- 1. Prove that $\frac{d}{dz}z^n = nz^{n-1}$ where n is an integer.
- 2. Find the derivative of the given functions using the rules of differentiation:
 - (a) $e^z = 1 + \sum_{1}^{\infty} z^n / n!$.
 - (b) $\sin z = (e^{iz} e^{-iz})/2i$.
 - (c) $\cos z = (e^{iz} + e^{-iz})/2$.
 - (d) $\tan z = \sin z / \cos z$.
- 3. Show that the derivative of f(z) does not exist for any z for each of the following:
 - (a) $f(z) = \bar{z}$.
 - (b) $f(z) = \operatorname{Re} z$.
 - (c) $f(z) = \operatorname{Im} z$.
- 4. Write the following functions in the form f(z) = u(x,y) + iv(x,y) and find the derivative for each:
 - (a) $\cosh z$.
 - (b) $\sinh z$.
 - (c) $\log z$.
- 5. Prove L'Hospital rule: If f(z) and g(z) are analytic at z_0 and $f(z_0) = g(z_0) = 0$, but $g'(z_0) \neq 0$, then

$$\lim_{z \to z_0} \frac{f\left(z_0\right)}{g\left(z_0\right)} = \frac{f'\left(z_0\right)}{g'\left(z_0\right)}.$$

Find $\lim_{z\to i} (1+z^6)/(1+z^{10})$ using L'Hospital rule.

6. Let $f(z) = z^3 + 1$, and let $z_1 = \left(-1 + i\sqrt{3}\right)/2$, $z_2 = \left(-1 - i\sqrt{3}\right)/2$. Show that there is no point w on the line segment from z_1 to z_2 such that

$$f(z_2) - f(z_1) = f'(w)(z_2 - z_1).$$

This shows that the mean-value theorem does not extend to complex functions.

7. If $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic at z, then prove Cauchy-Riemann conditions

$$u_r = \frac{1}{r}v_\theta$$
$$u_\theta = -rv_t$$

and that $f'(z) = e^{-i\theta} (u_r + iv_r)$.

- 8. Show that following functions are harmonic and find their harmonic conjugates. Find functions f(z) of which the following are real parts.
 - (a) y
 - (b) *xy*
 - (c) $\log(x^2 + y^2)$
- 9. If f(z) = u(x,y) + iv(x,y), the equations $u(x,y) = c_1, v(x,y) = c_2$ where c_1 and c_2 are constants generate a family of curves in xy plane, namely, level curves.

1

- (a) Find the normal vector to these level curves.
- (b) Show that the two sets of level curves, one for u function and other for v function are orthogonal to each other if f is analytic.
- 10. f(z) = z + 1/z. Show that the level curve for Im f(z) = 0 consists of a real axis (excluding z = 0) and the circle |z| = 1.
- 11. Consider a wedge bounded by the nonnegative real axis and a line y=x $(x \ge 0)$. Find a harmonic function $\phi(x,y)$ which is zero on the sides of the wedge but is not identically zero.