Tutorial 2: Elementary Functions and Mapping

PH 503 MATHEMATICAL PHYSICS

1. Find for each function given below, the domain of definition:

- (a) $f(z) = \frac{1}{z^2+1}$;
- (b) $f(z) = Arg(\frac{1}{z});$
- (c) $f(z) = \frac{z}{\bar{z} + z}$;
- (d) $f(z) = \frac{1}{1-|z|^2}$.

2. Write each of the following functions in the form f(z) = u(x,y) + iv(x,y):

- (a) $f(z) = z^3 1$;
- (b) $f(z) = \sin z$;
- (c) $f(z) = \log z$.

3. A line segment is given by $z_1(t) = (1, t)$ where $0 \le t \le 4\pi$.

- (a) Let $f(t) = \exp(z_1(t)) = u(t) + iv(t)$. Plot u(t) and v(t) as a function of t.
- (b) Do the same for $z_2(t) = (2, t)$ and $z_3 = (t, \pi/6)$.

4. Show that

- (a) $\sin^2 z + \cos^2 z = 1$;
- (b) $\sin^2(1+i) = 1.2828 + 1.6489i$ and $\cos^2(1+i) = -.2828 1.6489i$;
- (c) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$;
- (d) $\cosh^2 z \sinh^2 z = 1$;
- (e) $\cosh^2(1+i) = -.2828 + 1.6489i$ and $\sinh^2(1+i) = -1.2828 + 1.6489i$.
- (f) $\log(z_1 z_2) = \log z_1 + \log z_2$.

5. Let w = 1/z and z = x + iy

- (a) Find u and v if w = u + iv.
- (b) Show that a curve in z-plane given by

$$A(x^2 + y^2) + Bx + Cy + D = 0$$

 $(B^2 + C^2 > 4AD)$ transforms into a curve in w-plane given by

$$D(u^2 + v^2) + Bu - Cv + A = 0$$

- (c) Show that a line, not passing through origin in z-plane, maps to a circle passing through origin in w-plane.
- (d) Find and sketch a level curve in z-plane for u(x,y) = 5.

6. Show that the lines ay = x $(a \neq 0)$ are mapped onto the spirals $\rho = \exp(a\phi)$ under the function $w = \exp z$, where $w = \rho e^{i\phi}$.

7. Sketch the region onto which the sector $r \leq 1$, $0 \leq \theta \leq \pi/4$ is mapped by transformation

- (a) $f(z) = z^2$;
- (b) $f(z) = z^3$;
- (c) $f(z) = z^4$.

8. A particle constrained to move in a two dimensional plane, where its coordinates can be given by a complex number z. It is acted upon by a central force F(z) = f(|z|)z. Derive the equations of motion

$$2r'\theta' + r\theta'' = 0$$

$$r'' - r(\theta')^{2} = \frac{r}{m}f(|z|)$$

- 9. Find each of the following limits.
 - (a) $\lim_{z \to 2+3i} (z-5i)^2$
 - (b) $\lim_{z \to 2} \frac{z^2 + 3}{iz}$
 - (c) $\lim_{z \to 3i} \frac{z^2 + 9}{z 3i}$
 - (d) $\lim_{z \to 1-i} [x + i(2x + y)]$
 - (e) $\lim_{z \to \pi i/2} (z+1) e^z$
- 10. Show that the limit of the function $f(z) = (z/\bar{z})^2$ as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and z = (x, x) approach the origin.
- 11. Find f'(z) when
 - (a) $f(z) = 3z^2 2z + 4$;
 - (b) $f(z) = (1 4z^2)^3$;
 - (c) $f(z) = \frac{z-1}{2z-1}$;