
1 Linear Equations with Regular Singular Points

Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0

where a and b are analytic with convergent power series expansions (about x = 0) for

|x| < r0, r0 > 0.

Clearly x = 0 is a regular singular point. The indicial equation is given by

r(r − 1) + a(0)r + b(0) = 0.

Let r1 and r2 be the two solutions of the indial equation such that Rer1 ≥ Rer2.

1. r1 6= r2 and r1 − r2 is not a positive integer:

Two solutions exist with the form

y1 = |x|r1

∞∑
k=0

ckx
k

and

y2 = |x|r2

∞∑
k=0

dkx
k

with both series convergent for |x| < r0. The coe�cients ck and dk can be uniquely

determined by substituting solutions in the di�erential equation.

2. r1 = r2:

Two solutions exist with the form

y1 = |x|r1

∞∑
k=0

ckx
k

and

y2 = |x|r1+1
∞∑

k=0

dkx
k + (log |x|) y1

with both series convergent for |x| < r0. The coe�cients ck and dk can be uniquely

determined by substituting solutions in the di�erential equation.

3. r1 − r2 is a positive integer:

Two solutions exist with the form

y1 = |x|r1

∞∑
k=0

ckx
k

and

y2 = |x|r2

∞∑
k=0

dkx
k + c(log |x|) y1

with both series convergent for |x| < r0. The coe�cients ck, dk and c can be uniquely

determined by substituting solutions in the di�erential equation. It may happen that c is
zero.
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1.1 Example of case 1

Consider the di�erential equation

x2y′′ +
(

5
3

)
xy′ + xy = 0.

Here a(x) = 5/3 and b(x) = x both analytic for all x. The indicial equation

r(r − 1) +
5
3
r + 0 = 0

has solutions r1 = 0 and r2 = −2/3. This is case 1 above.

Then, let

y1 =
∞∑

k=0

ckx
k

and substitute in di�erential equation

∞∑
k=0

k(k − 1)ckxk +
∞∑

k=0

5
3
kckx

k +
∞∑

k=0

ckx
k+1 = 0.

Clearly, coe�cients of xk must be zero: Thus for k ≥ 1

k(k +
2
3
)ck + ck−1 = 0

∴ ck = − 3
k(3k + 2)

ck−1

=
(−1)k3k

k!5 · 8 · · · (3k + 2)
c0

Thus the �rst solution is

y1 = c0

[
1 +

∑
k=1

(−1)k3k

k!5 · 8 · · · (3k + 2)
xk

]

The second solution is given by

y1 = x−2/3
∞∑

k=0

ckx
k.

The recurrence relation is

ck = − 3
k(3k − 2)

ck−1

=
(−1)k3k

k!1 · 4 · · · (3k − 2)
c0

The second solution is

y2 = x−2/3c0

[
1 +

∑
k=1

(−1)k3k

k!1 · 4 · · · (3k − 2)
xk

]
.

Both series are convergent:

lim
k→∞

∣∣∣∣ ckx
k

ck−1xk−1

∣∣∣∣ = lim
k→∞

∣∣∣∣ −3x
k(3k ± 2)

∣∣∣∣ = 0

It is easy to check that the two solutions are linearly independent.
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1.2 Example of Case 2

Consider

x2y′′ + xy′ + x2y = 0

Here a(x) = 1 and b(x) = x2 and both are analytic for all x. Thus indicial equation is

r(r − 1) + r + 0 = 0.

The only solution is r = 0. This is same as case 2 described above.

Then, let

y1 =
∞∑

k=0

ckx
k

and substitute in di�erential equation

∞∑
k=0

k(k − 1)ckxk +
∞∑

k=0

kckx
k +

∞∑
k=0

ckx
k+2 = 0.

Clearly, coe�cients of xk must be zero: Then, coe�cient of x

c1 = 0

Thus for k ≥ 2

k2ck + ck−2 = 0

∴ ck = − 1
k2
ck−2

=
(−1)k/2

2k
(

k
2 !
)2 c0

Thus for odd k, clearly ck = ck−2 = · · · = c3 = c1 = 0.

For even k,

ck =
(−1)k/2

2k
(

k
2 !
)2 c0

Thus the �rst solution is

y1 = c0
∑

k=0,2,...

(−1)k/2

2k
(

k
2 !
)2xk

= c0

∞∑
m=0

(−1)m

22m (m!)2
x2m

The second solution is given by

y2 = x

∞∑
k=0

b̃kx
k + log(x)y1

=
∞∑

k=0

bkx
k + log(x)y1

such that b0 = 0. Putting y2 in the di�erential equation, we get

b1x+ 22b2x
2 +

∞∑
k=3

(k2bk + bk−2) + 2xy′1 = 0
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Thus

b1x+ 22b2x
2 +

∞∑
k=3

(k2bk + bk−2) = −2c0
∞∑

m=0

(−1)m2m
22m (m!)2

x2m

Comparing the coe�cients of xk from both sides,

b1 = b3 = · · · = 0
b2 = c0/4

and for k ≥ 4 or m ≥ 2,

(2m)2b2m + b2m−2 =
(−1)m+1m

22m−2(m!)2
c0

with b0 = 0 and b2 = c0/4. Solving this recurrence relation, we get

b2m =
(−1)m+1

22m−2(m!)2

[
1 +

1
2

+ · · ·+ 1
m

]
c0.

Thus the second solution is given by

y2 = c0

∞∑
m=1

(−1)m+1

22m−2(m!)2

[
1 +

1
2

+ · · ·+ 1
m

]
x2m + log(x)y1.

1.3 Example of case 3: Bessel Equation

The Bessel equation is given by

x2y′′ + xy′ +
(
x2 − α2

)
y = 0.

Clearly the previous section, we considered a special case α = 0. Thus let α > 0. The indicial
equation is

r2 − α2 = 0 =⇒ r = ±α.

If α is an integer or half odd integer, we have case 3. Assume that α = n some integer.

The �rst solution is

y1 = xn
∞∑

k=0

ckx
k

Then, substitution of y1 in the di�erential equation yields,

0 · c0xn +
[
(n+ 1)2 − n2

]
c1x

n+1 +
∞∑

k=2

{[
(n+ k)2 − n2

]
ck + ck−2

}
xn+k = 0

Then, comparing coe�cients, we get c1 = 0 and for k ≥ 2,

[k(2n+ k)] ck + ck−2 = 0

Consequently, ck = 0 for all odd k. And for even k

ck = − 1
k(2n+ k)

ck−2

=
(−1)k/2

2k/2
(

k
2

)
!(2n+ 2)(2n+ 4) · · · (2n+ k)

c0

=
(−1)k/2n!

2k
(

k
2

)
!
(
n+ k

2

)
!
c0
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Or put k = 2m, then

cm =
(−1)mn!

22m (m)! (n+m)!
c0

usually, c0 is chosen to be (2nn!)−1, then the �rst solution can be written as

y1 =
(x

2

)n
∞∑

m=0

(−1)m

(m)! (n+m)!

(x
2

)2m
. (1)

This solution is called the Bessel Function of the �rst kind and denoted by Jn(x).

The second solution is given by

y2 = x−n
∞∑

k=0

dkx
k + c log(x)y1

Substituting in DE, we get

0 · d0x
−n +

[
(−n+ 1)2 − n2

]
d1x
−n+1 +

∞∑
k=2

{[
(−n+ k)2 − n2

]
dk + dk−2

}
x−n+k + 2cxy′1 = 0

Substitute y′1 from equation 1,[
(−n+ 1)2 − n2

]
d1x
−n+1+

∞∑
k=2

{[
(−n+ k)2 − n2

]
dk + dk−2

}
x−n+k = −2c

∞∑
m=0

cm(2m+n)x2m+n

Multiply by xn,[
(−n+ 1)2 − n2

]
d1x+

∞∑
k=2

{[
(−n+ k)2 − n2

]
dk + dk−2

}
xk = −2c

∞∑
m=0

cm(2m+ n)x2m+2n

Upon comparing coe�cients of xk for odd k, we get (rhs has no terms in odd powers of x)

d1 = 0

dk = − 1
k(k − 2n)

dk−2 odd k

The denominator will never become zero, since k is odd and 2n is even. Thus, d1 = d3 = · · · = 0.

Now compare the coe�cients of xk for even k. Note rhs the smallest power of x is 2n. Thus

dk = − 1
k(k − 2n)

dk−2 even k < 2n− 2

d2n−2 = −2cc0n even k = 2n

dk = − 1
k(k − 2n)

[−2ccm(2m+ n)− dk−2] even 2m+ 2n = k > 2n

First solve �rst part, that is k < 2n− 2

dk =
(−1)k/2

2k (k/2)! (−n+ 1) (−n+ 2) · · · (−n+ k/2)
d0

When

d2n−2 = −2nc
1

2nn!
=

c

2n−1(n− 1)!

Now, d2n is undetermined. Choose d2n = − cc0
2

(
1 + 1

2 + · · ·+ 1
n

)
. Then the �nal solution be-

comes

y2 = d0x
−n + d0x

−n
n−1∑
j=0

x2j

22jj!(n− 1) · · · (n− j)
− cc0

2

(
1 +

1
2

+ · · ·+ 1
n

)

− c
2

∞∑
m=1

c2m

(
m∑

l=1

1
l

+
m+n∑
l=1

1
l

)
xn+2m + c(log x)y1.
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