CYK\2009\PH405+PH213\ Tutorial 6 Quantum Mechanics

1. A square well potential is given by V(z) = =V} if || < a, and 0 otherwise. The energy
eigenfunctions (even boundstates) are given by

Acos (&% | <a
%(w)z{ i) |\ Hl<

Fexp <—nn m) otherwise

a

where 7, and &, are positive numbers.

(a) Find F in terms of A.
(b) Find A by normalizing the wave function. (Express A in terms of a, &, and, n,).

(c¢) Find the expression for the probability that the particle will be found outside the well
if it is in state ¢, at a given instant.

(d) Do the same excercise for odd boundstates.

2. Set h=m = a =1 and Vy = 50 in the square well potential, given in problem 1. Then
V2 =2V, & =a®=2(Vp+ E) and n? = f? = —2E.

(a) Estimate the number of boundstates.
Etang = /77— €2
~gcott =72 &

numerically by any method (one method is given below) to obtain the energy spec-
trum.

(b) Solve the equations

and

(c¢) Find the normalization constants for each bound state.

(d) Find the probability that particle is found outside the well for the ground state and
the highest energy state.

3. Consider a potential given by

00 x <0
V(z) =< -V 0<z<a
0 T >a

Find out the condition determining the energy eigenvalues of the bound states of this
potential.

4. If a wavefunction is given by 1 (z) = ¢ f(z), where ¢ is a constant (may be complex) and
f is a real-valued function, show that the probability current density vanishes everywhere.

5. Consider a wavepacket given by

_ _ (IE - xO)Q .pox
\I/(l',t—()) —AeXp —T exp (ZT> .
o

Find the probability current density.



6. The potential energy is given by

Vi) = Vo x>0
0 x < 0.

Find the transmission and reflection coefficients assuming a plane wave incident from the
left side with energy E > Vj.

7. Determine the transmission coefficient for a rectangular barrier with the potential given by

W if <
Viz) = +Wo if |x| .a
0 otherwise

where Vj is a positive constant. Treat the three cases, £ < Vp, E = Vp, and E > V
separately.

8. Find the scattering matrix for the rectangular barrier given in problem 7 assuming £ > V4.

Solution 2:

Fixed Point Iterative method: Transform the first equation to

/2 _ £2
§= 9(6) = (n - 1)% +tan_1 (F) .
Here n =1,3,.... g(&) is called iterating function. Now use iterative method, that is
(k1) _ o(e®) A R G
3 =g(¢§ ):(n—1)§+tan ™

You must choose the initial guess, that is, ¢©). Choose a value closer to the solutions. There
is a theorem that claims that £€*) converges to a root for k — oo. To get an accuracy of two
or three digits, you may have to go upto & = 4 or 5. Do this on your calculator. Here is an
example, for n = 1, let £ = 1, then €1 = 1.4706, £2) = 1.4232, €®) = 1.4280, (@ = 1.4276
and £®) = 1.4275. Here is complete table.

’ n ‘ &n ‘ E, ‘ An ‘ P(lz| > a) % ‘
1 | 1.4275 | -48.9811 | 0.9530 0.19
2 | 2.8523 | -45.9321 | 0.9516 0.77
3| 4.2711 | -40.8789 | 0.9489 1.82
4 | 5.6792 | -33.8733 | 0.9443 3.49
5| 7.0689 | -25.0154 | 0.9360 6.19
6 | 8.4232 | -14.5249 | 0.9148 11.10
7196789 | -3.1596 | 0.8458 26.66

Solutions:

1. Given
Acos (£,2) lz| < a

On(x) = {FeXp (_nn@) otherwise



(a) At x = a, ¢, must be continuous, hence

Acos (&) = Fexp(—nn)
4608 (&n)

— F = A2
exp (—7n)

(b) Square of the norm of ¢, is

[ @fde = 2 [Tlo@id

= 2/ |A‘2c052 <§n£) + 2/ ‘F’QGXP (—QUHE) dx
0 a a

a

T [a <1 N sin(2¢,,) N cos? §n>]

28, Tn
Thus,
. 2 -1/2
Ao [a <1 N sin(2&,) 4 cos §n>}
280 Min
(c) Probability that the particle is found outside the well is
P (‘X‘ > a) = 2/ |F|? exp (—an£> dx.
a a
A%a
= ——cos” (&,
o (&n)
(d) For odd states,
Asin (£,2) x| < a
bn(z) = Fexp (—nn%) r>a

||

—Fexp (—77”7> T < —a

Follow simillar procedure to obtain

. [a (1 _sin(26,) sin? &)]‘”Q

26n Tin

and

2. Given above.
3. Boundary conditions for the wave function:
(a) At x = a, the wave function and its first derivative must be continuous.
(b) At x =0, the wave function must vanish.
For bound states, energy eigenvalue, E' < 0.General solution in Region I (z € [0, a]),
¢r = Asin (ax) + B cos (ax)

and in Region 2 (z > a),
¢11 = Ce’ + De ™",
where 8 = V2mE/h and a = /2m(E + Vo) /h. Applying boundary condition (b), we get
B = 0. And applying boundary condition (a), we get
n = —&coté.

This is exactly same as in case of the odd eigen-states of a square well potential. We could
have arrived at this conclusion just by guessing.



4. Given: ¥(x) = cf(x), where f is a real function of z and ¢ may be a complex constant.

J(x)

5. Probability current density is
h
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6. Assuming E > Vj, the solution to the Schrodinger equation is

-]

Aeiaz + Be—iaa:
Ceiﬁx

Tz <0
z >0,

where o = v2mFE /h, and = \/2m(E — V;)/h. Applying BC at x = 0, we get

Thus

and

The transmission coefficient is

and

A+B = C
A-B = Lo
(6
C 2«
A a+p
B p-a«
A a+p
Ji_B|C]P_ 208
Ji oAl (a+p)
2
(a-pp_ (VE-VE-T)
@+0°  (VE+VE-TW)
E_
=
E
70>>1



Reflection Coefficient, R

0 |
0 1

Energy, E/VO

7. The transmission coefficient for rectangular barrier is given by

ViZsinh? (28a)] "
T = 1+ 90— =7 E <V
[ TEBEV - B) } "
1
- E =V
T TyomVpar/mz B E TN
Vi sin? (28a) -
= |14 0> =P E >V
[ 1E(Ve — E) ] -
where, 3 = /2m(E — Vy)/h.
8. The solution of the SE is
Aetor 4 Be~iox T < —a
P(x) = { CeP* 4+ De~ B —a<z<a,
Eelo® 4 Fe—iox a<zx

where o = vV2mE/h, and § = \/2m(E — V) /h. Applying BC at = = —a, we get
i 5] - Lo ]3]
Bq —Bq D —ap B
1
2

RN

Applying BC at = = a, we get

BT
L ap —ap | | F | Bq —Bg || D

[ p p"E':l[q q}ng [p pHA
L ap —ap || F | 2B —Bg)|a —3a|laep —ap || B
[ p P El cos (28a) %sin(2ﬁa) D P A
lap —ap || F | | iBsin(2Ba) cos(2Ba) ap —ap B

Without substituting for p, we can simplify this to

p? ((a? — B%) sin (2Ba) A + 2ia3F)
2ia cos (28a) + (o + (?) sin (26a)
p? (2iaBA + (o — 5?) sin (26a) F)
2iaf cos (203a) + (a? + (3?) sin (20a)

B =

E =

5



Now we can write down the scattering matrix. The transmission coefficient can be found
by setting F' = 0. Compare with solution of 7.



