Tutorial 4: Contour Integrals, Taylor and Laurent Series PH 503 Mathematical physics

- 1. For each of the following smooth curves give an admissible parametrization that is consistent with the indicated direction.
 - (a) The line segment from z = 1 + i to z = -1 3i.
 - (b) the circle |z-2i|=4 traversed once in the clockwise direction starting from the point z=-2i.
 - (c) the segment of the parabola $y = x^2$ from point (1, 1) to (3, 9)
- 2. Show that if m and n are integers,

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & \text{when} \quad m \neq n \\ 2\pi & \text{when} \quad m = n. \end{cases}$$

3. A semicircular contour is given by two separate parametrization

$$z_1(t) = 2e^{it} \left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$$

$$z_2(\tau) = \sqrt{4-\tau^2} + i\tau \quad (-2 \le \tau \le 2).$$

- (a) Find the length of the contour using each parametrization.
- (b) Find a function $t = \phi(\tau)$ such that $z_2(\tau) = z_1(\phi(\tau))$.
- 4. Let C be the perimeter of the square with vertices at z = 0, z = 1, z = 1 + i and z = i traversed once in that order. Compute following integrals using primary degnition:
 - (a) $\int_C e^z dz$;
 - (b) $\int_C \bar{z}^2 dz$.
- 5. Evaluate $\int_C (x-2xyi) dz$ over the contour $C: z=t+it^2, 0 \le t \le 1$.
- 6. Show that
 - (a) $\left| \int_C \frac{dz}{z^2 1} \right| \le \frac{3\pi}{4} \text{ if } C : |z| = 3.$
 - (b) $\left| \int_C \frac{e^{3z}}{1+e^z} dz \right| \leq \frac{2\pi e^{3R}}{e^R-1}$ if C is a vertical line segment from z=R (> 0) to $z=R+2\pi i$.
- 7. Use antiderivatives to evaluate following integrals:
 - (a) $\int_{i}^{i/2} e^{\pi z} dz$;
 - (b) $\int_0^{\pi+2i} \cos(z/2) dz$
 - (c) $\int_{1}^{3} (z-2)^{3} dz$.
- 8. Use antiderivatives to show that

$$\int \frac{dz}{z^2 - a^2} = \frac{1}{2a} \log \left(\frac{z - a}{z + a} \right) + c_1 = \frac{1}{a} \coth^{-1} \left(\frac{z}{a} \right) + c_2$$

- 9. Let C be a square with vertices on $z=\pm 2\pm 2i$. Evaluate following integrals using Cauchy integral formula to evaluate following integrals:
 - (a) $\int_C \frac{e^{-z} dz}{z (\pi i/2)};$

- (b) $\int_C \frac{\cos z}{z(z^2+8)} dz$;
- (c) $\int_C \frac{\tan(z/2)}{(z-x_0)^2} dz$ $(-2 < x_0 < 2)$.
- 10. Show that $\frac{1}{2\pi i}\int_C \frac{e^{zt}}{z^2+1}dz = \sin t$ if t(>0) is a real constant and C:|z|=3.
- 11. Verify each of the following Taylor expansions by ønding a general formula for $f^{(j)}\left(z_{0}\right)$.
 - (a) $\sinh z = \sum_{i=0}^{\infty} \frac{z^{2i}}{(2j)!}$ with $z_0 = 0$.
 - (b) $\cosh z = \sum_{i=0}^{\infty} \frac{z^{2i}}{(2i)!}$ with $z_0 = 0$.
 - (c) $\frac{1}{1-z} = \sum_{i=0}^{\infty} \frac{(z-i)^i}{(1-i)^{i+1}}$ with $z_0 = i$.
 - (d) $z^3 = 1 + 3(z 1) + 3(z 1)^2 + (z 1)^3$ with $z_0 = 1$.
- 12. Find the Laurent Series for the function $1/(z+z^2)$ for each of the following domains:
 - (a) 0 < |z| < 1;
 - (b) 1 < |z|;
 - (c) 0 < |z+1| < 1;
 - (d) 1 < |z+1|.
- 13. Find Laurent series for
 - (a) $\sin(2z)/z^3$ in |z| > 0;
 - (b) $z^2 \cos(1/3z)$ in |z| > 0.
- 14. Prove that the Laurent series expansion of the function

$$f(z) = \exp\left[\frac{\lambda}{2}\left(z - \frac{1}{z}\right)\right]$$

in |z| > 0 is given by

$$\sum_{k=-\infty}^{\infty} J_k(\lambda) z^k,$$

where

$$J_k(\lambda) = \frac{1}{2\pi} \int_0^{2\pi} \cos(k\theta - \lambda \sin \theta) d\theta.$$

The functions $J_k(\lambda)$ are known as Bessel functions of the ørst kind.