
  

  

Abstract— To date, regional brain atrophy unfolded using 

neuroimaging methods is observed to be the signature of 

Parkinson’s disease (PD). In addition, graph theory-based 

studies are proving altered structural connectivity in PD. This 

motivated us to employ regional grey matter volume of PD 

patients (N=70) for comparative network analysis with an equal 

number of age- and gender-matched healthy controls (HC). In 

the current study, normalized grey matter maps obtained from 

structural magnetic resonance imaging (sMRI) were parcellated 

into 56 ROI (regions of interest) for construction of symmetric 

matrix using partial correlation between every pair of regional 

grey matter volumes. Sparsity thresholding was used to binarize 

the matrices and MATLAB functions from brain connectivity 

toolbox were employed to obtain the connectivity metrics. We 

observed PD with a significantly lower clustering coefficient as 

well as local efficiency at higher sparsities (above 0.9 and 0.84, 

respectively) with p<0.05. The right fusiform gyrus was found to 

be the conserved hub, besides disruption of four hubs and 

regeneration of five other hubs. Lower clustering coefficient and 

local efficiency were indicative of reduced local integration and 

information processing, respectively. Hence, we suggest that 

global clustering coefficient and local efficiency could have a 

pivotal role in evaluating network topology. Thereby, our 

findings confirmed impairment of normal structural brain 

network topology reflecting disconnectivity mechanisms in PD. 

 
Clinical Relevance— Analyzing structural brain connectivity 

in Parkinson’s disease might provide the researchers and 

clinicians with a signature pattern of the disease to discriminate 

patients from normal controls.  

I. INTRODUCTION 

Parkinson’s disease (PD), the second-most common 

neurodegenerative disorder, has been profoundly observed 

with major loss of dopaminergic neurons, and initiates at 

lower brainstem following to cortical regions [1]. Patients 
surviving with PD have both motor and non-motor symptoms, 

and due to unavailability of a proper curative might lead to 

fatal consequences. Although there is a lack of explicit 

clinical diagnostic scale and standard biomarker [2], [3] in 

PD, there is increasing evidence of studies associated with 

grey matter (GM) atrophy [4] and disconnectivity [5]–[9]. Of 

various available neuroimaging modalities, structural 

magnetic resonance imaging (sMRI) has successfully 

identified these regions and hence been used for exploring 

brain connectivity in our research. 
In the current research work, we employed GM 

information for the construction of association matrix and 

 
*T.S. was funded by Ministry of Human Resource Development (MHRD) 

doctoral scholarship by the Government of India. C.N.G.’s time was 

supported by Scheme for Promotion of Academic and Research 

Collaboration (SPARC Grant), Government of India, Project Code: P1073. 

T.S. (corresponding author; +91- 361-258-2232; e-mail: 

tanma176106113@iitg.ac.in) and C.N.G. (e-mail:  cngupta@iitg.ac.in) are 

with Neural Engineering Lab, Department of Biosciences and 

analyzed structural brain networks by deriving connectivity 
metrics at both local and global scales. The network features 
were obtained using MATLAB functions from Brain 
Connectivity Toolbox. We also performed comparative brain 
network analysis across a range of sparsity values. 

II. MATERIALS AND METHODS 

A.  Participants 

Seventy PD patients and an equal number of age- and 

gender-matched healthy controls (HC) were recruited at the 

Department of Neurology, National Institute of Mental Health 

and Neurosciences (NIMHANS), Bangalore, India. Signed 

and informed consent was provided by every patient and 

control. Demographic and clinical data of these subjects were 

also recorded. The clinical information and consent was in full 

compliance of NIMHANS Institutional Ethics Committee. 

B.  Data acquisition and Pre-processing of sMRI 

The subjects were scanned using a 3T Philips Achieva 

scanner using a 32-channel head coil.  The T1-weighted 

structural MRI were acquired using a magnetization prepared 

rapid acquisition gradient echo sequence (TR/TE: 8.2/3.7 ms, 

flip angle = 8, the field of view: 256  256   165 mm, 165 

sagittal slices, voxel size = 1  1  1 mm). The raw images, 

obtained in DICOM format were converted into NIfTI format 

by MRIcron’s dcm2nii tool, available for download at 

http://www.nitrc.org/projects/mricron. These scans were pre-

processed using Computational Anatomy Toolbox, CAT12 

(http://www.neuro.uni-jena.de/cat/) within Statistical 

Parametric Mapping, SPM12 using MATLAB (Add version). 

These images were registered to the Montreal Neurological 
Institute (MNI) standard space tissue probability maps and 

segmented into different tissue types of which GM map was 

taken for further study. 

C.   Structural Network Construction 

The grey matter maps of each group were parcellated 
based on LONI Probabilistic Brain Atlas, LPBA40  

(https://resource.loni.usc.edu/resources/atlases-downloads/) 

into 56 regions of interest (ROIs) as in Appendix, each ROI 

portraying a node in the network [10]. The regional grey 

matter volume (rGMV) of each of these 56 ROIs were 

obtained for each subject using CAT12, where volume 

implied the amount of tissue. Hence, for 70 HC subjects, we 

obtained the rGMV matrix of dimension 70*56. An 
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interregional association matrix of dimension 56*56 was 

constructed for each group based on partial correlation as 

number of subjects is greater than the number of regions [9], 

[11]. Prior to matrix construction, the effect of nuisance 

covariates such as age and gender were regressed out by 

performing a linear regression analysis. Any element of this 

association matrix, Aij indicated the correlation between ROI 

i and j, removing the effect of other regions. These steps were 

coded in MATLAB (MathWorks R2020a).  

D.   Network metrics and analysis 

The network matrix of each group was thresholded across 

a range of estimated sparsities for binarization to enable 

simplified network analysis [12]. Here, a sparsity threshold of 

0.6 represented a matrix with the lowest 40% as zero, while 

considering the highest 60% values only. The network 
became almost equivalent to a random network (i.e. small-

world index close to 1) below 0.6 sparsity, hence this value 

was selected as the lower limit for analysis [8], [12]. The 

average degree became less than the logarithm of number of 

nodes above sparsity of 0.9 at which small-world index is not 

estimable [8], [12]. The small-world network has equal 

number of nodes and edges as that of the network under study. 

In the current research study, random network contained 56 

nodes and number of edges varied with sparsity with a 

maximum possible number of 1540 (i.e. 56*55/2) edges, 

similar to that of the networks of our study. The small-world 

index (σ) is defined as having average shortest path length 

equivalent to that of random networks (𝐿_𝑠𝑡𝑢𝑑𝑦 ≈ 𝐿_𝑟𝑎𝑛𝑑 ) 
whereas clustering coefficient greater than that of random 

network (𝐶_𝑠𝑡𝑢𝑑𝑦 ≫ 𝐶_𝑟𝑎𝑛𝑑), where 𝐿_𝑠𝑡𝑢𝑑𝑦 and 𝐿_𝑟𝑎𝑛𝑑 

are the shortest path length of the network under study and 

random network respectively; and 𝐶_𝑠𝑡𝑢𝑑𝑦 and 𝐶_𝑟𝑎𝑛𝑑 are 

the clustering coefficient of the network under study and 

random network respectively [13]. Hence, the range is 

optimized such that the network doesn't become extremely 

dense or extremely sparse, as extreme dense networks contain 
a lot of redundant edges, however, extreme sparse networks 

loose significant edges. Network measures viz., degree, mean 

clustering coefficient, mean local efficiency and betweenness 

centrality were calculated.  Degree of a node is the number of 

edges it has to other nodes.  Clustering coefficient of a node 

depicts the fraction of its neighbours connecting directly to 

each other; local efficiency of a node reveals how efficient the 

information transmits within its neighbours when it is 

removed [13]. Betweenness centrality of a node is a measure 

reflecting how densely it is connected in the entire network. 

These network metrics were estimated from Brain 
Connectivity Toolbox-derived functions [13]. Hubs are the 

regions with both degree and betweenness centrality one 

standard deviation higher than the respective mean [8]. The 

structural brain networks were visualized using BrainNet 

Viewer [14].  

E.  Statistical Analysis  

A two-sample t-test was performed between PD and HC to 

investigate the age differences and a chi-square (𝜒2) test for 

gender differences. A comparison at P < 0.05 was regarded as 

significant. A nonparametric permutation test [5] was 

conducted with 1000 repetitions, where the clustering 

coefficients were randomly allocated to each of the groups in 

such a manner that the number of subjects in each randomized 

group remain the same as that of the original group. The 

randomized group differences in the network measures were 

then determined and used for permutation distribution of the 

difference. The actual between-group differences were then 

compared based on 95% confidence interval. The above steps 

were followed for group comparison of local efficiency as 

well. A self-written MATLAB code was developed in order 

to test the statistical significance of between-group 
differences in network metrics and perform comparative 

network analysis. 

III. RESULTS AND DISCUSSIONS 

A. Participants 

No significant difference between PD patients and HC was 
found in age (P = 0.077) or gender (P = 0.55). The PD patients 

were observed with a mean Unified Parkinson’s Disease 

Rating Scale (UPDRS) at off state at 30.09 ± 9.57, mean 

UPDRS at on state at 17.50 ± 8.84, mean age at onset of 47.74 

± 11.91 years, and median of H &Y score of 2 (Table 1). 

 
TABLE 1. CHARACTERISTICS OF HEALTHY CONTROLS AND 

PARKINSON PATIENTS 

Measures  Healthy 

Controls  

Parkinson 

Patients  
2  / t-value p-value 

Count 70 70 - - 

Age in years  

(Mean ± SD) 

49.24 ± 10.99 52.56 ± 11.03 -1.78 0.0772 

Age Range 

(years) 

20-73 24-72 - - 

Gender  

(Male: Female) 

52 : 18 55 : 15  0.3568 0.5503 

UPDRS Off  

(Mean ± SD) 

NA 30.09 ± 9.57 - - 

UPDRS On 

(Mean ± SD) 

NA 17.50 ± 8.84 - - 

H&Y 

(Median) 

NA 2 - - 

Age at Onset 

(Mean ± SD) 

NA 47.74 ± 11.91 - - 

B.  Interregional grey matter correlations 

  The resulting association matrix for each of the groups 

contained 56 nodes (indicating to each ROI extracted, as in 

Appendix) and 1540 (= 56*55/2) of edges. Fig.1.A.1 and A.2 

shows weighted undirected correlation matrix, Fig.1.B.1 and 

B.2 shows binary undirected correlation matrix and Fig.1.C.1 

and C.2 shows Binary undirected networks of both HC and 
PD patient groups. The association matrices are mapped at 

minimum threshold (0.6 sparsity level) to obtain the binary 

undirected network in Fig.1 (C.1 and C.2). The binary 

undirected networks illustrate reduced number of edges in PD 

patients (Fig 1.C.1) compared to HC (Fig 1.C.2) at same level 

of sparsity. The strengths of the connections are indicated by 

the color-bar. The sparsity ranged between 0.6 to 0.9 with a 

step size of 0.03 for both groups. The average shortest path 

H & Y: Hoehn and Yahr scale; Pearson’s chi-squared test for 

gender; SD: Standard Deviation; Student’s T-test for age at 

onset; UPDRS: Unified Parkinson's Disease Rating Scale 
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Figure 1.  Weighted undirected Matrices, Binary undirected Matrices and Binary undirected networks of Healthy controls and Parkinson patients 

Color-bar shows the strength of the connections. 

length of the network under study was equivalent to that of 

the random network; the clustering coefficient of the network 
under study was greater than that of the random network; and 

the small- world index was larger than 1 over the sparsity 

range for either groups.  

C. Network metrics and analysis 

The distribution of mean clustering coefficient and mean local 
efficiency obtained from binary undirected correlation matrix 

are shown in Fig. 2 for PD patients and HC, along with the 

between-group differences. The results suggest that the mean 

clustering coefficient and mean local efficiency reduced with 

an increase in sparsity (Fig. 2. A.1 and B.1). The mean 

clustering coefficient of PD was found to be lesser than HC at 

a sparsity of 0.9 (Fig. 2. A.2), which signifies reduced local 

integration and disrupted communication in the disease. In 

line with our findings, clustering coefficient was observed to 

be lesser in early drug-naïve Parkinson patients in 

magnetoencephalography and diffusion tensor imaging 

studies respectively [15], [16]. The likelihood that a node’s 
neighbors are related to one another is measured by its nodal 

clustering coefficient, and the average of nodal clustering 

coefficients of all nodes in a network is mean clustering 

coefficient. Previous study on PD with hemiparkinsonism and 

 
Figure 2. Distribution and intergroup differences in mean clustering 

coefficient and mean local efficiency 

HC showed no difference in clustering coefficient [9], while 

another investigation showed higher clustering coefficient in 
PD compared to HC [5]. Reduced local efficiency in PD at 

sparsities above 0.84 (Fig. 2. B.2) reveals restricted 

information exchangeability [7]. Nodal local efficiency 

assesses how efficient communication is among the node's 

immediate neighbors [9], [13], [17], when a node is removed. 

Similar to our results, impaired local efficiency was reported 

in PD from a longitudinal magnetoencephalographic study 

[15] and PD with tremor from a functional network study [7]. 

Additionally, PD patients with mild cognitive impairment 

were characterized with reduced local efficiency compared to 

PD with normal cognition and healthy controls, both [8]. On 
the contrary, PD patients were observed to have higher local 

efficiency from a morphological network analysis [7] and no 

difference from healthy control subjects in another study [9].  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Hubs are the important brain regions, playing key role in 

functional resilience, indicative of how brain regions interact 

to process information and effect responses. Hub regions were 

determined based on degree and betweenness centrality; 

higher degree indicated large number of connections to rest of 

the nodes in the network. The influence of a particular node 
on information flow between other nodes is described by a 

node’s betweenness centrality [9], [13], [18]. The hub regions 

of HC (purple), PD (green) and common to both groups (red) 

are shown in Fig.3. Right fusiform gyrus was conserved in 

PD, while left middle orbitofrontal gyrus, right gyrus rectus, 
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Figure 3. Hubs in healthy control (purple), PD (green) and common 

in both (red). Far regions appear to be in lighter shade. 
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right angular gyrus, left lingual gyrus were disrupted in PD 

and left superior parietal gyrus, left supramarginal gyrus, right 

middle occipital gyrus, right superior temporal gyrus, left 

hippocampus were regenerated in PD. 

IV. CONCLUSION 

 Our connectivity analysis on sMRI-aided morphological 

network provided evidence of reduced clustering coefficient 

and reduced local efficiency. This represented disrupted 

network in PD and hence, could be used as a signature for 

distinguishing Parkinson's patients from healthy controls. 
Interestingly, so far in Parkinson’s disease, our study presents 

a more concrete and statistically established results due to 

larger dataset. 

 There are limited studies on individual network analysis 

and it's challenging to design a brain network using cross-

sectional sMRI data. Although prior multimodal research 

analysed brain connectivity independently, combining 

different features might provide additional information and 

new insights into network analysis. Brain connectivity 

analysis of subgroups of Parkinson’s disease could be the way 

forward. 

APPENDIX 

Regions of LPBA atlas are below: 
Abbreviations       Region Names 

lSupFroG  L.superior.frontal.gyrus 

rSupFroG R.superior.frontal.gyrus 

lMidFroG L.middle.frontal.gyrus 

rMidFroG R.middle.frontal.gyrus 

lInfFroG L.inferior.frontal.gyrus 

rInfFroG R.inferior.frontal.gyrus 

lPrcG L.precentral.gyrus 

rPrcG R.precentral.gyrus 

lMidOrbG L.middle.orbitofrontal.gyrus 

rMidOrbG R.middle.orbitofrontal.gyrus 

lLatOrbG L.lateral.orbitofrontal.gyrus 

rLatOrbG R.lateral.orbitofrontal.gyrus 

lRecG L.gyrus.rectus 

rRecG R.gyrus.rectus 

lPoCG L.postcentral.gyrus 

rPoCG R.postcentral.gyrus 

lSupParG L.superior.parietal.gyrus 

rSupParG R.superior.parietal.gyrus 

lSupMarG L.supramarginal.gyrus 

rSupMarG R.supramarginal.gyrus 

lAngG L.angular.gyrus 

rAngG R.angular.gyrus 

lPCu L.precuneus 

rPCu R.precuneus 

lSupOccG L.superior.occipital.gyrus 

rSupOccG R.superior.occipital.gyrus 

lMidOccG L.middle.occipital.gyrus 

rMidOccG R.middle.occipital.gyrus 

lInfOccG L.inferior.occipital.gyrus 

rInfOccG R.inferior.occipital.gyrus 

lCun L.cuneus 

rCun R.cuneus 

lSupTemG L.superior.temporal.gyrus 

rSupTemG R.superior.temporal.gyrus 

lMidTemG L.middle.temporal.gyrus 

rMidTemG R.middle.temporal.gyrus 

lInfTemG L.inferior.temporal.gyrus 

rInfTemG R.inferior.temporal.gyrus 

lParHipG L.parahippocampal.gyrus 

rParHipG R.parahippocampal.gyrus 

lLinG L.lingual.gyrus 

rLinG R.lingual.gyrus 

lFusG L.fusiform.gyrus 

rFusG R.fusiform.gyrus 

lIns L.insular.cortex 

rIns R.insular.cortex 

lCinG L.cingulate.gyrus 

rCinG R.cingulate.gyrus 

lCau L.caudate 

rCau R.caudate 

lPut L.putamen 

rPut R.putamen 

lHip L.hippocampus 

rHip R.hippocampus 

bCBeL Cerebellum 

bBst Brainstem 
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