Chapter 2

Informal Introduction to QM: Free
Particle

Remember that in case of light, the probability of finding a photon at a location is given by
the square of the square of electric field at that point. And if there are no sources present in
the region, the components of the electric field are governed by the wave equation (1D case
only)
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Note the features of the solutions of this differential equation:

—=0 (2.1)

1. The simplest solutions are harmonic, that is
u ~ exp i (kx — wt)]

where w = c|k|. This function represents the probability amplitude of photons with
energy fAw and momentum #k.

2. Superposition principle holds, that is if u; = exp [i (k12 — wit)] and ug = exp [i (kaz — wat)]
are two solutions of equation 2.1 then cquq + cous is also a solution of the equation 2.1.

3. A general solution of the equation 2.1 is given by
[ee]
u = / A(k)exp [i (kx — wt)] dk.
—00

Now, by analogy, the rules for matter particles may be found. The functions representing
matter waves will be called wave functions.

> First, the wave function
Y(a,t) = Aexpli(pr — Et)/h]



represents a particle with momentum p and energy E = p?/2m. Then, the probability
density function P(z,t) for finding the particle at = at time ¢ is given by

P(x’t) = |77Z)($)t)|2
= |A)P.

Note that the probability distribution function is independent of both x and t.
> Assume that superposition of the waves hold. Then the wave function
Y(z,t) = Aexpli(prz — Ent)/h] + Bexp [i(pex — Eat) /1]

represents a particle with momentum either p; or po with propabilities |A|> and |B|?
respectively. Extending this to the wave function

N
W(a,t) = Apexpi(piz — Eit)/h]
n=1
represents a particle with momentum p; with probability |4;|?.

> In general, since p is a continuous variable,

1
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represents a particle with momentum p with probability density function |A (p)|2.

vlet) = —— [ " Alp)expli(pz — Et)/H] dp

Example 1. Let

V(@) = \}i exp[i(pz — Et)/H] + \2 exp [i(—px — Et)/H].

The pdf for finding particle at x at time ¢ is

P(:Uat) = W(J«"at)?ﬁ(%t)

2px
= 1 — .
—|—COS< h>

Now this pdf is not what one expects in classical mechanics. There are some points, in the
vicinity of which, the probability of finding particle is 0!

Now the wavefunction of a particle with definite momentum presents a problem. The proba-
bility density function P(x,t) is not integrable. Thus the net probability of finding a particle
somewhere is infinite. One way to look at this is to say that P(z,t) represents the relative
probability and not the absolute.

Really speaking, one does not find harmonic waves in nature. What one encounters are wave
trains or wave pulses. Think of water ripples when a stone is dropped in it. Think of particles



which make tracks in bubble chambers. It is always known that particles is in some region of
space. This can be put in mathematical terms as

/ P(z,t)dr < 0o

or

/ T ()P dr < oo

— 00

Here are the rules for the wave function of a free particle.

1. A free particle will be described by a square integrable function called as wave function
or probability amplitude. The absolute square of the wave function is proportional to
the probability of finding the particle at a location at an instant.

2. The wave function

(o, t) = ﬁlﬁ / " A(p) exp lilpr — Ep)t) /A dp

where A(p) is a square integrable function, represents a free particle with momentum p
with probability density function |A(p)|?and energy E(p) = p?/2m.

Wave Packets

Thus, the particles with reasonably sharply defined momentum may be described by a pulse
like wave functions. Consider a particle with momentum py with uncertainty of Apg (< po).
If the wave function of the particle is

1
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then the form of A(p) must be a sharply peaked function about pg (see figure). (For present
argument, assume that A(p) is real.)

v = —— [ " A(p) exp lilpr — Ep)t)/h) dp

Po

Claim 2. If A(p) is a sharply peaked function about pg with uncertainty Apg, then the wave
function 1) is also localized. (such wave functions will be called wave packets).
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To justify the claim, first, let ¢ = 0. It is the behaviour of exp (ipx/h) that must be investigated
as a function of p near pg. Now period of exp (ipz/h) is h/|x|.

>> Case 1: When |z| > AL;DO’ then Apg > h/|z|. That is Apg is very large compared to
the period of exp (ipxz/h). Thus this function has highly oscillatory behaviour near pg

and hence )

\V271h

> Case 2: When |z| < Aipo’ then Apy < h/|xz|. That is Apg is very small compared to
the period of exp (ipz/h). Thus this function is nearly constant near py and hence

(x,0) = / " A(p) exp [i(pe) /] dp ~ 0

b(z,0) = ml?n / " A(p) expli(pz) /1] dp
— o el / Z A(p)dp

Thus v is significantly nonzero only for |z| < h/Apg. Thus AxzApg ~ h/2.

Figure 2.1: The three graphs in the first column are that of A(p), cos(px/h) and the product of
the two when x > h/Apg. The second column contains the same graphs, but for = < h/Apy.
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Example 3. Let A(p) =1/\/A, if [p — po| < Ap/2. Then the wave functin is given by

ba,t) = \/;Th / " A(p) expli(pe) /1] dp

2y/Ap sin (Ayz /1)
Vorh  Apr/h

The plots are shown in the figure.

Alp) U(x)

P

To analyze the wavefunction ¢ (x,t), when ¢t # 0, remember E is a function of p. Let § =
(pr — Et)/h be the phase of the exponential function. If 8 changes rapidly, then exponential
function is oscillatory. Alternatively if 5 is stationary, exponential function is nearly constant.
Thus, the peak of the wave packet ¢ is at xq if
op
o (po) = 0
oF

when xo—a—p(po)t =0

This means that the peak of the wave packet is moving with speed

0k
=5
This is called as group velocity as against the phase velocity of the wave which is defined as

E/po. In macroscopic limit, the velocity of the particle is po/m, this suggests that E(p) =
p?/2m. This fits nicely. Now,

Vg (po) -

E(p) = E(po) + vg(p — po) + -

Thus if ¢ is sufficiently small, then

Y(x,t) = \/;Thei(pow—ff(po)ﬂ/ﬁ/_ A(p) exp [i(p — po)(x — vgt)/R] dp

And compare this with

P(z,0) = \/217716"(7’05‘3/5) /_00 A(p)exp [i(p — po)z/h] dp

the wave packet just moves without changing shape with speed v,.
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Gaussian Wave Packets

Now let

N |—=

[\
_

Note that this function is normalized to 1, that is,

/ T A Pdp=1.

—00

The wave packet is
1 1 \2 [> (p — po)?
b —Do .pr
x,0) = exp | ———— +i—
¥(x,0) o (\/mp) /OO p[ 2A2 n

1
Ay \2 PO A,x?
(ﬁh) P [ 7} P { 212

(See footnote!') The following figures show the plot of Gaussian wavepacket.
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Figure 2.2: The left figure shows Ret and right hand figure shows [¢|%.

Differential Equation (Schrédinger Equation)

If the wave function at time ¢ = 0 is known, that is ¢(z,0) is known for all z, how does one
find ¢ (x,t)? Remeber that em waves are governed by a differential equation called as wave
equation. What is the differential equation for matter waves? Here one borrows the classical
energy expression F = p?/2m. The wave function v (z,t) of a free particle is

1
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(e, t) = / " A(p) expli(pr — E(p)t)/H] dp.

Then
) L :
<Zh6t> Y(x,t) = Nz /OO EA(p) exp [i(pz — E(p)t)/h] dp

e ™\ 1/2 52
/ e % ¢ 5udu _ (7) eﬁ /4o
oo «
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and

(oot )vtwt = = [ (L) A expliton — B0/ o

_ / " BA®) exp lipz — E(p)t)/H] dp

since p?/2m = E. Thus,

(mi) W(w,t) = % (—ihai)Qw(z:,t).

This is called Schrédinger equation. Note this first ordered differential equation in ¢. Thus
knowledge of v(x,0) is enough obtain ¢ (x,t).2

It was implicitly assumed that A(p) is time-independent. In classical case, momentum of a
free particle does not change in time. Simillary, in QM, the pdf of momentum does not change
in time and so does A(p). Then there is another way to find ¢(x,t) from ¥ (x,0):

1. Given ¥(x,0), compute momentum space wave function:

1 [ .
Ap) = \/ﬁ/_oow(x,O) exp [—i(px)/h] dx
2. Then
t) = /oo A(p) expli(pz — E)/Hd
Y(z, Jorr | AW el p

Example 4. A wave function of a free particle at ¢t = 0, is

77/}(%0)_{8 lz| < a

0 otherwise.

B is a real constant. Find ¥(x,t).
First normalize the wave function.
a
JCRIE
—a
This implies that B = 1/\/%. Now the momemtum space wave function is

Ap) = \/2177@ / " (e, t) exp [—i(pr) /B du

= \/gsinc (pha) .

20f course, one also must know (=00, 1), since its a second ordered differential equation in z. For free
particle, the square integrability requires that (o0, t) = 0.
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D@, t) = (o, ) = \/leh\/g/_Z sine (24 exp [Z <px _ 2’&) /h] dp

But this integral is not easy to evaluate in terms of simple functions. But it can be numer-
ically evaluated and plotted. Clearly the average momentum is zero, thus the peak of the
wavefunction remains at x = 0.

Expectation Values

Thus, if the wave packet (or wave function) of a particle is known then all other information
can be obtained. Let ¢ (x,t) is the wave function of a particle.

> Probability density function for finding the particle at x is
P(x,t) = [¢(z, 1)
> The average position of the particle or expectation value of x is
oo
(2(t) = / oP(x, 1)dz
— 0o
oo
= / U (x,t) [z (x, t)] do
—0o0

> Let
1

V2rh

Then probability density function for finding the particle with momentum p is given by

o(p) = /_OO Y(x,t)exp [—i(px — E(p)t)/h] dzx.

> The expectation value of p is

) = /Oopleb(p)Ide

Now, notice that

i) = —— [ o) exp it — )0/ dp

15



Then
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