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Physics 11

1. A linear inhomogeneous dielectric is sandwiched between the plates of a parallel plate capacitor (sep-
aration between the plates = d) charged to the charge density o. The permittivity of the dielectric at
a distance y from one of the plates, is given by
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where K is a positive constant. (Neglect edge effects.)

(a) Find the expressions for E, D, and P. Plot these quantities as a function of y.

(b) Find the bound charge densities o, and pp. Plot pp.

(c¢) Find the potential difference between the plates.

Solution

(a) First note that the E, D and P are functions of y only and are in y direction. Let the charge
density on the plates be o. Using Gauss law,

D(y) = o
E(y) = D(y)/e(y) =

(b) The bound surface charge density
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The bound volume charge density

(¢) The potential difference

p(y) = ——P
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The limiting value, as K — 0, is —od/ep, as expected.




2. A current is flowing in a thick wire of radius a. The current is distributed in the wire such that the
current density at a distance r from the axis is given by
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Take a cross section of the wire that is perpendicular to the axis. Then, net current is

[ = /SJ-dS
_ /OG/OQWJO <1+:;>dr(rd¢)
3

= 577:]0@2

Find the total current through the wire.

Solution:

3. Consider a wire, bent in a shape of a parabola, kept in XY plane with focus at origin. The disntace
from apex to focus is d. The wire carries current /. Find the magnetic field at origin.

Solution:

Equation of the parabola: 7 (1 + cosf) =2d with 6 : -7 — 7
Let r = r1 be the vector pointing to the parabola. The differntial tangent vector is given by
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Then, Idl x (0 —rt) = Ir?dfz. Then the magnetic field at origin
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4. [G5.44] Use the Biot-Savart law to find the field inside and outside an infinitely long solenoid of radius
R, with n turns per unit length, carrying a steady current I. [Write down the surface current density
and Eq 5.39. Do z-integration first.]



Problem 5.44

Put the field point on the z axis, so r = (3,0,0). Then e
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Here K = nl, so | B = ponl i(inside), and 0(outside) 5 (as we found more easily using Ampére’s law, in Ex. 5.9).

Inside the solenoid, s < R, s0 B, =

5. Consider a circular ring, of radius R and carrying current [ is placed in the XY plane with its center
at origin. Set up the integral to find the magnetic field at a point on the X axis, at a distance d (> R)
from the origin. Now, expand the integrand in the powers of R/d and find the first non-zero term of
the field. Express in terms of m = I(7R?).

Solution:



o1 =dx
e r = RS = R(cos ¢x + sin ¢y)
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o |v'— x| = (& + R? — 2Rd cos ) "/?

o Idl x (r’ —r) = IR (R — dcos ¢) dpz

Then the magnetic field at r’ is
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This is consistent with the dipole field in the direction perpendicular to the direction of the dipole.

6. [G5.6]

(a) A phonograph record carries a uniform density of “static electricity” o. If it rotates at angular
velocity w, what is the surface current density K at a distance r from the center?

(b) A uniformly charged solid sphere, of radius R and total charge @, is centered about origin and
spinning at a constant angular velocity w about the z axis. Find the current density J at any

point (7,0, ¢) within the sphere.

Solution:

(a) v = wr, so (b) v=uwr sinfg = |J = pwrsinf ¢, | where p = Q/(4/3)7R3.




7. |G5.47] Find the magnetic field at a point z > R on the axis of (a) the rotating disk and (b) the

rotating sphere, of problem G5.6
(a) The total charge on the shaded ring is dg = o(2nr) dr. The

time for one revolution is dt = 2« /w. So the current in the ring
d
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