1 Linear Equations with Regular Singular Points

Consider the equation
2%y + a(z)zy’ + b(x)y = 0

where a and b are analytic with convergent power series expansions (about x = 0) for
|z| < 7o, ro > 0.
Clearly = = 0 is a regular singular point. The indicial equation is given by
r(r—1) 4+ a(0)r 4+ b(0) = 0.

Let 1 and ro be the two solutions of the indial equation such that Rer; > Rers.

1. r1 # 19 and r1 — 79 is not a positive integer:
Two solutions exist with the form

o)

y1 = [z ZCkak

k=0

and
o
y2 = 2| Z dy, "
k=0

with both series convergent for |z| < r9. The coefficients ¢, and dj can be uniquely
determined by substituting solutions in the differential equation.
2. r1 =r9:

Two solutions exist with the form

oo
y1 = |x|™ Z cpa”
k=0

and

(o, ¢]
v = || Y dya® + (log|a|) yn
k=0

with both series convergent for |z| < r9. The coefficients ¢, and d can be uniquely
determined by substituting solutions in the differential equation.

3. r1 — re is a positive integer:

Two solutions exist with the form

e}

y1 = |x|™ chxk

k=0

and
(o]
yo =2 dpz® + c(log|z|) 1
k=0

with both series convergent for |z| < rg. The coefficients ¢, dy and ¢ can be uniquely
determined by substituting solutions in the differential equation. It may happen that c is
Zero.



1.1 Example of case 1

Consider the differential equation

5
2y + <3> xy +xy=0.

Here a(x) = 5/3 and b(x) = = both analytic for all z. The indicial equation
)
r(r—1)+§r+020

has solutions 1 = 0 and ro = —2/3. This is case 1 above.

Then, let
o.)
yi = cpat
k=0

and substitute in differential equation

o o 5 o
Z k(k — l)ckxk + Z gkckwk + Z cpz Tt = 0.
k=0 k=0 k=0

Clearly, coefficients of ¥ must be zero: Thus for k > 1

2
k:(k+§)ck+ck_1 = 0
G =~
T T kB4 2)
E5-8---(3k+2)

Thus the first solution is

N T s s Bkt 2)

The second solution is given by
oo
Y1 = x 23 Z cpa®.
k=0

The recurrence relation is

3
® T TEBR—2) !
(~1)"3"
= CO
E'l-4---(3k —2)
The second solution is
28, |1 ( k
I +;k!1-4---(3k—2)$ ] '
Both series are convergent:
k
. Crx . —3x
lim |—* | = lim |——— | =
el cp_1xh-1 hoo ’ k(3k +2) ' 0

It is easy to check that the two solutions are linearly independent.



1.2 Example of Case 2

Consider

ny// +xy/ +x2y -0

Here a(r) = 1 and b(z) = 22 and both are analytic for all . Thus indicial equation is
r(r—1)4+r+0=0.

The only solution is » = 0. This is same as case 2 described above.

Then, let

e}

y =Y cpat

k=0

and substitute in differential equation

Z k(k — 1)ckack + Z kepa® + Z cpatt? = 0.
k=0 k=0 k=0

Clearly, coefficients of 2¥ must be zero: Then, coefficient of

Cc1 = 0
Thus for k > 2
kKcp4+cpa = 0
1
Ck = —ﬁck—z
(1)
k2
2+ (5)
Thus for odd k, clearly ¢ = cp_o=---=c3 =c1 =0.
For even k,
(1)
k12
2+ (3
Thus the first solution is
_1)k/2 X
y1 = ©Co 2$
k=03, 2 (51)
o0
o (_1)m 2m

The second solution is given by

o0
yo = Y bea® +log(x)y
k=0

o0
= > bpa® + log(z)y
k=0
such that by = 0. Putting y» in the differential equation, we get

bz + 22byx? + Z(k'2bk +br—2) + 221, =0
k=3



Thus

m2m
b1z + 22bya® + Z k2by + by_a) = —2co Z ey z2m
k=3
Comparing the coefficients of z* from both sides,
b = bg=---=0
bQ = 60/4
and for kK >4 or m > 2,
(_1)m+1m
(Qm)szm + b2m—2 - WCO
with bg = 0 and by = ¢o/4. Solving this recurrence relation, we get
b (- 1)m+1 14+ - ! + -+ =
= — | cp.

Thus the second solution is given by

m+1 1 1 om
_COZQ2m2 1+2+ +E "™ 4+ log(x)y1

1.3 Example of case 3: Bessel Equation

The Bessel equation is given by

:UQy" +ay + (x - oz2) y = 0.

Clearly the previous section, we considered a special case « = 0. Thus let « > 0. The indicial

equation is

r?—a?=0 = r=+a.

If « is an integer or half odd integer, we have case 3. Assume that a = n some integer.

The first solution is -
yp =" Z cpz®
k=0

Then, substitution of y; in the differential equation yields,

0-coz”" + [(n+1)* = n?] c1z™ ™ + Z {[(n+k)*—n?] cx + cra} 2" F =0
k=2

Then, comparing coefficients, we get ¢; = 0 and for k > 2,
k(20 + B)] ek + cxs = 0

Consequently, ¢, = 0 for all odd k. And for even k

1
Tkt k)
(_1)k/2
2572 (BVi(2n + 2)(2n +4) - 2n + k)
(—1)%/2p!

= CO

F (B o+ 5

C =




Or put k = 2m, then

Cm =

(=1)™n!
22m ()1 (n + m)!

usually, co is chosen to be (2"n!)~!, then the first solution can be written as

0= () 5 i () »

This solution is called the Bessel Function of the first kind and denoted by J,(x).

The second solution is given by
oo
yp=2a " Z dpz® + clog(z)y
k=0
Substituting in DE, we get

0-doz™" + [(—n+1)? —n?] diz™ "' + Z {[(=n+k)* = n?] d + d—2} 27" + 2cay] = 0
k=2

Substitute y; from equation !,

[(—n+ 1)2 —n? | diz™ "+1+Z{ —n+k)?-n }dk—i-dk ofa "t —2chm(2m+n)m2m+"
m=0
Multiply by x™,
[(—n+1)* = n?] diz + Z {[(=n+k)* —n?| dg + dj—2} 2 = —2¢ Z cm(2m + n)z?m 2

k=2 m=0

Upon comparing coefficients of z* for odd k, we get (rhs has no terms in odd powers of )

d =0
d L d dd k
= ——dj_ 0
F k(k —2n) "2
The denominator will never become zero, since k is odd and 2n is even. Thus, dy =d3 =--- = 0.

Now compare the coefficients of * for even k. Note rhs the smallest power of x is 2n. Thus

1
= ——dj_ 2n — 2
dg. k:(k—2n)dk 9 even k < 2n
don—o = —2ccon even k = 2n
1
dk; = —m [—QCCm(Qm + n) - dk_Q} even 2m +2n =k > 2n
First solve first part, that is k < 2n — 2
(_1)k/2
dk = k dO
28 (k2! (—n+ 1) (—n+2)--- (—n + k/2)
When
c
=2 = T T an1 (5 — 1))
Now, do, is undetermined. Choose do, = —% (1 + % + -4 %) Then the final solution be-
comes

n—1 ;
%

_ _ cco 1 1
= doz " + doz" e U O Il
Yo 0z " + dox ;2% ORI Rl < +5+ +n>

m-+n

—— Z Com <Z Z > nt2m y c(log )y
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