
CYK\2010\PH402\Mathematical Physics\Tutorial 2

1. Find two linearly independent power series solutions of the equation

y′′ − xy′ + y = 0.

For which values of x do the series converge?

2. Find a series solution for
(1 + x2)y′′ + y = 0

about x = 0. [Is P (x) = (1 + x2)−1 analytic everywhere?]

3. The equation
(1− x2)y′′ − xy′ + α2y = 0

where α is a constant, is called the Chebyshev equation.

(a) Compute two linearly independent series solutions for |x| < 1.
(b) Show that for every non-negative integer α = n there is a polynomial solution of degree n.

When appropriately normalized these are called Chebyshev polynomials.

4. The equation
y′′ − 2xy′ + 2αy = 0

where α is a constant, is called Hermite equation.

(a) Find two linearly independant series solutions for −∞ < x <∞.
(b) Are these solutions convergent for all x? Find the behaviour of these solutions for large x.

(c) Show that there is a polynomial solution of degree n for every α = n non-negative integer.

5. Find the singular points of the following equations and determine those which are regular singular
points:

(a) x2y′′ + (x+ x2)y′ − y = 0
(b)

(
1− x2

)
y′′ − 2xy′ + l(l + 1)y = 0 (Legendre)

(c) x2y′′ − 5y′ + 3x2y = 0
(d)

(
x2 + x− 2

)
y′′ + 3(x+ 2)y′ + (x− 1)y = 0

(e)
(
1− x2

)
y′′ − xy′ + n2y = 0 (Chebyshev)

(f) y′′ − 2xy′ + 2αy = 0 (Hermite)

(g) x2y′′ + xy′ + (x2 − n2)y = 0 (Bessel)

(h) xy′′ + (1− x)y′ + ay = 0 (Laguerre)

6. The equation
xy′′ + (1− x)y′ + ay = 0

where α is a constant, is called the Laguerre equation. Find two linearly independent series
solutions about x = 0. Check convergence.

7. The interaction between two nucleons may be described by a mesonic potential

V (x) =
Ae−ax

x

whereA and a are constants.Find the �rst few nonvanishing terms of the solution of 1D Schrodinger
equation.

8. Find the series solutions of Legendre equation(
1− x2

)
y′′ − 2xy′ + l(l + 1)y = 0

about x = 1. Show that there are polynomial solutions for non-negative l.
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Solutions

1. There are no singular points, thus let y =
∑
ckx

k. Substitute in the Di�erential equation

∞∑
k=0

k(k − 1)ckxk−2 − x
∞∑

k=0

kckx
k−1 +

∞∑
k=0

ckx
k = 0

Adjusting the summation variable k in the �rst term to k + 2, we get

∞∑
k=0

[(k + 1) (k + 2) ck+2 − (k − 1) ck]xk = 0

Comparing the coe�cients of xk,

[(k + 1) (k + 2) ck+2 − (k − 1) ck] = 0

that is

ck+2 =
(k − 1)

(k + 1) (k + 2)
ck

Explicitly,

c2 =
−1
2 · 1

c0 = −1
2
c0

c3 =
0

3 · 2
c1 = 0

c4 =
(−1)
4 · 3

c2 =
(−1) (1)

4!
c0 = − 1

24
c0

c6 =
3

6 · 5
c4 =

(−1) · 1 · 3
6!

c0 = − 1
240

c0

Clearly, for odd k ≥ 3, ck = 0. For even k,

ck =
(−1) · 1 · · · (k − 3)

k!
c0

Thus

y = c0 +
∑

k=2,4,...

(−1) · 1 · · · (k − 3)
k!

xk + c1x

= c0

[
1− 1

2
x2 − 1

24
x4 − 1

240
x6 · · ·

]
+ c1x.

The two solutions

y1 =
[
1− 1

2
x2 − 1

24
x4 − 1

240
x6 · · ·

]
y2 = x

are linearly independent and are convergent for all x. To see this,

lim
k→∞

∣∣∣∣ck+2x
2

ck

∣∣∣∣ = 0.

2. Substitute y =
∑
ckx

k. (
1 + x2

)∑
k

k(k − 1)ckxk−2 +
∑

k

ckx
k = 0
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Thus ∑
k

[(k + 1) (k + 2) ck+2 + (k (k − 1) + 1) ck]xk = 0

Thus, recurrence relation is

ck+2 = −(k (k − 1) + 1)
(k + 1) (k + 2)

ck.

Explicitly, for even k,

c2 = − 1
2 · 1

c0 = −1
2
c0

c4 = − 3
4 · 3

c2 = +
1 · 3
4!

c0 =
1
8
c0

c6 = − 13
6 · 5

c4 = −1 · 3 · 13
6!

c0 = − 13
240

c0

And for odd k,

c3 = − 1
3 · 2

c1 = −1
6
c1

c5 = − 7
5 · 4

c3 = +
1 · 7
5!

c1

Thus

y = c0

[
1− 1

2
x2 +

1
8
x4 − 13

240
x6 + · · ·

]
+ c1

[
x− 1

6
x3 +

7
120

x5 + · · ·
]
.

The two solutions are linearly independent and

lim
k→∞

∣∣∣∣Ck+2x
2

ck

∣∣∣∣ = |x|2

The series solutions converge only when |x| < 1. It is expected because (1 + x2)−1 is analytic
only for |x| < 1.

3. The Chebyshev equation is analytic at x = 0. (regular singular at ±1). Thus substituting
y =

∑
ckx

k in the equation, we get recurrence relation

ck =

(
(k − 2)2 − α2

)
k (k − 1)

ck−2

=
1
k!

 k−2∏
j=0,2

(
j2 − α2

) c0 even k

=
1
k!

 k−2∏
j=1,3

(
j2 − α2

) c0 odd k

The two solutions are

y1 = 1 +
∑

k=0,2,...

1
k!

 k−2∏
j=0,2

(
j2 − α2

)xk

y2 = x+
∑

k=3,5,...

1
k!

 k−2∏
j=1,3

(
j2 − α2

)xk

Clearly, series are convergent only for |x| < 1. And it is easy to see that if α = 2n some even
integer then y1 becomes a polynomial of degree 2n since c2n+2 = 0 and subsequently all further
coe�cients are zero. If α = 2n+1, that is some odd integer, then y2 would reduce to a polynomial.
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4. The Hermite equation is analytic at all x. Again, substituting y =
∑
ckx

k, we get the recurrence
relation

ck =
2 (k − 2− α)
k(k − 1)

ck−2.

For even k = 2m,

c2m =
2m(2m− 2− α) · · · (−α)

(2m)!
c0

And for odd k = 2m+ 1

c2m+1 =
2m(2m− 1− α) · · · (1− α)

(2m+ 1)!
c1

Thus

y1 = 1− αx+
α(α− 2)

6
x2 − α(α− 2)(α− 4)

90
x6 + · · ·

and

y2 = x− (α− 1)
3

x3 +
(α− 1)(α− 3)

30
x5 + · · ·

Clearly,

lim
k→∞

∣∣∣∣ckx2

ck−2

∣∣∣∣ = lim
k→∞

∣∣∣∣2(k − 2− α)x2

k(k − 1)

∣∣∣∣ = 0

Thus, both series converge for all x.
To obtain asymptotic behaviour, terms with large k matter, thus

c2m =
2

2m
c2m−2 =

1
m!
c0

Compare with

ex
2

= 1 + x2 +
1
2
x4 + · · ·+ 1

(m)!
x2m + · · ·

The series behaves like ex
2
.

It is easy to see that if α = n some integers either y1 or y2 becomes a polynomial.

5. skipped.

6. Given
xy′′ + (1− x)y′ + ay = 0

Note that x = 0 is a regular singular point. The indicial equation

r(r − 1) + r + 0 = 0

has only one solution given by r = 0. The �rst solution is of the form y =
∑

k ckx
k. Substitution

gives us,

ck+1 =
(k − a)
(k + 1)2

ck

=
(k − a) · · · (1− a)(−a)

[(k + 1)!]2
c0

=
Γ(k + 1− a)

Γ(−a) [(k + 1)!]2
c0

Thus

y1 =
c0

Γ(−a)

[
1− ax− a(1− a)

4
x2 − · · ·

]
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It is clear that the series converges for all x.
The second solution has the form given by

y =
∞∑

k=0

dkx
k + (log x) y1

with d0 = 0. Substituting in the di�erential equation,

∞∑
k=0

[
(k + 1)2dk+1 + (a− k)dk

]
xk = −2xy′1

= −2
∑

kckx
k

Thus,

d1 = 0

4d2 = −2c1 =⇒ d2 =
a

2

9d3 + (a− 2)d2 = −4c2 =⇒ d3 = −a(4− 3a)
18

Thus the second solution is

y2 =
[
a

2
x2 − a(4− 3a)

18
x3 + · · ·

]
+ (log x)y1

7. Potential is given to be

V (x) =
Ae−ax

x

The Schrodinger equation is given by

− ~2

2m
y′′ + (V (x)− E)y = 0

y′′ +
(
λ2 +

B

x
e−ax

)
y = 0 (1)

where λ2 = 2mE/~2 and B = −2mA/~2. Here, x = 0 is a regular singular point. The solution
has a form

y = xr
∞∑

k=0

ckx
k.

Substitute in equation 1:

∞∑
k=0

(r + k)(r + k − 1)ckxr+k−2 +
∞∑

k=0

[
λ2 +B

∞∑
i=0

xi−1

i!

]
ckx

r+k = 0

Consider the double sum, put i+ k = m and replace k sum by m sum

∞∑
k=0

∞∑
i=0

ck
i!
xr+k+i−1 =

∞∑
m=0

(
m∑

i=0

cm−i

i!

)
xm+r−1

And the for the �rst sum put k − 2 = m, thenx

r(r−1)c0xr−2+((r + 1)rc1 +Bc0)xr−1
∞∑

m=1

[
(r +m+ 1)(r +m)cm+1 + λ2cm−1 +B

(
m∑

i=0

cm−i

i!

)]
xm+r−1 = 0

Indicial equation is
r(r − 1) = 0.
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putting r = 1, we get the �rst solution

2c1 +Bc0 = 0 =⇒ c1 = −B
2
c0

3 · 2 · c2 + λ2c0 +B (c0 + c1) = 0 =⇒ c0 = −1
6

(
λ2 +B

(
1− B

2

))
c0

Thus the solution is

y = c0x

[
1− B

2
x− 1

6

(
λ2 +B

(
1− B

2

))
x2 + · · ·

]
8. Legendre Equation

(1− x) (1 + x) y′′ − 2xy′ + l(l + 1)y = 0

Make a substitution z = 1− x. Then dy/dx = −dy/dz. Legendre equation becomes

z (2− z) y′′ + 2 (1− z) y′ + l (l + 1) y = 0

where the derivatives are wrt z. Clearly z = 0 and 2 are regular singular points. Using Frobenius
method with power series about z = 0. Let

y = zr
∑

ckz
k.

Indicial equation is
r(r − 1) + r = 0 =⇒ r = 0.

The regular solution is given by y =
∑
ckz

k. Substituting in the de, we get

c1 = − l(l + 1)
2

c0

ck+1 =
k(k + 1)− l(l + 1)

2(k + 1)2
ck k > 0.

Thus for l = 0, ck = 0 for all k > 0
y = c0

For l = 1, c1 = −c0 and ck = 0 for all k > 1

y = c0(1− z) = c0 [1− (1− x)] = c0x

For l = 2, c1 = −3c0, c2 = 3c0/2, so

y = c0

(
1− 3z +

3
2
z2

)
Finally, for l = 3, we get

y = c0

(
1− 6z +

15
2
z2 − 5

3
z3

)

6


