Chapter 3

Formalism of Quantum Mechanics

3.1 Quantum Systems

In this course, only non-relativistic quantum mechanics is considered. Clearly, the case of
photons is excluded since ' = pe. Thus, by quantum system, one means one of the following
cases.

1. A single structureless particle moving in a force field. The source of the force field is
not included in the system.

2. A collection of structureless particles (identical or otherwise, distinguishable or other-
wise) interacting with each other and a force field.

3. A collection of the particles with internal degrees of freedom (like spin) where there is
no classical discription.

Classical mechanics treats the first two cases. In these cases, the description of the quantum
system is based on the classical description. The third case will be handled separately, later.

3.2 Postulates of Quantum Mechanics

Before the working postulates of the quantum mechanics are presented, note the following:

> The mathematical rigour is not followed strictly, thus making the postulates incomplete.
However, in introductory course, these are enough.

> The aim is to present a operational quantum mechanics for describing observed world.

The following table gives the postulates as compared to those of classical mechanics given for
a case of a single particle in external force field in 1D. Generalization to 3D or many particles
is immediate.
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Classical Mechanics

‘ Quantum Mechanics

I A state of a classical system is given by a | A state of the quantum system is given
pair of real numbers (x,p), with « being | by a vector ¥ in some Hilbert space H.
position and p being momentum of the
particle.

11 An observable or a dynamical variable Q | Let X and P be two operators on H,
is a real valued function of x and p, such that
denoted by w(z, p). [X, ]5} = ih.

X is called position operator and Pis
called momentum operator.
An observable 2 is represented by a
hermitian operator
0w (o Sp P)
obtained by substituting the operators in
place of x and p in classical expression.
1T A measurement of an observable € is A measurement of an observable € yields
w(x,p). The act of measurement does a value from the set of eigenvalues of €.
not disturb the state of the system. If ¢ is an eigenvector of ) with
eigenvalue A, then the probability of
obtaining A as a result of measurement
on system in state W is given by
Po(A) o< (¢, W)
As a result of measurement the state of
the system suddenly changes from V¥ to
¢.
v The time evolution of the state is given The time evolution of the state of the

by Newton’s laws.

d

%p(t) =

3=

T
&
=
&

system is given by Schrédinger equation:

d N
h—W(t) = HU(?).
() = (1)
Where H is the operator corresponding
to the classical Hamiltonian of the
system.
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Discussion

> The first three postulates are about the state of the system and computing the value of
the measurement of dynamical variables at some instant.

> Postulate I defines the state of the system. To begin with, the choice of the Hilbert space
is arbitrary. Any Hilbert space will do! In the table given below, the most common
choice is given.

> Note that since ¥ is an element of a Hilbert space, superposition principle is automatic.

> Postulate II is a correspondance between the classical dynamical variables with the
operators on H. Again, choice of position operator and momentum operator is arbitrary,
except the commutator relationship between the two.

> The postulate is fuzzy on the issue of order of operation, that is, it is unclear whether the
classical variable zp will be X P or PX or (XP + PX) /2. The last choice is appealing

since the operator is hermitian.

> Postulate I1I contains lot of information. One can organize this information in following
steps:

1. Given €, find all eigenvalues (must be real since {2 is hermitian). Suppose the
set of eigenvalues is discrete and is given by Aq = {w;|i = 1,2,...}. Let Bg =
{¢i]i =1,2,...} be the set of corresponding eigenvectors. Bgq is an orthonormal
basis of H.

2. Now expand the state W of the system in terms of ¢;,
U=> Ci;
%

where C; = (¢;, V).

3. The sample space of measurement of €2 is Aq. Probability of getting w; as a result
of measurement is given by

2
Po (wi) = [{¢s, ¥)[*.
> If the eigenvalues of Q) are continuous, procedure is still the same:

1. Given €, find all eigenvalues (must be real since €2 is hermitian). In this case, the
set of eigenvalues is some subset of R say, Ag C R. Let Bg = {¢, |w € Aq} be
the set of corresponding eigenvectors. Bgq is an orthonormal basis of H.

2. Now expand the state ¥ of the system in terms of ¢;,

U = C(w)pydw
Ao

where C(w) = (¢, V).
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3. The sample space of measurement of  is Aq. Probability density function for
getting w as a result of measurement is given by

Po (w) = [(¢u, 1)

> One can define a projection operator as follows: Let B = {¢;|i = 1,2,...} be an
orthonormal basis of H. Then any state ¥ can be expanded in terms of ¢;,

V=Y Ci¢s
where C; = (¢;, ¥). Let P; be an operator such that

Note this projection operator has the same geometric interpretation as that of projection
on coordinate axes in plane geometry. Clearly,

UV=> PV = Y B=I
7 7

where [ is the identity operator.

> Note that the Postulate III also mentions that a measurement will abruptly change the
state of the system. Suppose measurement is done and yields a result w;. Then the new
state will be ¢;. This is called as the collapse of the wavevector.

> The probabilities given in Postulate IIT are to be interpreted in frequency or ensemble
sense (See Math Primer.).

3.3 Wave Mechanics

In chapter 2, the QM was introduced using wavefunctions. That is a free particle was as-
sociated with a wavefunction W(z,t), and probability density function of its location with
|W(x,t)|>. When the Hilbert space is chosen to be La(R), the quantum mechnics is more
popularly known as wave mechanics.
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‘ Quantum Mechanics

Wave Mechanics

A state of the quantum system is given
by a vector ¥ in some Hilbert space H.

Let H = La(R). The state of the system
is given by a square integrable function

I

Let X and P be two operators on H,
such that
L&P}:m.

X is called position operator and Pis
called momentum operator.

An observable 2 is represented by a
hermitian operator

Q:wCVHXpHP)

obtained by substituting the operators in
place of  and p in classical expression.

Choose X and P

wf(x)
. d

—ih%f(w).

holds.

11

A measurement of an observable  yields
a value from the set of eigenvalues of Q.
If ¢ is an eigenvector of Q) with
eigenvalue \, then the probability of
obtaining A as a result of measurement
on system in state U is given by

Po(N) o [ (6, ®)]*.

As a result of measurement the state of
the system suddenly changes from ¥ to

0.

v

The time evolution of the state of the
system is given by Schréodinger equation:
'hdm@) HU(t)
th— = .

dt
Where H is the operator corresponding
to the classical Hamiltonian of the
system.

Clagsical Hamiltonian in case of
conservative force field is just the total
energy, that is

H = —

—+V(@)
N h2 d2 NN
H o= 5 o5+ (X)

The Schrodinger equation becomes

zhglll(x t) = —h—2d—2\1'(x )+V (z)¥(x,1
ot 77 2mda? ’ i

Here are some features of wave mechanics:
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> The choice of the position operator and momentum operator are not unique. Here is an
alternate choice:

i) = m;;ﬂp)
Pf(p) = pflp)

This choice is as good since [X,]s} = 4h holds. This assignment is called momen-

tum space representation as opposite to the earlier choice, which is called real space
representation.(The choice of p as a dummy variable is only due to its popularity.)

> The eigenvalues of X on Lo(R) are continuous. The set of eigenvalues is just A v =R!
That is every real number is an eigenvalue of X. The eigenvector ¢, corresponding to
an eigenvalue A is ¢y (x) = d(z — A). Thus the set of eigenvectors is

BX :{¢A|)\ER}.
Check:

— By is orthonormal, that is
(Pr, o) = (A= N).

— By is complete, that is every function can be written as

:/f()\)é(l‘—/\)d)\Z/f()‘)¢/\($)d)‘
R R

Probability density function for finding particle at A as a result of measurement on a
system which is in state W at an instant ¢ , is given by

¢)\7 >‘

_ '/ 5(x — A\)U(x, t)dx

= [T\t

Pf( ()‘at)
2

> Now, what are the eigenvalues and eigenvectors of the momentum operator on Lo(R)?
Again Ap = R. For any real number p, let §,(x) = exp (ipz/h) /v/27h. Now

Pee) = (-ings ) | e (22)] = syt

Thus, the set of eigenvectors are

Bp ={&(x)|p e R}.
Again Check:
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— Bp is orthonormal, that is

<£p7£p’> = 5(]?—}7,)-

(See tutorial problem 1.4)

— Bp is complete. Remember, every square integrable function admits a fourier
transform, that is every function can be written as

f@) = o [ atrew (57 ap
= /R 9(p)&p(x)dp

Probability density function for the particle to have momentum p as a result of mea-
surement on a system which is in state W at an instant ¢ , is given by

Pp(p) = 1{& O

_ ‘\/;Th/zexp (-”?) U(a)da
(F) (p)

Where FV is the fourier transform of W. This formula is identical to the one given in

case of a free particle in previous chapter.

> Neither the eigenfunctions of X nor the eigenfunctions of P belong to Ly(R). However,
these are orthonormal set of functions that span Lo(RR), thus these will be used without
worrying about mathematical difficulty.

3.4 Schrodinger Equation

In classical mechanics, if a single particle is moving in a conservative force field then the total
energy is a constant of motion. In most parts of this course, only conservative force fields are
considered. The hamiltonian function (that is total energy) is then independent of time.

Assume, that the hamiltonian operator H on hilbert space ‘H is independent of time (that is
there is no explicit dependence on t). Let the set of eigenvalues of H be given by

AH = {El,EQ, .. }
with correpsonding set of eigenvectors

BI:I = {@bl,lﬁg, .. }

That is, for each i,
Hi = Eitp;.
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This equation is called time independent Schrodinger equation. And the eigenvectors ; are
stationary states. The eigenvalues E; are called energy eigenvalues. The set Ay is called the
energy spectrum.

Remeber By is an orthonormal basis of H. Let W(¢) be the state of the system at some time
t. Then,

w(t) = 3 ety

7

Putting this in Schrodinger equation we get

Z <z‘hjtci(t)> P = Zcz‘(t)ﬁ%‘

) %

Z (zhiq(ﬂ) i = Z(Ezcz(t))%

7 7

Equating the coefficients on either side

ih%ci(t) ~ Bieill)
Solving this differential equation,
ci(t) = ¢;(0)e T Eit/h
Thus!
U(t) = Z ci(0)e Fit/ My

efth/hZci(o)wi _ efiflt/hllj(o)

The operator U(t) = exp [—zﬁt/h} is called as time evolution operator. Check

Now, if t = 0, the state of the system is one of the stationary states, say ¥(t = 0) = 1, for
some 7, the time evolution of the state of the system is given

U(t) = e Ft/hg(0)

'For given operator A, define
1 1 .,
exp[A]=14+A+ A"+ 4+ A"+
2! n!
If the series on rhs converges, e is a well defined operator. Now, check by brute force method, that if Au = \u

then
A
e"u=c¢e u
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Now consider an observable () with eigenvectors ¢ with eigenvalue w . The probability that
measurement of  will yield w, at a time ¢ is

Po(w,t) = (6, ¥(1)P
= |emmern o wop[

= [(¢, (0))[
= Py(w,0)

Thus, if system is in a stationary state then all properties of the system are independent of
time.

3.5 Uncertainty Principle

Expectation Value

Theorem 6. An observable 2 is represented by an operator Q. If the quantum system is in
state (normalized) W, then the average (expectation) value of 2, denoted by (), is given by

(Q)y = <\IJQ\I/>

Proof. Let the spectrum of Q be Aq = {w;|i =1,2,...}. Let Bg = {¢;|i =1,2,...} be the
set of corresponding normalized eigenvectors. Let

U => Ci;
i
where C; = (¢;, V). If¥ is normalized. Then
(U, ) = >3 CiC)(dié))
v J
I LTI SE

i i

By postulate I1I, the probability of getting w; as a result of measurement is given by

P (wi) = [{¢s, U)* = |Cif”
if ¥ is normalized. Clearly
> Po(wi) =1.

The expectation value of the observable (2 is then

Qg = ZUJiPQ(wZ‘) = sz‘ Cil?
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Now,
(w,Qv) - Zch‘cj<¢i,Q¢j>
= iic;cjwj@,j
= iwjﬁcf

O

Definition 7. The uncertainty in the measurement of an observable {2 in a system that is in

state U is defined as
N . 2
A= \/< (Q B <Q>\1/) >\I,

Theorem 8. If A and B are two observables of a system which is in state V, then

(AA) (AB)? > (21 (4 B]>W>2.

1)

Proof. Let [ = (/1 — <A>> ¥ and g = (3 — <E>) V. (Note the subscript in () has been
dropped for brevity.) Now (AA)2 = (f, f) and (AB)2 = (g, g) . Then by Schrwarz inequality,

(AAP* (AB)* = (f, ) (9,9) = |{f. 9)I

- (el
! = (4B) - (4)(8)
Simnilarty o) = (BA) —(4) (B).

Now for any complex number z
2
1z|* = (Re 2)? + (Im 2)* > (Im 2)* = [ (z — z*)] .

Now let z = (f,g) . Then

2
(a2 |50~ o)



Putting everything together

(AA)*(AB)* >

V
—
SR
/N
S
L —
o
>
| I
\/
N———
[E——
no

Apply this to X and P, then

wxrar? =[]

This is Heisenberg’s Uncertainty Principle. Minimal Interpretation of the uncertainty principle
is ensemble interpretation. That is, a large number of copies of the system are made and set
in state W. Make measurement of X on half of them. Make measurement of P on the other
half. Now from the samples compute uncertainties, that is standard deviation ox and op.
Uncertainty principle says that

oxop =

| St
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