
us to the following definitions. '

Definition 4.1.2: A configuration of a Turing machine M = (K, X, 4,5, H) is
a member of K x pX* x (X*(X — {U}) U {e}).

That is, all configurations are assumed to start with the left end symbol,
and never end with a blank —unless the blank is currently scanned. Thus
(g,>a,aba), (h,> U UL, Ua), and (g,> U a L, e) are configurations (see Figure
4-2), but (g,>baa, a,bel)) and (g, Uaa,ba) are not. A configuration whose state
component is in H will be called a halted configuration.

We shall use a simplified notation for depicting the tape contents (including
the position of the head): We shall write wau for the tape contents of the
configuration (g, wa,u); the underlined symbol indicates the head position. Far
the three configurations illustrated in Figure 4-2, the tape contents would be
represented as paaba, >UUUUa, and >UalUU. Also, we can write configurations

by including the state together with the notation for the tape and head position.

| That is, we can write (q,wa,u) as (q,wau). Using this convention, we would

184 ' Chapter 4: TURING MACHINES

T b e i N e T s
q q

h I q (eSS O
q" ' ; : : q"

(g, >, a, aba) (h, > LU, L, Ua)

(g, >Ual, L, €)
Figure 4-2

write the three configurations shown in Figure 4-2 as (g,>aaba), (h,>UUUUa),
and (g,>Ua U U).

Definition 4.1.3: Let M = (K,%,4,s, H) be a Turing machine and consider
two configurations of M, (g1, w1a1u1) and (g2, w2a2u2), where a1,a2 € Y. Then

(a1, wygyur) Fur (G2, woazUz)

-~ if and only if, for some b € LU {+, =}, 8(q1,a1) = (g2,b), and either

4.1: The definition of a Turing Machine 185

1. bE X, wy = wy, ug = Uz, and az = b, or
9. b=+, w; = wsas, and either
(a) w2 = ayuy, if a; # U or uj # e, or
(b) uy = e, if a1 =U and u; = e; or
3. b=—, wy = wia;, and either
(a) u; = aguz, Or
(b) u; = uz = e, and ag = L.

In Case 1, M rewrites a symbol without moving its head. In Case 2, M
moves its head one square to the left; if it is moving to the left off blank tape,
the blank symbol on the square just scanned disappears from the configuration.
In Case 3, M moves its head one square to the right; if it is moving onto blank
tape, a new blank symbol appears in the configuration as the new scanned
symbol. Notice that all configurations, except for the halted ones, yield exactly
one configuration.

Example 4.1.3: To illustrate these cases, let w,u € ¥*, where u does not end
with a U, and let a,b € ¥.

0(136 1. 5(q1,a) = (Q2,b).
Example: (g1, wau) b (g2, wbu).
Case 2. 6(q1,0a) = (g2, ¢)-
Example for (a): (%ﬂbbgu) Far (g2, whau).
Example for (b): (g1, wbl) Far (g2, wb).
Case 3. 6(q1,a) = (g2, —)-
Example for (a): (g1, wabu) Fur (g2, wabu).
Example for (b): (q1,wa) Fur (g2, wal). &

Definition 4.1.4: For any Turing machine M, let, -3, be the reflexive, transitive
closure of - r; we say that configuration C; yields configuration C if Cy F3; Coa.
A computation by M is a sequence of configurations Co, C1, . - -, Cn, for some
n > 0 such that

CobmCiFmCotpy - Fum Cn.

We say that the computation is of length n or that it has n steps, and we write

Example 4.1.4: Consider the Turing machine M described in Example 4.1.1. If
M is started in configuration (g1, >LUaaaa), its computation would be represented

186 ' ' Chapter 4: TURING MACHINES

formally as follows.

(q1,>Uaaaa) Far(go, > U agea)
Far(qr, > U Uaaa)
s (go, > U Laaa)
- a (g1, > U Ulaa)
Far(go,> U U U aa)
Far(g,> UL U Ua)
Far(go,> U U L La)
Fae(gqn,> U LU LIL)
Far(go,b UL L LI LI L)
Fac(h,>ULIL U U L)

The computation has ten steps.$

A Notation for Turing Machines

‘The Turing machines we have seen 30 far are extremely simple —at least when
tompared to our stated ambitions in this chapter— and their tabular form is
‘already quite complex and hard to interpret. Obviously, we need a notation for
Turing machines that is more graphic and transparent. Fot finite automata, we
used in Chéapter 2 a notatlon that involved states and arrows denoting transi-
tions. We shall next adopt a similar notation for Turing machines. However, the
things joined by arrows will in this case be themselves Turing machines. In other
words, we shall use a hierarchical notation, in which more and more complex
machines are built from simpler materials. To this end, we shall define a very
simple repertoire of basic machines, together with rules for combining machines.

The Basic Machines. We start from very humble beginnings: The symbol-writing
tachines and the head-moving machines. Let us fix the alphabet ¥ of our
machines. For each a € ¥ U {—, +} — {p}, we define a Turing machine M, =
({s,h},%,6,s,{h}), where for each b € ¥ — {p}; 6(s,b) = (h,a). Naturally,

d(s,r) is still always (s,—). That is, the only thing this machine does is to

perform action a —writing symbol a if @ € ¥, moving in the direction indicated
by a if @ € {+, —}— and then to immediately halt. Naturally, there is a unique
exception to this behavior: If the scanned symbol is a b, then the machine will
dutifully move to the right.

Because the symbol-writing machines are used so often, we abbreviate their
names and write simply a instead of M,. That is, if a € £, then the a-writing
machine will be denoted simply as a. The head-moving machines M, and M_,
will be abbreviated as L (for “left”) and R (for “right”). -

4.1: The definition of a Turing Machine 187

- The Rules for Combining Machines. Turing machines will be combined in a way

suggestive of the structure of a finite automaton. Individual machines are like
the states of a finite automaton, and the machines may be connected to each
other in the way that the states of a finite automaton are connected together.
However, the connection from one machine to another is not pursued until the
first machine halts; the other machine is then started from its initial state with
the tape and head position as they were left by the first machine. So if M,
M, and M3 are Turing machines, the machine displayed in Figure 4-3 operates
as follows: Start in the initial state of M ; operate as M; would operate until
M, would halt; then, if the currently scanned symbol is an a, initiate My and
operate as M would operate; otherwise, if the currently scanned symbol is a b,
then initiate Mz and operate as Mz would operate.

My -5 M,
s

M;

Figure 4-3

It is straightforward to give an explicit definition of the combined Turing
machine from its constituents. Let us take the machine shown in Figure 4-3
above. Suppose that the three Turing machines M;, M>, and M3 are M; =
(Kl, 2, 51, Sl,Hl), Mg — {Kg, 2,52', S9, Hz), and M3 = (Kg, E, (53, 83,H3). We
shall-assume, as it will be most convenient in the context of combining machines,
that the sets of states of all these machines are disjoint. The combined machine
shown in Figure 4-3 above would then be M = (K, %, 6, s, H), where

K=K, UK>U K3,

§ = 81,

= Hz U H3.

For each 0 € ¥ and g € K — H, d(q,0) is defined as follows:

(a) If ¢ € Ky — H,, then 6(q,0) = d1(q, 0).

(b) If ¢ € K5 — H,, then 6(q,0) = 65(q,0).

(c) If ¢ € K35 — Hjs, then 6(gq,0) = d5(q, 0).

(d) Finally, if ¢ € H; —the only case remaining— then é(q,0) = s, if
o =a,0(g,0) =ss if o = b, and §(q,0) € H otherwise.

All the ingredients of our notation are now in place. We shall be building
machines by combining the basic machines, and then we shall further combine
the combined machines to obtain more complex machines, and so on. We know
that, if we wished, we could come up with a quintuple form of every machine we
thus describe, by starting from the quintuples of the basic machines and carrying
out the explicit construction exemplified above.

188 . Chapter 4: TURING MACHINES

Example 4.1.5: Figure 4-4(a) illustrates a machine consisting of two copies of
R. The machine represented by this diagram moves its head right one square;
then, if that square contains an a, or a b, or a b, or a L, it moves its head one
square further to the right.

aq

ZEETN

SREPISS D SRAVLE. B
"\-.___L_i__...-x
(a) (b)

Figure 4-4

It will be convenient to represent this machine as in F igure 4-4(b). That is,
an arrow labeled with several symbols is the same as several parallel arrows, one
for each symbol. If an arrow is labeled by all symbols in the alphabet ¥ of the
machines, then the labels can be omitted. Thus, if we know that & — {a,b,>, U},
then we can display the machine above as

R — R,

where, by convention, the leftmost machine is always the initial one. Sometimes
an unlabeled arrow connecting two machines can be omitted entirely, by jux-
taposing the representations of the two machines. Under this convention, the
above machine becomes simply RR, or even R2.$

Example 4.1.6: If a € ¥ is any symbol, we can sometimes eliminate multiple
arrows and labels by using & to mean “any symbol except a.” Thus, the machine
shown in Figure 4-5(a) scans its tape to the right until it finds a blank. We shall
denote this most useful machine by R,.

>R))D >R’)“&LJ

(a) (b)
Figure 4-5

Another shorthand version of the same machine as in Figure 4-5(a) is shown
in Figure 4-5(b). Here a # U is read “any symbol a other than L1.” The advantage
of this notation is that a may then be used elsewhere in the diagram as the name
of a machine. To illustrate, Figure 4-6 depicts a machine that scans to the right

41: The definition of a Turing Machine : 189

u

e
Figure 4-6
>R U =1 LI
(a) Ry, (b) Ly
>R L >L L
(c) Rp _ (d) Lg
Figure 4-7

until it finds a nonblank sqﬁaiéé‘, then copies the symbol in that square onto the
square immediately to the left of where it was found.

Example 4.1.7: Machines to find marked or unmarked squares are illustrated

in Figure 4-7. They are the following.

(a) Ry, which finds the first blank square to the right of the currently scanned
square. '

(b) Ly, which finds the first blank square to the left of the currently scanned
square. : :

(¢) Rg, which finds the first nonblank square to the right of the currently
scanned square.

(d) L, which finds the first nonblank square to the left of the currently scanned
square.{

Example 4.1.8: The copying machine C performs the following function: ¥C
starts with input w, that is, if string w, containing only nonblank symbols but
possibly -empty, is put on an otherwise blank tape with one blank square to its

190 ' Chapter 4. TURING MACHINES

left, and the head is put on the blank square to the left of w, then the machine
will eventually stop with w LJ w on an otherwise blank tape. We say that C
transforms Liwl into Uwllwl.

A diagram for C' is given in Figure 4-8.¢

4 a#U
= =R - UR%al?q —
L

RU
Figure 4-8

Example 4.1.9: The right-shifting machine S _,, transforms Uwll, where w con-
tains no blanks, into U wU. It is illustrated in Figure 4-9.¢

l T
=L gf}i... UR_IGL{_]%_'_

\

U
RLJ
Figure 4-9

Example 4.1.10: Figure 4-10 is the machine defined in Example 4.1.1, which
erases the a’s in its tape.

a
SR>

Figure 4-10

As a matter of fact, the fully developed transition table of this machine
will differ from that of the machine given in Example 4.1.1 in ways that are
subtle, inconsequential, and explored in Problem 4.1.8 —namely, the machine:
in Figure 4-10 will also contain certain extra states, which are final states of its
constituents machines. -

4.1: The definition of 3 Turing Machine 191
Problems for Section 4.1

4.1V Tet M — (K% 0s {h}), where

K :{QOa q1, h}:
b)) :{(.I, bu J__f;, D}:
S =qo,

and ¢ is given by the following table. :

(91: b)
(qlaa)
(h, L)

(903 _'))

(Q_O; __>)

| (g0,=)

(QOa __})

4.1.2. Repeat Problem Bl s the machine Af — (K,X,0,8 {h}), where
K_.—:{QO) Ql}qzaﬁ}s |
Z ={a,b,,p},
S =qo,

and ¢ is given by the following table (the transitions on » are 6(q,>) = (g, B),
and are omitted).

a
b
U
a
b
LI
aQ
b
L

i
192 Chapter 4: TURING MACHINES

Start from the configuration (g0, >abb U bb L LU L aba).
4.1.3. Repeat Problem 4.1.1 for the machine M = (K,X,4,s, {h}), where
K :{QOa q1,9z2, q3,94, h}s
3 ={a, b, U, >},
S =qo,

and 4 is given by the following table.

g9, 0 | 6(q,0)
9 a (q2,—)
% b | (g,a)
0 u {h} U)
90 > (qm _‘})
@1 a (g2,)
a1 b (g2,)
gy Ll (g2,)
Qr:, D (q1,—)
@2 a (¢1,b) X
q2 b (Q3 ’ G)
q2 U (h’a Ll)
a2 > (q2: '_>)
3 a | (q1,—>)
3 b | (q,—)
g3 u (‘.hv _>)
B3 > | (g3,—)
g« a (2, —)
qs b (q4,—)
d4 L (h‘a L-l)
a4 > | (qa1,>)

Start from the configuration (g0, >aaabbbaa).
4.1.4. Let M be the Turing machine (K,X,8,s,{h}), where
K :{QOa q1, 92, h’}’
¥ ={a,U,n},
$ =qo,

and § is gi\;én by the following table.
Let n > 0. Describe carefully what M does when started in the configura-
tion (go,> U a™a).

'4.1: The definition of a Turing Machine

193 .

CIO_ a (QIa <_")
go U | (go,U)
qo > (q{]; _)')
i a (g2,U)
q1 L (h'a U)

i ooadlian, =)
@ a (g2,a)
gz U (qu 4{‘_)
gz b ilge,)

4.1.5. In the definition of a Turing machine, we allow rewriting a tape square
without moving the head and moving the head left or right without rewriting
the tape square. What would happen if we also allowed to leave the head
stationary without rewriting the tape square?

4.1.6. (a) Which of the following could be conﬁgurati;)ns?

(i) (g,>alUal,U,Ua)
(ii) (q,abe,b,abc)
(iii) (p,>abc,a,e)
(iv) (h,>,e,e)
(v) (g,>all ab,b,Uaal))
(vi) (p,>a,ab,Ua)
(vii) (g,>,e,Uaa)
(viii) (h,ba,a,UUUUUa)

(b) Rewrite those of Parts (i) through (viii) that are configurations using the

abbreviated notation.

(c) Rewrite these abbreviated configurations in full.

(i) (q,>abed)
(ii) (g¢,>a)

(i) (p,>aa L)
(iv) (h,>Uabc)

4.1.7. Design and write out in full a Turing machine that scans to the right until
it finds two consecutive a’s and then halts.

machine should be {a,b,U,>}.

The alphabet of the Turing

4,1.8. Give the full details of the Turing machines illustrated.

>LL.

L

R

>l =—"h

194 Chapter 4: TURING MACHINES

4.1.9. Do the machines LR and RL always accomplish the same thing? Explain.

4.1.10. Explain what this machine does.

SR a:,':Li:__‘R e bR Ua'Rub Z ! -

4.1.11. Trace the operation of the Turing machine of Example 4.1.8 when started
on >Llaabb.

b
1
b
E

4.1.12. Trace the operation of the Turing machine of Example 4.1.9 on > L aabbUl.

4.2 | COMPUTING WITH TURING MACHINES

We introduced Turing machines with the promise that they outperform, as lan-
guage acceptors, all other kinds of automata we introduced in previous chapters.
So far, however, we have presented only the “mechanics” of Turing machines,
without any indication of how they are to be used in order to petform computa-
tional tasks —to recognize languages, for example. It is as though a computer
had been delivered to you without a keyboard, disk drive, or screen —that is,
without the means for getting information into and out of it. It is time, therefore,
to fix some conventions for the use of Turing machines. .
First, we adopt the following policy for presenting input to Turing machines:
The input string, with no blank symbols in it, is written to the right of the
* leftmost symbol b, with a blank to its left, and blanks to its right; the head is
positioned at the tape square containing the blank between the > and the input;
and the machine starts operating in its initial state. If M= (K,X.4,s,H)is a
Turing machine and w € (X — {U,>})~, then the initial configuration of M
on input w is (s,>Uw). With this convention, we can now define how Turing
machines are used as language recognizers.

Definition 4.2.1: Let M = (K, X, 4, s, H) be a Turing machine, such that H =
{y,n} consists of two distinguished halting states (y and n for “yes” and “no”).
Any halting configuration whose state component is y is-called an accepting
configuration, while a halting configuration whose state component is n is
called a rejecting configuration. We say that M accepts an input w €
(E—{u,>})* if (s,pUw) yields an accepting configuration; we say that M rejects
w if (s,pUw) yields a rejecting configuration.
Let £ C £ — {U,>} be an alphabet, called the input alphabet of M; by
-~ fixing ¥ to be a subset of £ — {U,>}, we allow our Turing machines to use extra
symbols during their computation, besides those appearing in their inputs. We

4.2: Computing with Turing Machines : : 195

say that M decides a language L C 23 if for any string w € $§ the following is
true: If w € L then M accepts w; and if w ¢ L then M rejects w.

Finally, call a language L recursive if there is a Turing machine that decides '
it.

That is, a Turing machine decides a language L if, when started with input
w, it always halts, and does so in a halt state that is the correct response- to the
input: yif we L, nif w ¢ L. Notice that no guarantees are given about what
happens if the input to the machine contains blanks or the left end symbol.

Example 4.2.1: Consider the language L = {a"b"c" : n > 0}, which has
heretofore evaded all types of language recognizers. The Turing machine whose
diagram is shown in Figure 4-11 decides L. In this diagram we have also utilized
two new basic machines, useful for deciding languages: Machine y makes the
new state to be the accepting state y, while machine n moves the state to n.

(o, o o)

R ——dR —— dR —»dL,
ul bc 1c,u/u
y n :
Figure 4-11

The strategy employed by M is simple: On input a™b™c" it will operate in
n stages. In each stage M starts from the left end of the string and moves to
the right in search of an a. When it finds an a, it replaces it by a d and then
looks further to the right for a b. When a b is found, it is replaced by a d, and
the machine then looks for a ¢. When 3 ¢ is found and is replaced by a d, then
the stage is over, and the head returns to the left end of the input. Then the
next stage begins. That is, at each stage the machine replaces an a, a b, and a
c by d’s. If at any point the machine senses that the string is not in a*b*c*, or
that there is an excess of a certain symbol (for example, if it sees a b or ¢ while
looking for an a), then it enters state n and rejects immediately. If however it
encounters the right end of the input while looking for an a, this means that all
the input has been replaced by d’s, and hence it was indeed of the form aihie
for some n > 0. The machine then accepts.$

There is a subtle point in relation to Turing machines that decide languages:
With the other language recognizers that we have seen so far in this book (even
the nondeterministic ones), one of two things could happen: either the machine
accepts the input, or it rejects it. A Turing machine, on the other hand, even if

196 . Chapter 4: TURING MACHINES

it has only two halt states y and n, always has the option of evading an answer
(“yes” or “no”), by failing to halt. Given a Turing machine, it might or it might
not decide a language __and_there is no obvious way to tell whether it does.
The far-reaching importance __and necessity— of this deficiency will become
apparent later in this chapter, and in the next.

Recursive Functions
Since Turing machines can write on their tapes, they can provide more elaborate
output than just a “yes” or a “no:”

Definition 4.2.2: Let M = (K,E,é,s,{h}) be a Turing machine, let Yo €
¥ — {U,>} be an alphabet, and let w € B%. Suppose that M halts on input w,
and that (s,>Uw) Fiy (h,>Lly) for some y € ¥z Thenyis called the output
of M on input w, and is denoted M (w). Notice that M (w) is defined only if
M halts on input w, and in fact does so at a configuration of the form (h,>Uy)
with y € Tg.

Now let f be any function from T to B5. We say that M computes
function f if, for all w € X, M(w) = f(w). That is, for all w € 5 M
eventually halts on input w, and when it does halt, its tape contains the string

> f(w). A function f is called recursive, :f there is a Turing machine M that
computes f. :

Example 4.2.2: The function £ : v s N* defined as k(w) = ww can be
computed by the machine CS., that is, the copying machine followed by the
left-shifting machine (both were defined towards the end of the last section).$

. Strings in {0,1}* can be used to represent the nonnegative integers in the
familiar binary notation. Any string w = @102 .--Gn € {0,1}* represents the
number

num(w) = a1 - on—1 4 g5 2" 2 4 ...+ Qn-

And any natural number can be represented in a unique way by a string in
0U1(0U1)* —that is to say, without redundant 0’s in the beginning.
Accordingly, Turing machines computing functions from {0,13* to {04}
can be thought of as computing functions from the natural numbers to the
natural numbers. In fact, numerical functions with many arguments —such as
addition and multiplication— can be computed by Turing machines computing
functions from {0, 1,; }* to {0, 1}*, where 4" is a symbol used to separate binary

arguments.

Definition 4.2.3: Let M = (K %, 8,s,{h}) be a Turing machine such that
0,1,;€ %, and let f be any function from N¥ to N for some k 2> 1. We say

4.2: hComputing with Turing Machines 197

that M computes function f if for all wy,...,w; € 0U 1{0,1}* (that is, for
any k strings that are binary encodings of integers), num(M () E=
f(num(wy), ... ,num(wy)). That is; if M is started with the binary representa-
tions of the integers n,,...,n; as input, then it eventually halts, and when it
does halt, its tape contains a string that represents number f(n,,...,nz) —the
value of the function. A function f : N* — N is called recursive if there is a
Turing machine M that computes f.

In fact, the term recursive used to describe both functions and languages
computed by Turing machines originates in the study of such numerical func-
tions. It anticipates a result we shall prove towards the end of this chapter,
namely that the numerical functions computable by Turing machines coincide
with those that can be defined recursively from certain basic functions.

Example 4.2.3: We can design a machine that computes the successor function
succ(n) = n + 1 (Figure 4.12; Sg is the right-shifting machine, the rightward
analog of the machine in Example 4.1.9). This machine first finds the right end
of the input, and then goes to the left as long as it sees 1’s, changing all of them
to 0’s. When it sees a 0, it changes it into a 1 and halts. If it sees a LI while
looking for a 0, this means that the input number has a binary representation
that is all 1’s (it is a power of two minus one), and so the machine again writes a
1 in the place of the U and halts, after shifting the whole string one position to
the right. Strictly speaking, the machine shown does not compute n + 1 because
it fails to always halt with its head to the left of the result: but this can be
fixed by adding a copy of R, (Figure 4-5).0

R.L

/R

1S,
Figure 4-12

The last remark of the previous subsection, on our inability to tell whether
a Turing machine decides a language, also applies to function computation. The
price we must pay for the very broad range of functions that Turing machines
can compute, is that we cannot tell whether a given Turing machine indeed
computes such a function —that is to say, whether it halts on all inputs.

198 Chapter 4. TURING MACHINES

Recursively Enumerable Languages

If a Turing machine decides a language or computes a function, it can be rea-
sonably thought of as an algorithm that performs correctly and reliably some
computational task. We next introduce a third, subtler, way in which a Turing
machine can define a language:

Definition 4.2.4: Let M — (K,X,8,8,H) be a Turing machine, let ¥, C
L — {u,>} be an alphabet, and let I C X5 be a language. We say that M
semidecides L if for any string w € %o the following is true: w € L if and only
if M halts on input w. A language L is recursively enamerable if and only
if there is a Turing machine M that semidecides L.

Thus when M is presented with input w € L, it is required to halt eventually.
We do not care precisely which halting configuration it reaches, as long as it does
eventually arrive at a halting configuration. If however w € Yo — L, then M
must never enter the halting state. Since any configuration that is not halting
yields some other configuration (0 is a fully defined function), the machine must
in this case continue its computation indefinitely.

Extending the “functional” notation of Turing machines that we introduced
in the previous subsection (which allows us to write equations such as M (w) =
v), we shall write M (w) =2 if M fails to halt on input w. In this notation,
Wwe can restate the definition ‘of semidecision of 2 language L C ¢ by Turing
machine M as follows: For all w ¢ Y5, M(w) = if and only if w ¢ L.

Example 4.2.4: Let [= {w € {a,b}* : w contains at least one a}. Then L is
semidecided by the Turing machine shown in Figure 4-13.

;o
Figure 4-13

This machine, when started in configuration (g0, >Uw) for some w € {a,b}*,
simply scans right until an a is encountered and then halts. If no g is found,
the machine goes on forever into the blanks that follow its input, never halting.
So L is exactly the set of strings w in {a,b}* such that M halts on input w.
Therefore M semidecides L, and thus L is recursively enumerable.

“Going on forever into the blanks” is only one of the ways in which a Turing
machine may fail to halt. For example, any machine with 0(¢,a) = (g,a) will
“loop forever” in place if it ever encounters an a in state gq. Naturally, more
complex looping behaviors can be designed, with the machine going indefinitely
through a finite number of different configurations. '

4.2: Computing with Turing Machines 199

The definition of semidecision by Turing machines is a rather straightfor-
ward extension of the notion of acceptance for the deterministic finite automaton.
There is a major difference, however. A finite automaton always halts when it
has read all of its input —the question is whether it halts on a final or a nonfinal
state. In this sense it is a useful computational device, an algorithm from which
we can reliably obtain answers as to whether an input belongs in the accepted
language: We wait until all of the input has been read, and we then observe the
state of the machine. In contrast, a Turing machine that semidecides a language
L cannot be usefully employed for telling whether a string w is in L, because,
if w ¢ L, then we will never know when we have waited enough for an answerj
Turing machines that semidecide languages are no algorithms.

We know from Example 4.2.1 that {a"b"c" : n > 0} is a recursive language.
But is it recursively enumerable? The answer is easy: Any recursive language is
also recursively enumerable. All it takes in order to construct another Turing ma-
chine that semidecides, instead of decides, the language is to make the rejecting
state n a’nonhalting state, from which the machine is guaranteed to never halt.
Specifically, given any Turing machine M = (K, %, 4, s, {y,n}) that decides L, we
can define a machine M’ that semidecides L as follows: M = (K, X,d',s, {y}),
where ¢’ is just 6 augmented by the following transitions related to n —no longer
a halting state: 6'(n,a) = (n,a) for all a € £. It is clear that if M indeed decides
L, then M’ semidecides L, because M’ accepts the same inputs as M; further-
more, if M rejects an input w, then M’ does not halt on w (it “loops forever” in
state n). In other words, for all inputs w, M'(w) = 7 if and only if M (w) = n.

We have proved the following important result:

Theorem 4.2.1: If a language is recursive, then it is recursively enumerable.

Naturally, the interesting (and difficult) question is the opposite: Can we
always transform every Turing machine that semidecides a language (with our
one-sided definition of semidecision that makes it virtually useless as a computa-
tional device) into an actual algorithm for deciding the same language? We shall
see in the next chapter that the answer here is negative: There are recursively
enumerable languages that are not recursive.

An important property of the class of recursive languages is that it is closed
under complement:

Theorem 4.2.2: If L is a recursive language, then its complement L is also

T We have already encountered the same difficulty with pushdown automata (recall
Section 3.7). A pushdown automaton can in principle reject an input by manip-
ulating forever its stack without reading any further input —in Section 3.7 we
had to remove such behavior in order to obtain computationally useful pushdown
automata for certain context-free languages.

200 Chapter 4: TURING MACHINES

recursive.

//
Proof: If L is decided by Turing machine M = (K,%,9,s, {y,n}), then L is
decided by the Turing machine M =(K,%,8,s,{y,n}) which is identical to M
except that it reverses the roles of the two special halting states y and n. That
is, 0' is defined as follows: :

n if 5(g,a) =Y,
8'(g,a) =Y if 6(¢g,a) ="
5(g,a) otherwise.

It is clear that M'(w) = y if and only if M(w) = n, and therefore M' decides
L= - _

Is the class of recursively enumerable languages also closed under comple-
ment? Again, we shall see in the next chapter that the answer is negative.

Problems for Section 4.2

4.2.1. Give a Turing machine (in our abbreviated notation) that computes the
following function from strings in {a,b}* to strings in {a,b}*: f(w) = wwk.

4.2.2. Present Turing machines that decide the following languages over {a, b}:
(a) 0
(b), {e}
(c) {a}
(d) {a}”

4.2.3. Give a Turing machine that semidecides the language a*ba*b.

4.2.4. (a) Give an example of a Turing machine with one halting state that does
not compute a function from strings to strings.
(b) Give an example of a Furing machine with two halting states, y and 1,
that does not decide a language.
(c) Can you give an example of a Turing machine with one halting state
that does not semidecide a language?

43 | EXTENSIONS OF THE TURING MACHINE

The examples of the previous section make it clear that Turing machines can
perform fairly powerful computations, albeit slowly and clumsily. In order to
better understand their surprising power, we shall consider the effect of extending
~ the Turing machine model in various directions. We shall see that in each case

4.3: Extensions of the Turing Machine 201

the additional features do not add to the classes of computable functions or |
decidable languages: the “new, improved models” of the Turing machine can
in each instance be simulated by the standard model. Such results increase our
confidence that the Turing machine is indeed the ultimate computational device,
_the end of our progression to more and more powerful automata. A side benefit
of these results is that we shall feel free subsequently to.use the additional
features when designing Turing machines to solve particular problems, secure
in the knowledge that our dependency on such features can, if necessary, be
eliminated.

Multiple Tapes

One can think of Turing machines that have several tapes (see Figure 4-14).
Each tape is connected to the finite control by means of a read/write head (one
on each tape). The machine can in one step read the symbols scanned by all its
heads and then, depending on those symbols and its current state, rewrite some
of those scanned squares and move some of the heads to the left or right, in
addition to changing state. For any fized integer k > 1, a k-tape Turing machine
is a Turing machine equipped as above with k tapes and corresponding heads.
Thus a “standard” Turing machine studied so far in this chapter is just a k-tape
Turing machine, with £ = 1.

Definition 4.3.1: Let £ > 1 be an integer. A k-tape Turing machine is a
quintuple (K,%,6,s,H), where K, ¥, s, and H are as in the definition of the
ordinary Turing machine, and ¢, the transition function, is a function from
(K — H) x =F to K x (U {+, —})¥. That is, for each state g, and each k-tuple
of tape symbols (ai,...,ax), 8(g, (a1,...,ax)) = (P, (by,...,bx)), where p is, as
before, the new state, and b; is, intuitively, the action taken by M at tape j.
Naturally, we again insist that if a; = > for some j < k, then b; =—.

Computation takes place in all k tapes of a k-tape Turing machine. Ac-
cordingly, a configuration of such a machine must include information about all
tapes:

Definition 4.3.2: Let M = (K,X,d,s, H) be a k-tape Turing machine. A
configuration of M is a member of

K x (oZ* x (Z*(=Z i {U}) U {e})*.

That is, a configuration identifies the state, the tape contents, and the head
position in each of the k tapes.

If (g, (wia1u,. - ., wrakuk)) is a configuration of a k-tape Turing machine
(where we have used the k-fold version of the abbreviated notation for configu-
rations), and if 8(p, (a1,--.,ax)) = (b1,... ,br), then in one move the machine

202 Chapter 4 TURING MACHINES

Tape 1 {

Tape 2 ‘{

Tape k \ | {

Finite control h / 'y

q3 qs
Figure 4-14
would move to configuration (p, (wig_‘i_u’l,. 4 ,uri,g;:u;b.)), where, fori =1,...,k,
wiaiul is w;a;u; modified by action b;, precisely as in Definition 4.1.3. We
say that configuration (q, (wyayuy, ..., wraruy)) yields in one step configuration

(p, (wiajuy, ... ,wipaguy)).

Example 4.3.1: A k-tape Turing machine can be used for computing a function
or deciding or semideciding a language in any of the ways discussed above for
standard Turing machines. We adopt the convention that the input string is
placed on the first tape, in the same way as it would be presented to a standard
Turing machine. The other tapes are initially blank, with the head on the
leftmost blank square of each. At the end of a computation, a k-tape Turing
machine is to leave its output on its first tape; the contents of the other tapes
are ignored.

Multiple tapes often facilitate the construction of a Turing machine to per-
form a particular function. Consider, for example, the task of the copying ma-
chine C given in Example 4.1.8: to transform b U wlU into & LI w LI wll, where
w € {a,b}*. A 2-tape Turing machine can accomplish this as follows.

(1) Move the heads on both tapes to the right, copying each symbol on the first

4.3: Extensions of the Turing Machine 203

tape onto the second tape, until a blank is found on the first tape. The first
square of the second tape should be left blank.

(2) Move the head on the second tape to the left until a blank is found.

(3) Again move the heads on both tapes to the right, this time copying symbols
from the second tape onto the first tape. Halt when a blank is found on the
second tape. '

This sequence of actions can be pictured as follows.

At the beginning: First tape sUw
~ Second tape pUJ
- After (1): First tape > UwlU
Second tape > U wLl
After (2): First tape > L wll
Second tape bUw
After (3): First tape > Uw U wU
Second tape > U wll

Turing machines with more than one tape can be depicted in the same way
that single-tape Turing machines were depicted in earlier sections. We simply
attach as a superscript to the symbol denoting each machine the number of the
_tape on which it is to operate; all other tapes are unaffected. For example, L2
writes a blank on the second tape, L], searches to the left for a blank on the first
tape, and RY2 moves to the right the heads of both the first and the second tape.
A label @' on an arrow denotes an action taken if the symbol scanned in the
first tape is an a. And so on. (When representing multi-tape Turing machines,
we refrain from using the shorthand M? for MM.) Using this convention, the
2-tape version of the copying machine might be illustrated as in Figure 4-15. We
indicate the submachines performing Functions 1 through 3 above.<

(al%!_iﬁ (a27é|_] W

R1.2_..__.__._,__a2 L2R],2 .___..__,,__al
- U L

e

< v J Hﬂ\ : v J
(1) (2) (3)

Figure 4-15

Example 4.3.2: We have seen (Example 4.2.3) that Turing machines can add
1 to any binary integer. It should come as no surprise that Turing machines

204 ' Chapter 4: TURING MACHINES

can also add arbitrary hinary numbers (recall Problem 2.4.3, suggesting that
even finite automata, in a certain sense, can). With two tapes this task can be
accomplished by the machine depicted in Figure 4-16. Pairs of bits such as 01

on an arrow label are a chorthand for, in this case, al =0,a> =1

01

00

f \ 01,10

l‘ll :
; RCz +U .01(12J» O'RL, Ll,zc 11
e / \
; 1

0 1!
\ 00.
01,10
I 23 0!

Figure 4-16 -

This machine first copies the first binary integer in its second tape, writing
zeros in its place (and in the place of the “ ” geparating the two integers) in the
first tape; this way the first tape contains the second integer, with zeros added
in front. The machine then performs binary addition by the «gchool method,”
starting from the least significant bit of both integers, adding the corresponding
bits, writing the result in the first tape, and «remembering the carry” in its
state.Q

What is more, we can build a 3-tape Turing machine that multiplies tWo
numbers; its design is left as an exercise (Problem 4.3.5).

Evidently, k-tape Turing machines are capable of quite complex compu-
tational tasks. We shall show next that any k-tape Turing machine can be
simulated by 2 single-tape machine. By this we meal that, given any k-tape
Turing machine, we can design a standard Turing machine that exhibits the
same input-output behavior —decides or _semidecides the same language, com-
putes the same function. Such simulations are important ingredients of our
methodology in studying the power of computational devices in this and the
next chapters. Typically, they amount to a method for mimicking a single step
of the simulated machine by several steps of the simulating machine. QOur first
result of this sort, and its proof, is quite indicative of this line of reasoning.

4.3: Extensions of the Turing Machine oSBT

Theorem 4.3.1: Let M = (K,%,0,s, H) be a k-tape Turing machine for some
k > 1. Then there is a standard Turing machine M' = (K',X',¢',s', H), where
Y G Y/, and such that the following holds: For any input string x € X*, M on
input = halts with output y on the first tape if and only if M' on input x halts
at the same halting state, and with the same output y on its tape. Furthermore,
if M halts on input = after t steps, then M' halts on input x after a number of
steps which is O(t - (|z| + t)).

> a U b T AT L
0 0 0 1 0 0 0
> L L
> b b b U (ERS{ERIE]
0 0 1 0 0 0 0
(b)
Figure 4-17

Proof: The tape of M' must somehow contain all information in all tapes of M.
A simple way of achieving this is by thinking that the tape of M’ is divided into
several tracks (see Figure 4-18(b)), with each “track” devoted to the simulation
of a different tape of M. In particular, except for the leftmost square, which
contains as usual the left end symbol >, and the infinite blank portion of the
tape to the right, the single tape of M’ is split horizontally into 2k tracks.
The first, third, ..., (2k — 1)st tracks of the tape of M’ correspond to the first, -
second, ..., kth tapes of M. The second, fourth,...,2kth tracks of the tape of

206 Chapter 4: TURING MACHINES

M' are used to record the positions of the heads on the first; second, ..., kth
tapes of M in the following way: If the head on the ith tape of M is positioned
over the nth tape square, then the 2ith track of the tape of M' contains a 1 in
the (n + 1)st tape square and a 0 in all tape squares except the (n + 1)st. For
example, if k = 2, then the tapes and heads of M shown in Figure 4-18(a) would
correspond to the tape.of M’ shown in Figure 4-18(b).

Of course, the division of the tape of M’ into tracks is a purely conceptual
~ device; formally, the effect is achieved by letting

B3 URb S Sl A L

That is, the alphabet of M’ consists of the alphabet of M (this enables M’ to
receive the same inputs as M and deliver the same output), plus all 2k-tuples
of the form (a,b,...,a;,b) with ai,...,a; € ¥-and br,...,bx € {0,1}: The
translation from this alphabet to the 2k-track interpretation is simple: We read
any such 2k-tuple as saying that the first track of M’ contains ai, the second
by, and so on up to the 2kth track containing bx. This in turn means that the
corresponding symbol of the ith tape of M contains ai, and that this symbol is
scanned by the ith head if and only if b; = 1 (recall Figure 4-17(b)).
When given an input w € £*, M’ operates as follows.

(1) Shift the input one tape square to the right. Return to the square imme-
diately to the right of the >, and write the symbol (>,0,5,0,...,>,0) on
it —this will represent the left end of the k tapes. Go one square to the
right and write the symbol (U, 1,1,1,...,1,1) —this signifies that the first
squares of all k£ tapes contain a U, and are all scanned by the heads. Pro-
ceed to the right. At each square, if a symbol a # U is encountered, write
in its position the symbol (a,0,U,0, .. .,U,0). If a U is encountered, the
first phase is over. The tape contents of M’ faithfully represent the initial
configuration of M.

(2) Simulate the computation by M, until M would halt (#f it would halt). To
simulate one step of the computation of M , M' will have to perform the
following sequence operations (we assume that it starts each step simulation
with its head scanning the first “true blank,” that is, the first square of its
tape that has not yet been subdivided into tracks):

(a) Scan left down the tape, gathering information about the symbols

scanned by the k tape heads of M. After all scanned symbols have
been identified (by the 1’s in the corresponding even tracxks), return to
the leftmost true blank. No writing on the tape occurs during this part
of the operation of M’, but when the head has returned to the right
end, the state of the finite control has changed to reflect the k-tuple of
symbols from ¥, in the & tracks at the marked head positions.

(b) Scan left and then right down the tape to update the tracks in accor-

dance with the move of M that is to be simulated. On each pair of

bt o2

4.3: Extensions of the Turing Machine 207

tracks, this involves either moving the head position marker one square
to the right or left, or rewriting the symbol from ¥.

(3) When M would halt, M’ first converts its tape from tracks into single-
symbol format, ignoring all tracks except for the first; it positions its head
where M would have placed its first head, and finally it halts in the same
state as M would have halted.

Many details have been omitted from this description. Phase 2, while by
0 means conceptually difficult, is rather messy to specify explicitly, and indeed
there are several choices as to how the operations described might actually be
carried out. One detail is perhaps worth describing. Occasionally, for some n >
|w|, M may have to move one of its heads to the nth square of the corresponding
tape for the first time. To simulate this, M’ will have to extend the part of ifs
tape that is divided into 2% tracks, and rewrite the first L to the right as the
2k-tuple (U, 0,0, 0, . Uy

It is clear that M’ can simulate the behavior of M as indicated in the
statement of the theorem. It remains to argue that the number of steps required
by M' for simulating ¢ steps of M on input z is O(t - (lz] + ¢)). Phase 1 of
the simulation requires O(]z|) steps of M'. Then, for each step of M, M' must
carry out the maneuver in Phase 2, (a) and (b). This requires M’ to scan the
2k-track part of its tape twice; that is, it requires a number of steps by M’ that
is proportional to the length of the 2k-track part of the tape of M’. The question
is, how long can this part of M"’s tape be? It starts by being |z| + 2 long, and
subsequently it increases in length by no more than one for each simulated step
of M. Thus, if t steps of M are simulated on input z, the length of the 2k-track
part of the tape of M’ is at most |z] + 2 + ¢, and hence each step of M can be
simulated by O(|z| + t) steps of M ', as was to be shown. m

By using the conventions described for the inpuf and output of a k-tape
Turing machine, the following result is easily derived from the previous theorem.

Corollary: Any function that s computed or language that is decided or
semidecided by a k-tape Turing machine is also computed, decided, or semide-
cided, respectively, by a standard Turing machine.

Two-way Infinite Tape

Suppose now that our machine has a tape that is infinite in both directions. All
Squares are initially blank, except for those containing the input; the head is
initially to the left of the input, say. Also, our convention with the > symbol
would be unnecessary and meaningless for such machines.

It is not hard to see that, like multiple tapes, two-way infinite tapes do not
~ add substantial power to Turing machines. A two-way infinite tape can be easily
simulated by a 2-tape machine: one tape always contains the part of the tape to

208 Chapter 4: TURING MACHINES

the right of the square containing the first input symbol, and the other contains
the part of the tape to the left of this in reverse. In turn, this 2-tape machine
can be simulated by a standard Turing machine. In fact, the simulation need
only take linear, instead of quadratic, time, since at each step only one of the
tracks is active. Needless to say, machines with several two-way infinite tapes
could also simulated in the same way.

Multiple Heads

What if we allow a Turing machine to have one tape, but several heads on
:t? In one step, the heads all sense the scanned symbols and move or write
independently. (Some convention must be adopted about what happens when
two heads that happen to be scanning the same tape square attempt to write
different symbols. Perhaps the head with the lower number wins out., Also, let
us assume that the heads cannot sense each other’s presence in the same tape
square, except perhaps indirectly, through unsuccessful wribes.)i i

It is not hard to see that a simulation like the one we used for k-tape. '
machines can be carried out for Turing machines with several heads on a tape.
The basic idea is again to divide the tape into tracks, all but one of which are
used solely to record the head positions. To simulate one computational step
by the multiple-head machine, the tape must be scanned twice: once to find
the symbols at the head positions, and again to change those symbols or move
the heads as appropriate. The number of steps needed is again quadratic, as in
Theorem 4.3.1. : o

The use of multiple heads, like multipie tapes, can sometimes drastically
simplify the construction of a Turing machine. A 2-head version of the copying
machine C in Example 4.1.8 could function in a way that is much more natural
than the one-head version (or even the two-tape version, Example 4.3.1); see
Problem 4.3.3.

Two-Dimensional Tape

Another kind of generalization of the Turing machine would allow its “tape” to
be an infinite two-dimensional grid. (One might even allow a space of higher
dimension.) Such a device could be much more useful than standard Turing
machines to solve problems such as “zigsaw puzzles” (see the tiling problem in
the next chapter). We leave it as an exercise (Problem 4.3.6) to define in detail
the operation of such machines. Once again, however, no fundamental increase
in power results. Interestingly, the number of steps needed to simulate ¢ steps of
the two-dimensional Turing machine on input z by the ordinary Turing machine
is again polynomial in t and |z|.

The above extensions on the Turing machine model can be combined: One
can think of Turing machines with several tapes, all or some of which are two-way
infinite and have more than one head on them, or are even multidimensional.

4.4: Random Access Turing Machines 209

Again, it is quite straightforward to see that the ultimate capabilities of the
Turing machine remain the same.

We summarize our discussion of the several variants of Turing machines
discussed so far as follows.

Theorem 4.3.2: Any language decided or semidecided, and any function com-
puted by Turing machines with several tapes, heads, two-way infinite tapes, or
multi-dimensional tapes, can be decided, semidecided, or computed, respectively,
by a standard Turing machine. :

Problems for Section 4.3

4.3.1. Formally define:
(a) M semidecides L, where M is a two-way infinite tape Turing machine;
(b) M computes f, where M is a k-tape Turing machine and f is a function
from strings to strings.

4.3.2. Formally define:
(a) a k-head Turing machine (with a single one-way infinite tape);
(b) a configuration of such a machine;
(c) the yields in one step relation between configurations of such a machine.
(There is more than one correct set of definitions.)

4.3.3. Describe (in an extension of our notation for k-tape Turing machines) a
2-head Turing machine that compute the function f(w) = ww.

4.3.4. The stack of a pushdown automaton can be considered as a tape that can be

written and erased only at the right end; in this sense a Turing machine is
a generalization of the deterministic pushdown automaton. In this problem
we consider a generalization in another direction, namely the deterministic
pushdown automaton with two stacks.

(a) Define informally but carefully the operation of such a machine. Define
what it means for such a machine to decide a language. _

(b) Show that the class of languages decided by such machines is precisely the
class of recursive languages. :

4.3.5. Give a three-tape Turing machine which, when started with two binary

integers separated by a ‘;’ on its first tape, computes their product. (Hint:
Use the adding machine of Example 4.3.2 as a “subroutine.”

4.3.6. Formally define a Turing machine with a 2-dimensional tape, its configu-
rations, and its computation. Define what it means for such a machine to
decide a language L. Show that ¢ steps of this machine, starting on an input
of length n, can be simulated by a standard Turing machine in time that is.
polynomial in t and-n. : '

4.5 Nondeterministic Turing Machines . L D2

both cases it is trivial to see that the increase can only be linear in 7.

(c) Finally, it is easy to see that r = O(1); that is, the length of the largest
integer represented by M can only increase by a constant at each step.
The claimed bound follows by putting these three facts together. B

Problems for Section 4.4

4.4.1. Give explicitly the full details of the random access Turing machine program
of Example 4.4.2. Give the sequence of configurations of this machine on
input aabcee.

4.4.2. Give (in our abbreviated notation) a random access Turing machine pro-
gram that decides the language {wew : w € fa,b}*}.

4.4.3. Show that, in the simulation in the proof of T heorem 4.4.2, each step can be
simulated by O(m) steps of M', where m is the total length of M"’s tapes.
(You must establish that the 2-tape addition Turing machine in Example
4.3.2 operates in linear time.) Can you estimate the constant in O(m)?

4.4.4. Suppose that our random access Turing machines had an explicit instruction
- mply. What goes wrong now in the second part of the proof of Theorem
4.4.27

45 | NONDETERMINISTIC TURING MACHINES

We have added to our Turing machines many seemingly powerful features —
multiple tapes and heads, even random access — with no appreciative increase
in power. There is, however, an important and familiar feature that we have not
f tried yet: nondeterminism.

i We have seen that when finite automata are allowed to act nondetermin-
E istically, no increase in computational power results (except that exponentially
‘ fewer states may be needed for the same task), but that nondeterministic push-
f down automata are more powerful than deterministic ones. We can also imagine
Turing machines that act nondeterministically: Such machines might have, on
certain combinations of state and scanned symbol, more than one possible choice
of behavior. Formally, a nondeterministic Turing machine is a quintuple
(K,X%,A, s, H), where K, %, s, and H are as for standard Turing machines, and
A is a subset of (K= H) xX) x (K x (2 U {<,—})), rather than a function
from (K — H) x £ to K x (ZU {+, —1). Configurations and the relations =y
and 3, are defined in the natural way. But now s need not be single-valued:
One configuration may yield several others in one step.

222 Chapter 4: TURING MACHINES

When Turing machines are allowed to act nondeterministically, is there any
increase in computational power? We must first define what it means for a non-
deterministic Turing machine to compute something. Since 2 nondeterministic
machine could produce two different outputs or final states from the same in-
put, we have to be carefy] about what is considered to be the end result of a
computation by such a machine. Because of this, it is easiest to consider at first

nondeterministic Turing that semidecide languages.

Definition 4.5.1: Let M = (5,3 Al H) be a nondeterministic Turing ma-
chine. We say that s accepts an input w ¢ (¥ - {p,U})* if (s, pLUwW) =
(h, ugv) for some } €EHandae X,y v ¢ X*. Notice that a nondeterministic
machine accepts an input even though it may have many nonhalting computa-

tions on this input input —ag long as at least one halting computation exists.
We say that M semidecides a language L C (Z = {», L})* if the following

holds for all w ¢ (E-{, U we L and only if M accepts w.
It is a little more subtle to define what it meang for a nondeterministic

Turing machine to decide a language, or to compute a function.

Definition 4.5.2; [0t M = (K,x,A,s, {y,n}) be a nondeterministic Turing
machine. We say that s decides 3 language I C (2 —{>,U})* if the following
two conditions hold for al] 4 € (2 - {>,u}):

(a) There is g hatural number N, depending on M and w, such that there is
no configuration C satistying (s, bLw) Bt
(b) w € L if and only if (s, blLw) Fir (,uav) for some U, VEX* ac).

Finally, we say that as computes a function f - (X - {o,u})* » (X -
{>,U})* if the following two conditions hold for all w ¢ (Z - {>,u})":

(a) Thereis an N ; depending on M and w, such that there is no configuration

C satisfying (s, blw) Y C.
(b) (s,>Lw) Fyr (b, uav) if and only if ua = o), and ¢ = fw).
These definitions reflect the difficulties associated with computing by non-

tions halt; we achieve this by postulating that there js no computation continuing
after NV steps, where N is an “upper bound” depending on the machine and the

4.5: Nondeterministic Turing Machines : . i Chione

create a machine that decides the complement of the language, it is not enough
to reverse the roles of the y and n states (since the machine may have both ac-
cepting and rejecting computations for some inputs). As with nondeterministic
finite automata, to show that the class of languages decided by nondeterministic
Turing machines is closed under complement, we must go through an equivalent
deterministic Turing machine —and our main result in this section (Theorem
4.5.1) states that an equivalent deterministic Turing machine must exist.

Finally, for a nondeterministic Turing machine to compute a function, we
require that all possible computations agree on the outcome. If not, we would
not be able to decide which one is the right value of the function (in the cases of
deciding or semideciding a language, we resolve this uncertainty by postulating
that the positive answer prevails).

Before showing that nondeterminism, like the features considered in the pre-
vious sections, can be eliminated from Turing machines, let us consider a classic
example that demonstrates the power of nondeterminism in Turing machines as
a conceptual device.

Example 4.5.1: A composite number is one that is the product of two
natural numbers, each greater than one; for example, 4, 6, 8, 9, 10, and 12 are
composite, but 1, 2, 3, 5, 7, and 11 are not. In other words, a composite number
is a non-prime other than one or zero.

Let C = {100,110, 1000,1001,1010,...,1011011, .. .} be the set of all bi-
nary representations of composite numbers. To design an “efficient” algorithm
deciding C' is an ancient, important, and difficult problem. To design such an
algorithm it would seem necessary to come up with a clever way of discovering
the factors, if any, of a number —a task that seems quite complex. Naturally,
by searching exhaustively all numbers smaller than the given number (in fact,
smaller than its square root) we would end up discovering its factors; the point
is that no more direct method is evident.

However, if nondeterminism is available, we can design a machine to semide-
cide C rather simply, by guessing the factors, if there are any. This machine
operates as follows, when given as input the binary representation of integer n:

(1) Nondeterministically choose two binary numbers p, g larger than one, bit
by bit, and write their binary representation next to the input.

(2) Use the multiplication machine of Problem 4.3.5 (actually, the single-tape
machine that simulates it) to replace the binary representations of p and ¢
by that of their product. ’

(3) Check to see that the two integers, n and p - ¢, are the same. This can be
done easily by by comparing them bit by bit. Halt if the two integers are
equal; otherwise continue forever in some fashion (recall that at present we
are only interested in a machine that semidecides C).

224 Chapter 4: TURING MACHINES

This machine, on input 1000010 (the binary representation of 66) will
~ have many rejecting (nonhalting) computations, corresponding.to phase 1 above
choosing pairs of binary integers, such as 101; 11101, that fail to multiply to 66.
The point.is that, since 66 is a composite number, there will be at least one com-
putation of M that will end up accepting —and that is all we need. In fact, there
will be more than one (corresponding to 2 -33 = 6 - 11 = 11 - 6 = 33-2 = 66).
If the input were 1000011, however, no computation would end up accepting
—because 67 is a prime number. -

This machine can be modified to a nondeterministic machine that decides
the language C. The deciding machine has the same basic structure, except that
in Phase (1) the new machine never guesses an integer with more bits than n
itself —obviously, such an integer cannot be a factor of n. And in Phase 3, after
comparing the input and the product, the new machine would halt at state y
if they are equal, and at state n otherwise. As a result, all computations will
eventually halt after some finite number of steps.

The upper bound N required by Definition 4.5.2 is now easy to compute
explicitly. Suppose that the given integer n has ¢ bits. Let N; be the maximum
number of steps in any computation by the multiplying machine on any input of
length 2¢+-1 or less; this is a finite number, the maximum of finitely many natural
numbers. Let N5 the number of steps it takes to compare two strings of length
at most 3¢ each. Then any computation by M' will halt after N; + N, + 3¢+ 6
steps, certainly a finite number depending only on the machine and the input.<

Nondeterminism would seem to be a very powerful feature that cannot be
eliminated easily. Indeed, there appears to be no easy way to simulate a non-
deterministic Turing machine by a deterministic one in a step-by-step manner,
as we have done in all other cases of enhanced Turing machines that we have
examined so far. However, the languages semidecided or decided by nonde-
terministic Turing machines are in fact no different from those semidecided or
decided, respectively, by deterministic Turing machines.

Theorem 4.5.1: If a nondetermsnistic Turing machine M semidecides or de-
cides a language, or computes a function, then there is a standard Turing ma-
chine M' semideciding or deciding the same language, or computing the same
function.

- Proof: We shall describe the construction for the case in which M semidecides
a language L; the constructions for the case of deciding a language or computing
a function are very similar. So, let M = (K,X,A,s, H) be a nondeterministic
Turing machine semideciding a language L. Given an input w, M’ will attempt
to run systematically through all possible computations by M, searching for one
that halts. When and if it discovers a halting computation, it too will halt. So
M" will halt if and only if M halts, as required.

4.5: Nondeterministic Turing Machines * 225

But M may have an infinity of different computations starting from the
same input; how can M explore them all? It does so by using a dovetailing
procedure (recall the argument illustrated in Figure 1-8). The crucial observation
is the following: Although for any configuration C' of M there may be several
configurations C’ such that C = C’, the number of such configurations C' is
fixed and bounded in a way that depends only on M, not on C. Specifically,
the number of quadruples (g,a,p,b) € A that can be applicable at any point is
finite; in fact, it cannot exceed |K|- (|Z]+2), since this is the maximum number
of possible combinations (p,b) with p € K and b € YU{+,—}. Let us call r
the maximum number of quadruples that can be applicable at any point; the
number r can be determined by inspection of M. In fact, we shall assume that
for each state-symbol combination (g,a), and for each integer i € {1.2,. -5},
there is a well-defined ith applicable quadruple (g, @, p;,b;). If for some state-
symbol combination (g, a) there are fewer than r relevant quadruples in A, then
some may be repeated.

Since M is nondeterministic, it has no definite way to decide at each step
how to choose among its r available “choices.” But suppose that we help it
decide. To be precise, let My, the deterministic version of M, be a device with
the same set of states as M, but with two tapes. The first tape is the tape of M,
initially containing the input w, while the second tape initially contains a string
of n integers in the range 1,...,r, say i1i3...in. Mq then operates as follows for
n steps: In the first step, among the r possible next state-action combinations
(p1,b1), .-, (pr,br) that are applicable to the initial configuration, My chooses
the i;th —that is, (ps,,bi,), the one suggested by the currently scanned symbol
in the second tape, 7;. M, also moves its second tape head to the right, so that
it next scans 5. In the next step, My takes the ioth combination, then the isth,
and so on. When M, sees a blank on its second tape, meaning that it has run
out of “hints,” it halts.

M, is an important ingredient in our design of the deterministic Turing
machine M that simulates M. We shall describe M' as a 3-tape Turing machine;
we know by Theorem 4.3.1 that M’ can be converted into an equivalent single-
tape Turing machine. The three tapes of M ! are used as follows:

(1) The first tape is never changed; it always contains the original input w,
<o that each simulated computation of M can begin afresh with the same
input.

(2) The second and the third tapes are used to simulate the computations of
M, the deterministic version of M, with all strings ini{1;2, v 50} The
input is copied from the first tape onto the second before M’ begins to
simulate each new computation. Initially, the third tape contains e, the -
empty string (and therefore the simulation of My will not even start the
first time around).

226 Chapter 4: TURING MACHINES

(3) Between two simulations of My, M’ uses a Turing machine N to generate
the lezicographically next string in {1,2,...,7}*. That'is, N will generate
from e the strings 1,2,...,r 11,12, . .,17, 111, ... For r = 2, N is precisely
the Turing machine that computes the binary successor function (Example
4.2.3); its generalization to r > 2 is rather straightforward.

M' is is the Turing machine given in Figure 4-22. By C'72 we mean a
simple Turing machine that erases the second tape and copies the first tape on
the second. B2 is the machine that generates the lexicographically next string

- in the third tape. Finally, M j ' is the deterministic version of M, operating on
tapes 2 and 3. This completes the description of M. '

1—2 3 2:3
¢ B3 M2,

Figure 4-22

We claim that M’ halts on an input w if and only if (some computation of)
M does. Suppose that M’ indeed halts on input w; by inspecting Figure 4-22
this means that M, halts with its third tape head not scanning a blank. This
implies that, for some string i;4s - -4, € 11,2,...,7}*, My, when started with
w on its first tape and 4145 - - -4, on its second, halts before reaching the blank
part of its second tape. This, however, means that there is a computation of
M on input w that halts. Conversely, if there is a halting computation of M
on input w, say with n steps, then M’, after at most r +r2 4 .+ 77 failed
attempts, the string in {1,2,...,r}* corresponding to the choices of M’s halting
computation will be generated by B3, and M, will halt scanning the last symbol
of this string. Thus M’ will halt, and the proof is complete. B

- As we had expected, the simulation of a nondeterministic Turing machine by
a deterministic one is not a step-by-step simulation, as were all other simulations
we have seen in this chapter. Instead, it goes through all possible comptations
of the nondeterministic Turing machine. As a result, it requires ezponentially
many steps in n to simulate a.computation of n steps by the nondetermintstic
machine —whereas all other simulations described in this chapter are in fact
polynomial. Whether this long and indirect simulation is an intrinsic feature of
nondeterminism, or an artifact of our poor understanding of it, is a deep and
important open question, explored in Chapters 6 and 7 of this book.

Problems for Section 4.5 .

4.5.1. Give (in abbreviated notation) nondeterministic Turing machines that ac-
cept these languages.

4.6: Grammars - 227

(a) a*abb*baa*
(b) {wwuuf : w,u € {a,b}*)

4.5.2. Let M = (K, X, 6, s, {h}) be the following nondeterministic Turing machine:

Kz{quQMh}) |
¥ ={a,>, U},
$ =qo,

A :{(QO: LJ, qi, G), (QO: U:Ql: I—I): (QI: Ua qi, U): (QIJG:QO_: “'}): (QI:G: h: _)')}

Describe all possible computations of five steps or less by M starting from
_the configuration (¢0,>U). Explain in words what M does when started
from this configuration. What is the number r (in the proof of Theorem
4.5.1) for this machine? '

4.5.3. Although nondeterministic Turing machines are not helpful in showing clo-
sure under complement of the recursive languages, they are Very convenient,
for showing other closure properties. Use nondeterministic Turing machines
to show that the class of recursive languages is closed under union, concate-
nation, and Kleene star. Repeat for the class of recursively enumerable
languages.

4.6 | GRAMMARS

In this chapter we have introduced several computational devices, namely the
Turing machine and its many extensions, and we have demonstrated that they
are all equivalent in computational power. All these various species of Turing
machines can be reasonably called automata, like their weaker relatives —the fi-
nite automata and the pushdown automata— studied in previous chapters. Like
those automata, Turing machines and their extensions act basically as language
acceptors, receiving an input, examining it, and expressing in various ways their
approval or disapproval of it. Two important families of languages, the recursive
and the recursively enumerable languages, have resulted.

But in previous chapters we have seen that there is another important fam-
ily of devices, very different in spirit from language acceptors, that can be used to
define interesting classes of languages: language generators, such as regular ex-
pressions and context-free grammars. In fact, we have demonstrated that these
two formalisms provide valuable alternative characterizations of the classes of
languages defined by language acceptors. This chapter would not be complete
without such a maneuver: We shall now introduce a new kind of language genera-
tor that is a generalization of the the context-free grammar, called the grammar

228 N Chapter 4: TURING MACHINES

(or unrestricted grammar, t0 contrast it with the context-free grammars) and
show that the class of languages generated by such grammars is precisely the
class of recursively enumerable ones.

Let us recall the essential features of a context-free grammar. It has an
alphabet, V, which is divided into two parts, the set of terminal symbols, %,
and the set of nonterminal symbols, V — 2. 1t also has a finite set of rules, each
of the form A — u, where A is a nonterminal symbol and u € V*. A context-
free grammar operates by starting from the start symbol S, & nonterminal, and
repeatedly replacing the left-hand side of a rule by the corresponding right-hand
side until no further such replacements can be made.

In a grammar all the same conventions apply, except that the left-hand sides
of rules need not consist of single nonterminals. Instead, the left-hand side of
a rule may consist of any string of terminals and nonterminals containing at
Jeast one nonterminal. A single step in a derivation entails removing the entire
substring on the left-hand side of a rule and replacing it by the corresponding
right-hand side. The final product is, as in context-free grammars, a string

containing terminals only. : _

Definition 4.6.1: A grammar (or unrestricted grammar, or a rewriting
system) is a quadruple G = (V,%, R, S), where

V is an alphabet; :

¥ C V is the set of terminal symbols, and V — X is called the set of

nonterminal symbols;

G € V — X is the start symbol; and

R, the set of rules, is a finite subset of (V*(V — R x V.
We write u — v if (u,v) € R; we write u =¢ v if and only if, for some
wy,ws € V™ and some rule u' — v € R, u=wiuws and v = wiv'wy. As usual,
=% isthe reflexive, transitive closure of =>¢. A stringw € Y* is generated by
G if and only if S =& W; and L(G), the language generated by G is the set
of all strings in ¥* generated by G. -

We also use other terminology introduced originally for context-free gram-
mars; for example, a derivation is a sequence of the form wo =G W1 =G
e =>a Wne

Example 4.6.1: Any context-free grammar is a grammar; in fact, a context-free
grammar is a grammar such that the left-hand side of each rule is a member of
V —%, rather than V" (V-X)V*. Thus, in a grammar, & rule might have the form
uAv — uwv, which could be read “replace A by w in the context of u and v.”
Of course, the rules of a grammar may be of a form even more general than this;
but it turns out that any language that can be generated by a grammar can be
generated by one in which all rules are of this “context-dependent replacement”
type (Problem 4.6.3).Q

e —————

4.6: Grammars

V={Sab A B €T 5, T
Y ={a,b,c},and
R={S - ABCS,
S T
CA - Ac,
BA — 4B,
CB - BC,
CF = e
CTC == Tbc,
BTy — Tyb,
BTy — T,b,
AT, = Tsa.
T, > e).

The first three rules generate a string of the form (ABC)*T,. Then the next
three rules allow the A's, B’s, and s in the string to “sort out” themselves
correctly, so that the string becomes ArBrery Finally, the remaining rules
allow the 7., to “migrate” to the left, transforming all C’s to ¢’s, and then
becoming 7}. In turn, 7} migrates to the left, transforming all B’s into b’
becoming 7). and finally T, transforms a]] A’s into a’s and

It is rather obvious that any string of the form qpnen can be produced this
way. Of course, many more strings that contain nonterminals can be produced;

Evidently, the class of languages generated
lon-context-free specimens. But precisel
More-importa,ntly, how does it relate to th

context-free languages we have seen in this chapter, namely, the recursive and the
recursively enumerable languages? As it happens, grammars play with respect
to Turing machines precisely the same réle that context-free grammars play in
relation to pushdown automata, and regular expressions to finite automata:

by grammars contains certain
Y how large is this class of languages?
e other two important extensions of the

230 Chapter 4: TURING MACHINES

Proof: Only if. Let G = (V,X,R,S) be a grammar. We shall design a Turing
machine M that semidecides the language generated by G. In fact, M will be
nondeterministic; its conversion to a deterministic machine that semidecides the
same language is guaranteed by Theorem 4.5.1.

M has three tapes. The first tape contains the input, call it w, and is
never changed. In the second tape, M tries to reconstruct a derivation of w
from S in the grammar G; M therefore starts by writing S on the second tape.
Then M proceeds in steps, corresponding to the steps of the derivation being
_constructed. Each step starts with a nondeterministic transition, guessing one
between |R|+ I possible states. Each of the first [R| of these |R| + 1 states.is the
beginning of a sequence of transitions that applies the corresponding rule to the
current contents of the second tape. Suppose that the chosen rule is u = v. M
then scans its second tape from left to right, nondeterministically stopping at
some symbol. It then checks that the next |u| symbols match u, erases u, shifts
the rest of the string appropriately to make just enough space for v, and writes v
in u’s place. If the check fails, M enters an unending computation —the present
attempt at generating w has failed.

The |R| + 1st choice of M entails checking whether the current string equals
w, the input. If so, M halts and accepts: w can indeed be generated by G. And
if the strings are found unequal, M again loops forever. :

It is clear that the only possible halting computations of M are those that
correspond to a derivation of w in G. Thus M accepts w if and only if w € L(G),
and the only if direction has been proved.

If. Suppose now that M = (K,%,4d,s,{h}) is a Turing machine. It will be
convenient to assume that ¥ and K are disjoint, and that neither contains the
new endmarker symbol 4. We also assume that M, if it halts, it always does s0
in the configuration (h,>U) —that is, after having erased its tape. Any Turing
machine that semidecides a language can be transformed into an equivalent
one that satisfies the above conditions. We shall construct a grammar G =
(V, T — {Uu,>}, R, S) that generates the language L C (T — {U,>})* semidecided
by M. - _ '

The alphabet V consists of all symbols in X and all states in K, plus the
_ start symbol S and the endmarker <. Intuitively, the derivations of G will sim-
ulate backward computations of M. We shall simulate configuration (q,puaw)
by the string buagw< —that is, by the tape contents, with the current state in-
serted immediately after the currently scanned symbol, and with the endmarker
a appended at the end of the string. The rules of G simulate backwards moves of
M. That is, for each ¢ € K and a € X, G has these rules, depending on (g, a).

(1) If 6(q,a) = (p, b) for some p € K and b € T, then G has a rule bp — ag.
(2) If 6(g,a) = (p,—) for some p € K, then G has a rule abp — agb for all
b € 3, and also the rule a Ul p< — ag< (the last rule reverses the extension

4.6: Grammars ; 231

of the tape to the right by a new blank).
(3) If 6(q,a) = (p, +) for some P€ K, and a # U, then ¢ has a rule pag — aq.
(4) If 8(q,u) = (p,) for some P € K, then G has a rule pab — agb for all
b € X, and also the rule pa — Liga that reverses the erasing of extraneous

computations of M :

Claim: For any two configurations (q1,u4 a1w1) and (gs, U2a2ws) of M, we haye
that (ql,ulgiwl) "'M (QQ, u2(_1_2_w2) 3:f and Oﬂly ﬁf U2G2@2wo< h_::’G' Uja; gy un <.

The proof of the clajm is a straightforward case analysis on the nature of the
move M, and is left as an exercise.

We now complete the proof of the theorem, by showing that, for all_tb €
(& = {6, LI)* M halts on w if and only if w €LG). we L(G) if and only if

S=>9DUh<I:>E;DU8w<J:>Gw<J =>q w,

(s,pL1w) Fye (hypU), which happens if and only if M halts on w. This completes
the proof of the Theorem. m

Theorem 4.6.1 identifies grammars with an eispect of the Turing machines
that we have deemed unrealistic —semidecision, with its one-sided definition
that provides no information when the Input is not in the language. This is

As it turns out, we can also identify grammars with the more useful modes
of computation based on Turing machines.

