In non-relativistic quantum mechanics, the wave function of an electron is a pair of two
complex functions. Usually it is written as a column matrix
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The probability density function is given by WT(r,#)¥(r,t). The probability density of
finding the particle at r with spin up is given by |11 (r,¢)|? etc.

The spin operator is given by S = %h&’, where & are pauli matrices. S? = %hQ is a
constant operator. The eigenfunctions of S, operator are
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with eigenvalues /2 and —h/2 respectively, where 1 and 1| are arbitrary functions.
Angular momentum operator must be promoted to the matrix form. It can be written
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We will continue to denote this operator by simply L. It is possible to find a set of simul-
taneous eigenfunctions of operators L2, L., S? and S.. The set is given below:
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The quantity of interest is the total angular momentum which is defined as J=L+S. Now
the mutually commuting set of operators is L?, S2, J? and .J,. The operator J, is given by
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and the J? operator is given by
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We can easily verify that the simultaneous eigenfunctions of L2, §2, J? and .J,
v L? 52 J? J.
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We will denote these functions by y;' " Tt is also easy to see that J? = L? + %hQ + AL -o.
Hence L - 0 has same eigenfunctions.



