1. Find two linearly independent power series solutions of the equation

$$y'' - xy' + y = 0.$$

For which values of x do the series converge?

2. Find a series solution for

$$(1+x^2)y'' + y = 0$$

about x = 0. [Is $P(x) = (1 + x^2)^{-1}$ analytic everywhere?]

3. The equation

$$(1 - x^2)y'' - xy' + \alpha^2 y = 0$$

where α is a constant, is called the *Chebyshev equation*.

- (a) Compute two linearly independent series solutions for |x| < 1.
- (b) Show that for every non-negative integer $\alpha = n$ there is a polynomial solution of degree n. When appropriately normalized these are called *Chebyshev polynomials*.
- 4. The equation

$$y'' - 2xy' + 2\alpha y = 0$$

where α is a constant, is called *Hermite equation*.

- (a) Find two linearly independant series solutions for $-\infty < x < \infty$.
- (b) Are these solutions convergent for all x? Find the behaviour of these solutions for large x.
- (c) Show that there is a polynomial solution of degree n for every $\alpha = n$ non-negative integer.
- 5. Find the singular points of the following equations and determine those which are regular singular points:
 - (a) $x^2y'' + (x+x^2)y' y = 0$
 - (b) $(1-x^2)y'' 2xy' + l(l+1)y = 0$ (Legendre)
 - (c) $x^2y'' 5y' + 3x^2y = 0$
 - (d) $(x^2 + x 2)y'' + 3(x + 2)y' + (x 1)y = 0$
 - (e) $(1-x^2)y'' xy' + n^2y = 0$ (Chebyshev)
 - (f) $y'' 2xy' + 2\alpha y = 0$ (Hermite)
 - (g) $x^2y'' + xy' + (x^2 n^2)y = 0$ (Bessel)
 - (h) xy'' + (1 x)y' + ay = 0 (Laguerre)
- 6. The equation

$$xy'' + (1-x)y' + ay = 0$$

where α is a constant, is called the *Laguerre equation*. Find two linearly independent series solutions about x = 0. Check convergence.

7. The interaction between two nucleons may be described by a mesonic potential

$$V(x) = \frac{Ae^{-ax}}{x}$$

where A and a are constants. Find the first few nonvanishing terms of the solution of 1D Schrödinger equation.

8. Find the series solutions of Legendre equation

$$(1 - x^2)y'' - 2xy' + l(l+1)y = 0$$

about x=1. Show that there are polynomial solutions for non-negative l.

Solutions

1. There are no singular points, thus let $y = \sum c_k x^k$. Substitute in the Differential equation

$$\sum_{k=0}^{\infty} k(k-1)c_k x^{k-2} - x \sum_{k=0}^{\infty} kc_k x^{k-1} + \sum_{k=0}^{\infty} c_k x^k = 0$$

Adjusting the summation variable k in the first term to k+2, we get

$$\sum_{k=0}^{\infty} \left[(k+1)(k+2)c_{k+2} - (k-1)c_k \right] x^k = 0$$

Comparing the coefficients of x^k ,

$$[(k+1)(k+2)c_{k+2} - (k-1)c_k] = 0$$

that is

$$c_{k+2} = \frac{(k-1)}{(k+1)(k+2)}c_k$$

Explicitly,

$$c_{2} = \frac{-1}{2 \cdot 1} c_{0} = -\frac{1}{2} c_{0}$$

$$c_{3} = \frac{0}{3 \cdot 2} c_{1} = 0$$

$$c_{4} = \frac{(-1)}{4 \cdot 3} c_{2} = \frac{(-1)(1)}{4!} c_{0} = -\frac{1}{24} c_{0}$$

$$c_{6} = \frac{3}{6 \cdot 5} c_{4} = \frac{(-1) \cdot 1 \cdot 3}{6!} c_{0} = -\frac{1}{240} c_{0}$$

Clearly, for odd $k \geq 3$, $c_k = 0$. For even k,

$$c_k = \frac{(-1) \cdot 1 \cdots (k-3)}{k!} c_0$$

Thus

$$y = c_0 + \sum_{k=2,4,\dots} \frac{(-1) \cdot 1 \cdots (k-3)}{k!} x^k + c_1 x$$
$$= c_0 \left[1 - \frac{1}{2} x^2 - \frac{1}{24} x^4 - \frac{1}{240} x^6 \cdots \right] + c_1 x.$$

The two solutions

$$y_1 = \left[1 - \frac{1}{2}x^2 - \frac{1}{24}x^4 - \frac{1}{240}x^6 \cdots\right]$$

$$y_2 = x$$

are linearly independent and are convergent for all x. To see this,

$$\lim_{k \to \infty} \left| \frac{c_{k+2} x^2}{c_k} \right| = 0.$$

2. Substitute $y = \sum c_k x^k$.

$$(1+x^2)\sum_{k} k(k-1)c_k x^{k-2} + \sum_{k} c_k x^k = 0$$

2

Thus

$$\sum_{k} [(k+1)(k+2)c_{k+2} + (k(k-1)+1)c_k] x^k = 0$$

Thus, recurrence relation is

$$c_{k+2} = -\frac{(k(k-1)+1)}{(k+1)(k+2)}c_k.$$

Explicitly, for even k,

$$c_{2} = -\frac{1}{2 \cdot 1}c_{0} = -\frac{1}{2}c_{0}$$

$$c_{4} = -\frac{3}{4 \cdot 3}c_{2} = +\frac{1 \cdot 3}{4!}c_{0} = \frac{1}{8}c_{0}$$

$$c_{6} = -\frac{13}{6 \cdot 5}c_{4} = -\frac{1 \cdot 3 \cdot 13}{6!}c_{0} = -\frac{13}{240}c_{0}$$

And for odd k,

$$c_3 = -\frac{1}{3 \cdot 2}c_1 = -\frac{1}{6}c_1$$

$$c_5 = -\frac{7}{5 \cdot 4}c_3 = +\frac{1 \cdot 7}{5!}c_1$$

Thus

$$y = c_0 \left[1 - \frac{1}{2}x^2 + \frac{1}{8}x^4 - \frac{13}{240}x^6 + \dots \right] + c_1 \left[x - \frac{1}{6}x^3 + \frac{7}{120}x^5 + \dots \right].$$

The two solutions are linearly independent and

$$\lim_{k \to \infty} \left| \frac{C_{k+2}x^2}{c_k} \right| = |x|^2$$

The series solutions converge only when |x| < 1. It is expected because $(1 + x^2)^{-1}$ is analytic only for |x| < 1.

3. The Chebyshev equation is analytic at x = 0. (regular singular at ± 1). Thus substituting $y = \sum c_k x^k$ in the equation, we get recurrence relation

$$c_{k} = \frac{\left((k-2)^{2} - \alpha^{2}\right)}{k(k-1)} c_{k-2}$$

$$= \frac{1}{k!} \left[\prod_{j=0,2}^{k-2} (j^{2} - \alpha^{2}) \right] c_{0} \quad \text{even } k$$

$$= \frac{1}{k!} \left[\prod_{j=1,3}^{k-2} (j^{2} - \alpha^{2}) \right] c_{0} \quad \text{odd } k$$

The two solutions are

$$y_1 = 1 + \sum_{k=0,2,\dots} \frac{1}{k!} \left[\prod_{j=0,2}^{k-2} (j^2 - \alpha^2) \right] x^k$$

$$y_2 = x + \sum_{k=3,5,\dots} \frac{1}{k!} \left[\prod_{j=1,3}^{k-2} (j^2 - \alpha^2) \right] x^k$$

Clearly, series are convergent only for |x| < 1. And it is easy to see that if $\alpha = 2n$ some even integer then y_1 becomes a polynomial of degree 2n since $c_{2n+2} = 0$ and subsequently all further coefficients are zero. If $\alpha = 2n+1$, that is some odd integer, then y_2 would reduce to a polynomial.

4. The Hermite equation is analytic at all x. Again, substituting $y = \sum c_k x^k$, we get the recurrence relation

$$c_k = \frac{2(k-2-\alpha)}{k(k-1)}c_{k-2}.$$

For even k = 2m,

$$c_{2m} = \frac{2^m (2m - 2 - \alpha) \cdots (-\alpha)}{(2m)!} c_0$$

And for odd k = 2m + 1

$$c_{2m+1} = \frac{2^m (2m-1-\alpha)\cdots(1-\alpha)}{(2m+1)!}c_1$$

Thus

$$y_1 = 1 - \alpha x + \frac{\alpha(\alpha - 2)}{6}x^2 - \frac{\alpha(\alpha - 2)(\alpha - 4)}{90}x^6 + \cdots$$

and

$$y_2 = x - \frac{(\alpha - 1)}{3}x^3 + \frac{(\alpha - 1)(\alpha - 3)}{30}x^5 + \cdots$$

Clearly,

$$\lim_{k \to \infty} \left| \frac{c_k x^2}{c_{k-2}} \right| = \lim_{k \to \infty} \left| \frac{2(k-2-\alpha)x^2}{k(k-1)} \right| = 0$$

Thus, both series converge for all x.

To obtain asymptotic behaviour, terms with large k matter, thus

$$c_{2m} = \frac{2}{2m}c_{2m-2} = \frac{1}{m!}c_0$$

Compare with

$$e^{x^2} = 1 + x^2 + \frac{1}{2}x^4 + \dots + \frac{1}{(m)!}x^{2m} + \dots$$

The series behaves like e^{x^2} .

It is easy to see that if $\alpha = n$ some integers either y_1 or y_2 becomes a polynomial.

- 5. skipped.
- 6. Given

$$xy'' + (1 - x)y' + ay = 0$$

Note that x = 0 is a regular singular point. The indicial equation

$$r(r-1) + r + 0 = 0$$

has only one solution given by r = 0. The first solution is of the form $y = \sum_k c_k x^k$. Substitution gives us,

$$c_{k+1} = \frac{(k-a)}{(k+1)^2} c_k$$

$$= \frac{(k-a)\cdots(1-a)(-a)}{[(k+1)!]^2} c_0$$

$$= \frac{\Gamma(k+1-a)}{\Gamma(-a)[(k+1)!]^2} c_0$$

Thus

$$y_1 = \frac{c_0}{\Gamma(-a)} \left[1 - ax - \frac{a(1-a)}{4} x^2 - \dots \right]$$

It is clear that the series converges for all x. The second solution has the form given by

$$y = \sum_{k=0}^{\infty} d_k x^k + (\log x) y_1$$

with $d_0 = 0$. Substituting in the differential equation,

$$\sum_{k=0}^{\infty} \left[(k+1)^2 d_{k+1} + (a-k) d_k \right] x^k = -2xy_1'$$

$$= -2 \sum_{k=0}^{\infty} k c_k x^k$$

Thus,

$$d_{1} = 0$$

$$4d_{2} = -2c_{1} \implies d_{2} = \frac{a}{2}$$

$$9d_{3} + (a-2)d_{2} = -4c_{2} \implies d_{3} = -\frac{a(4-3a)}{18}$$

Thus the second solution is

$$y_2 = \left[\frac{a}{2}x^2 - \frac{a(4-3a)}{18}x^3 + \cdots\right] + (\log x)y_1$$

7. Potential is given to be

$$V(x) = \frac{Ae^{-ax}}{x}$$

The Schrodinger equation is given by

$$-\frac{\hbar^2}{2m}y'' + (V(x) - E)y = 0$$

$$y'' + \left(\lambda^2 + \frac{B}{x}e^{-ax}\right)y = 0$$
(1)

where $\lambda^2 = 2mE/\hbar^2$ and $B = -2mA/\hbar^2$. Here, x = 0 is a regular singular point. The solution has a form

$$y = x^r \sum_{k=0}^{\infty} c_k x^k.$$

Substitute in equation 1:

$$\sum_{k=0}^{\infty} (r+k)(r+k-1)c_k x^{r+k-2} + \sum_{k=0}^{\infty} \left[\lambda^2 + B \sum_{i=0}^{\infty} \frac{x^{i-1}}{i!} \right] c_k x^{r+k} = 0$$

Consider the double sum, put i + k = m and replace k sum by m sum

$$\sum_{k=0}^{\infty} \sum_{i=0}^{\infty} \frac{c_k}{i!} x^{r+k+i-1} = \sum_{m=0}^{\infty} \left(\sum_{i=0}^{m} \frac{c_{m-i}}{i!} \right) x^{m+r-1}$$

And the for the first sum put k-2=m, thenx

$$r(r-1)c_0x^{r-2} + ((r+1)rc_1 + Bc_0)x^{r-1} \sum_{m=1}^{\infty} \left[(r+m+1)(r+m)c_{m+1} + \lambda^2 c_{m-1} + B\left(\sum_{i=0}^{m} \frac{c_{m-i}}{i!}\right) \right]x^{m+r-1} = 0$$

Indicial equation is

$$r(r-1) = 0.$$

putting r = 1, we get the first solution

$$2c_1 + Bc_0 = 0 \implies c_1 = -\frac{B}{2}c_0$$
$$3 \cdot 2 \cdot c_2 + \lambda^2 c_0 + B(c_0 + c_1) = 0 \implies c_0 = -\frac{1}{6}\left(\lambda^2 + B\left(1 - \frac{B}{2}\right)\right)c_0$$

Thus the solution is

$$y = c_0 x \left[1 - \frac{B}{2} x - \frac{1}{6} \left(\lambda^2 + B \left(1 - \frac{B}{2} \right) \right) x^2 + \dots \right]$$

8. Legendre Equation

$$(1-x)(1+x)y'' - 2xy' + l(l+1)y = 0$$

Make a substitution z = 1 - x. Then dy/dx = -dy/dz. Legendre equation becomes

$$z(2-z)y'' + 2(1-z)y' + l(l+1)y = 0$$

where the derivatives are wrt z. Clearly z=0 and 2 are regular singular points. Using Frobenius method with power series about z=0. Let

$$y = z^r \sum c_k z^k.$$

Indicial equation is

$$r(r-1) + r = 0 \implies r = 0.$$

The regular solution is given by $y = \sum c_k z^k$. Substituting in the de, we get

$$c_1 = -\frac{l(l+1)}{2}c_0$$

$$c_{k+1} = \frac{k(k+1) - l(l+1)}{2(k+1)^2}c_k \qquad k > 0.$$

Thus for l = 0, $c_k = 0$ for all k > 0

$$y = c_0$$

For $l=1,\,c_1=-c_0$ and $c_k=0$ for all k>1

$$y = c_0(1-z) = c_0[1-(1-x)] = c_0x$$

For l = 2, $c_1 = -3c_0$, $c_2 = 3c_0/2$, so

$$y = c_0 \left(1 - 3z + \frac{3}{2}z^2 \right)$$

Finally, for l=3, we get

$$y = c_0 \left(1 - 6z + \frac{15}{2}z^2 - \frac{5}{3}z^3 \right)$$