CYK\2009\PH102\ Tutorial 10 Physics IT

1. /G 6.3] Find the force of attraction between two magnetic dipoles, m; and my, oriented as shown in the Fig., a
distance v apart, (a) using F' = 2rIRBcosf, and (b) using F =V (m - B).

According to Eq. 6.2, F = 27xIRBcosf. But B =
ﬁ[ﬂm—"fém, and Bcosfd = B -y, so Bcosf =
£2 % (3(my - #)(F - §) — (my-§)). But my -y = 0 and
f-¥ = sing, while m; - ¥ = mycosf. . Bcosf =
= ;lg3m1 sin ¢ cos ¢.

m

F = 2“1R5‘%£§3m1 sin ¢C03¢- Now Sian) t— % 3 C05¢ —- ‘\f’.‘"2 - Rz/‘r., so F' = 3‘l§_°mIIR2 ){FET:—RE.
3
But IR?r = mg, so F = %}iﬁmlmz-\@, while for a dipole, R < r,so | F = %rgm;:m_

(b) F = V(m; - B) = (mz - V)B = (mz 1) [£2 %(3(m; - 2)2 — my)] = §2mumaz £ (35),
\-—.v—/

2
my _32_1{

3uo mims

or,since z =r: |F =
: 2r rt

2. [G 6.8] A long circular cylinder of radius R carries a magnetization M = k:s2<f>, where k is a constant, s is the
distance from the azxis, and ¢ is the usual azimuthal unit vector (Fig.). Find the magnetic field due to M, for points
inside and outside the cylinder.

VxM=J, = %%(s ks?)z = %(Sksz)ﬁ =3ksz, Ks=M X i = ks?(¢ x §) = —kR?3.
So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should
be zero ... is it? Yes, for [Jyda = fGR(3ks)(2:rsds) = 2rkR3, while [K,dl = (-kR?)(2nR) = —2mkR3 )]
Since these currents have cylindrical symmetry, we can get the field by Ampére’s law:

§
B 278 = polane = ﬂ:o/ Jyda = 2mkpgs® = | B = poks’ | = poM.
0

Qutside the cylinder I.,. = 0, s0

3. [G 6.12] An infinitely long cylinder, of radius R, carries a “frozen-in” magnetization, parallel to the axis,
M = ksz,
where k is a constant and s is the distance from the axis; there is no free current anywhere. Find the magnetic field
inside and outside the cylinder by two different methods:

(a) Locate all bound currents, and calculate the field they produce.
se Ampere’s law -dl = , to fin , and then get rom H= —B — M.
b) Use A s 1 H-d=1Ij,, find H, and th B f H #IOB M



(a) M = ksz; Jp = VXM = —k¢; Ky = M X i = kR.

B is in the z direction (this is essentially a superposition of solenoids). So
| B = 0 outside.

Use the amperian loop shown (shaded)—inner side at radius s:
fB «idl =Bl = P'-OIenc = Uy [fJb da + be] = o [—,U(R - 3) + kaI = p.okls.
l B = upksz inside. [

(b) By symmetry, H points in the z direction. That same amperian loop gives §H - dl = Hl = poly,,. =0,

since there is no free current here. So , and hence Outside M = 0, so B = 0; inside

M = ksz, so B = poksz.

4. [G 7.11] A square loop is cut out of a thick sheet of aluminum. It is then placed so that the top portion is in a uniform
magnetic field B, and allowed to fall under gravity (Fig.). (In the diagram, shading indicates the field region; B
points into the page.) If the magnetic field is 1 T, find the terminal velocity of the loop (in m/s). Find the velocity

of the loop as a function of time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit?

E=Blu=IR=1= %v = upward magnetic force = IlB = %v. This opposes the gravitational force
downward:

ap dv d B3 mgR
mg—BTv=m£~;d—?:g—av,whereazm—. g-av;=0=>v¢=£-= i

R a B22°

=di= —lln(g — av) =t + const. = g — av = Ae™,;
a

;att=0,v=0 80 A=g.
g—av

av=g(l-e"*); v= %(1 —e ) =|u(1l —e ).

At 90% of terminal velocity, v/vy =09=1—e"% = e 2 =1-0.9=0.1; In(0.1) = —at; In10 = at;

t=L11n10, or | teo = i;ilnlo.

Now the numbers: m = 4nAl, where 7 is the mass density of aluminum, A is the cross-sectional area, and

l is the length of a side. R = 4l/Ao, where o is the conductivity of aluminum. So

p=28x10"Qm
4nAlgdl _ 16ng _ 16gmp gl 9= 9.8 m/s?
t= AeB?Z ~ oB? . B? ' ") n=27x10%kg/m?
B=1T

So v, = (16)[9,51(2,?xiu’)(z.suo“‘} 5 too% = 1.2;}80-2 In(10) = m

|If the loop were cut, it would fall freely, with acceleration g.l

5. [G 7.12] A long solenoid of radius a, is driven by an alternating current, so that the field inside is sinusoidal

B (t) = Bocos(wt)z. A circular loop of wire, of radius a/2 and resistance R, is placed inside the solenoid, and
coazial with it. Find the current induced in the loop, as a function of time.



& = (ff) B= ""‘l Bg cos(wt); € = —% & %ngsin(wt)_ I(t) = % = ”T; By sin(wt).
“ ( i

6. [G 7.18] A square loop, side a, resistance R, lies a distance s from an infinite straight wire that carries current I
(Fig.). Now someone cuts the wire, so that I drops to zero. In what direction does the induced current in the square

loop flow, and what total charge passes a given point in the loop during the time this current flows? If you don't like
the scissors model, turn the current down gradually:

[ = J@-abl for0<i<i/a,
a 0, fort>1/a.

pol - pola [**ds polaln?2 d@ dd poaln2dl
¢= B' B:-—- '@: _— = — = Ilpa = — = —_———= — —
/ s 27s ¢ 2n /a s M £ = ol dt & dt 2r  dt

_ _oaln2 _ Ipgaln2

= 27R Al 2rR

The field of the wire, at the square loop, is out of the page, and decreasing, so the field of the induced
current must point out of page, within the loop, and hence the induced current flows | counterclockwise.J

7. [G 7.24] An alternating current Iy cos (wt) (amplitude 0.5 A, frequency 60 Hz) flows down a straight wire, which
runs along the azis of a toroidal coil with rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1
em, 1000 turns). The coil is connected to a 500 §) resistor.

(a) In the quasistatic approzimation, what emf is induced in the toroid? Find the current, I. (t), in the resistor.

(b) Calculate the back emf in the coil, due to the curent I. (t). What is the ratio of the amplitudes of this back emf
and the “direct” emf in (a)?

b
- " 3 . : po = ol 1 wolh
3 B=—¢. ¢ = — —hds = In(b/a).
(a) In the quasistatic approximation e ¢. So &, o /; - S o n(b/a)
Nh
027? In(b/a)ly cos(wt). So

This is the flux through one turn; the total flux is N times ®,: & = ¢

-7 3 -2
E= —(i—(f = “(;ﬂ{ln(b/a)fowsiu(wt) = e %510 2)7(:0 )10 )ln(2)(0.5)(27r60) sin(wt)
m
: . £ 261 x1074 .
= [2.61 x 10~*sin(wt) | (in volts), where w = 27 60 = 377/s. I, = 7= —g5— sin(wt)
= [5.22 x 10~ sin(wt) | (amperes).
(b) & = -L%; where (Eq. 7.27) L = £eN°h | (p/q) = (xx107)A0Y(1077) 1, 9) — 139 x 10~ (henries).

Therefore £ = —(1.39 x 1073)(5.22 x 10~ w) cos(wt) = | —2.74 x 1077 cos(wt) | (volts).

274 x 107 ,uONQhw
Ratio of amplitudes: >o-———— > In(b/a)




8. [G 7.26] Find the energy stored in a section of length I of a long solenoid (radius R, current I, n turns per unit
length), (a) using W = SLI*; (b) using W = 3§ (A -TI)dl; (c) using W = ﬁfa”smce B2dr (d) using W =

ﬁ [fy B2dr — .(ﬁs (A x B) ~da] (take as your volume the cylindrical tube from radius a < R out to radius b > R).

(a) W = JLI?. L = pon?*mR*l (Prob. 7.22) [W = %pun?rrRQt'I? .

(b) W=3¢§(A -T)dl. A= (nonI/2)R ¢, at the surface (Eq. 5.70 or 5.71). So W; = %E%fl‘i]i’.’ - 2w R, for one
turn. There are nl such turns in length [, so W = Lpon?nRUI?. v

(¢) W = -ﬁ; [B%*dr. B = ponl, inside, and zero outside; [dr = wR?l, so W = ﬁ;;gngf"ﬁﬁgi =
Suon*mRUI?. v

(dw= ﬁ [[B%dr — §(A X B) - da]. This time [B?dr = pZn?I*x(R? — a?)l. Meanwhile,

A x B = 0 outside (at s = b). Inside, A = ’192"—’0(5 (at 8 = a), while B = puonl z.

AXxB=1u2n’a(¢ x 2) 5
\—f_i points inward (“out” of the volume) L -
s / q z
$(A x B) -da = [(3u¢n®I%a8) - [ad¢ dz(—8)] = — 3 udn®I%a®2nl. l\jh z
W=q- [#3n? 7 (R? — o)l + p3n®I*ma®l] = Jpuon®I?R37l. v @

9. [G 7.32] Imagine thin wires connecting to the centers of plates as shown in Fig. (a), carrying constant current I .
The radius of the capacitor is a and the separation of the plates is w < a. Assume that the current flows out over
the plates in such a way that the surface charge is uniform, at any given time, and is zero at t = 0.

(a) Find the electric field between the plates, as a function of t.

(b) Find the displacement current through a circle of radius s in the plane midway between the plates. Using this
circle as your “Amperian loop”, and the flat surface that spans it, find the magnetic field at a distance s from
the azis.

(¢) Repeat part (b), but this time use the cylindrical surface in Fig. (b), which extends to the left through the plate
and terminates outside the capacitor. Notice that the displacement current through this surface is zero, and
there are two contributions to I.,..

o(t) . Q(1) It it

(2) €0 & o) ma?  wa?' | mea? i
dE , g 5 pol -
(b) I4... = Jams® =€ ms = IF. ?gB-dlz,uoIdm #B?ﬁszu{)!a—f =B = 2:”125(1;.

(¢) A surface current flows radially outward over the left plate; let I(s) be the total current crossing a circle
of radius s. The charge density (at time t) is

_ [T = 1(s)]t
s

o(t)

Since we are told this is independent of s, it must be that I — I(s) = s, for some constant 3. But I(a) =0,
so fa? = I, or B = I/a®. Therefore I(s) = I(1 — s*/a?).

2

b= = L Tyl = SHOL 2
B2nws = p(]renc — F"’O[I I(S)} - uoa‘g =|B 2,”0.2 & ¢
10. [G 7.34] Suppose
_ 1 ¢ A, _
E(r,t) =  4meg rzﬂ(vt ~MEB(rD) =0



Show that these fields satisfy all of Mazwell’s equations, and determine p and J. Describe the physical situation that
gives rise to these fields.

Physically, this is the field of a point charge —q at the origin, out to an expanding spherical shell of radius
vt; outside this shell the field is zero. Evidently the shell carries the opposite charge, +q. Mathematically,
using product rule #5 and Eq. 1.99:

E=fut-V (-T2} - 2. —r) = -2 e
V-E=0(vt-r)V ( 4ﬂ€or2r) pre i Vvt —r)] = 6clt?(r)é?(m! T)

1
4meg

G a0
;a-(r-r)§6(vt—r).

But 83(r)8(vt — r) = 6%(r)8(t), and %B(vt —r) = —4(vt —r) (Prob. 1.45), so

p=eV-E= |—¢6*r)d(t) + 4;_2 8(vt — ).

(For t < 0 the field and the charge density are zero everywhere.)
Clearly V -B = 0, and V x E = 0 (since E has only an r component, and it is independent of @ and ¢).
There remains only the Ampére/Maxwell law, V x B = 0 = poJ + pigeg@E/0t. Evidently
J=—¢ S -
T %t T T dneor? Ot

[B(vt — r)}} F= 4;’?2 vd(vt — 1) #.

(The stationary charge at the origin does not contribute to J, of course; for the expanding shell we have J = pv,
as expected—Eq. 5.26.)




