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1. Verify, by direct substitution, that G± = e±ikr/r are solutions of
(
∇2 + k2

)
G(r) = −4πδ(r).

2. Show that
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k(r̂ × ~r′)2
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+ · · · .

Solution is
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since

• (r̂ × r̂′)2 = sin2 θ = 1− cos2 θ = 1− (r̂ · r̂′)2
• (1 + x)1/2 = 1 + 1
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3. Show that the gaussian wave packet moves without appreciable change in the width
over time t if t << 2m/h̄(∆k)2. The Gaussian wave packet is given by
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where σ (t) = σ0

(
1 + h̄2

m2σ4
0
t2

)
indicates the spread in the wave packet at time t. If t <<

mσ2
0

h̄ , then

the spread does not change appreciably. And ∆k =
√

2
σ0

.

4. Apply the Born approximation to obtain differential cross section for the following
potentials:

(a) The square well potential

V (r) = −V0 for r < a (1)
= 0 for r > a (2)

First we find V (q).

V (q) =
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∫
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Then the differential cross section
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where q = 2k sin (Θ/2)

(b) The Gaussian Potential

V (r) = −V0 exp

[
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To find V (q),
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∫
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The scattering amplitude is given by
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And hence the differenetial cross section is given by

=
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0 a6
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(c) The Exponential Potential

V (r) = −V0 exp
(
−r

a

)

To find V (q),

V (q) =
1
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∫
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Plot the differential cross section in each case.

5. The scattering of fast electrons by a complex atom can be, in many cases, represented
fairly accurately by the following form for the potential energy distribution:

V = −Ze2

r
+ Ze2

∫
ρ(r′)
|r− r′|d

3r′



For the hydrogen atom in ground state, we may write

ρ(r) = |ψ1s|2

Calculate differential cross section.

Suppose a charge distribution is given by ρ (r), then the potential energy of another charge Q due to
potential of ρ (r) is

V (r) = Q

∫
ρ (r′)
|r− r′|d

3r′

The the Fourier transform of V

V (q) =
∫
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= Q

∫ ∫
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Now since |ψ1s (r)|2 = 1
πa3 exp (−2r/a). The net charge distribution for this problem is given by

ρ (r) = −Ze

r
δ (r) +

Ze

πa3
e−2r/a

Now we only need to calculate Fourier transform of this.


