CYK\2009\PH102\ Tutorial 6 Physics IT

1. /G 4.4] A point charge q is situated at a large distance r from a neutral atom of polarizability . Find the force of
attraction between them.

Field of ¢: =% . Induced dipole moment of atom: p = aE =

r 4weg r*
f} 2 Jlrrc:grz r.
i o s . : I | 2ceq A
Field of this dipole, at location of ¢ (8 =, in Eq. 3.103): E = - = | (to the right).
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Force on ¢ due to this field: | F = 2« ( ) = (attractive).
7
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2. Consider a localized (of small dimension) charge distribution p with zero net charge and dipole moment p, placed in
an ezternal field Egpp. Let 0 be some suitable origin.

(a) Show that the force on the charge distribution is given by
F=(p V)Eg((0)+--
(b) Show that the torque on the charge distribution is given by
N=pxEg(0)+--
(¢) Show that the energy of the charge distribution is given by
U=-p-Eey

Let O be the origin. Assume that the charge distribution is small enough such that the variation of E over the
dimension of the charge distribution is slow.

(a) The z component of the net force on the charge distribution (due to Eqyt) is
Fo= [ 0@ Boxt ()0
v
Using Taylor expansion
F, = /V P (I’) [EeXt,a: (0) +r- VEext,a: (0) + - ] dv

= [Eext,x (0) /V p(r)dv+ VEeyy , (0) - /V rp (r)dv+ - ]
0+p VEext . (0)

(b) The net torque is
T:/ p(r) r x Bext (r) dv
\%

Keeping only first term is the Taylor expansion of E, we get

T = [ o) rx B 0o+

([ ptr) o) x B 0+

= P X Eext (0) + -



(c) Simillarly, the potential energy

<

U = / p(X)V (x)dv
= p(r) (V(0)+r-VV(0)+---)dv

<

= 0_p.E_|_...

3. [G 4.5, G 4.29] In Fig., prand p2 are (perfect) dipoles a distance r apart. What is the torque on p, due to ps?
What is the torque on padue to py?
For the same configuration, calculate the force on pa due to p1, and the force on p1 due to pa. Are the answers
consistent with Newton’s third law?
Also, find the total torque on p2 with respect to the center of p1, and compare it with the torque on p1 about that
same point.

Field of p; at p2 (f = 7/2 in Eq. 3.103): E; = < (points down).

4mregr?
T . i = . o __ _ Dip2 : X
orque on p2: N = p2 X E; = poE;sin90° = po By = v (points inte the page).
€0
Field of p; at p; (6 = 7 in Eq. 3.103): E; = y ik 5 (—2F) (points to the right).
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Torque on p;: Ny =p1 X E; = p1pz: (points into the page).
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(a) Eq. 4.5 = F2 = (p2- V) Ey =ry, (Ey1); pll/ | P2

Eq. 3103 3 B, =-—PL _d=__P' 5 Therefore ¥ v
dmegrd dmegy® A E,
pipe [d (1N 3;ips 3pips
Fy= - — | = = Fy = :
2 dmeq | dy (y“)} “ dregyt ln dmegrd )
To calculate Fy, put p; at the origin, pointing in the z direction; then p,
: is at —ri, and it points in the —§ direction. So F; = (p;-V)E; =
P2 Y OE- .
—p—— ; we need E; as a function of z, y, and 2.
T - 6y z=y=0,z=—r
P1
1 .
From Eq. 3.104: E; = l 3(p2,,r]r —p|, where r = zX 4+ y¥ + 2%, p» = —p ¥, and hence
dyreg 13 r2
P2 T = —pay.
g - P2 [3Ex+yy+z)+ (@ +2+2%) ) _ p [Smyx+ (2?27 +27)§ - Jyzi
: 4meg (22 + y? + 22)3/2  dmeg (22 + 42 + 22)%/2
OE, P2 o1 L 2 9 P ! 1
st RO B st o 2 L —(—Srk—4y¥v —3z8) 5 -
By 41750{ o y[-3zyx + (z° — 29" + 2°) ¥ 3yzz]+r5( 3xk —4yy —3z2) };
JE - 3
A N e A
dy (0,0) dmeo T dmeo 15 4megr?
These results are consistent with Newton’s third law: F;, = —F,.
(b) No = (p2 x E;) + (r x Fa). The first term was calculated in Prob. 4.5; the second we

get from (a), using r =1 ¥:

R . 3pip2 .\ _ 3pipr _ 2pip2
Py x By = 47r50r3( B PERREIERS (417601"4 z) = dmeor? 0 % Nz = dmeor®

This is equal and opposite to the torque on p; due to ps, with respect to the center of p; (see Prob. 4.5).

4. [G 4.13] A wvery long cylinder, of radius a, carries a uniform polarization P perpendicular to its azis. Find the
electric field inside the cylinder. Show that the field outside the cylinder can be expressed in the form

Er)= -2, [2(P-8)3—P].

2€0s2

Think of it as two cylinders of opposite uniform charge density +p. Inside, the field at a distance s from

the axis of a uniformly charge cylinder is given by Gauss’s law: E2xsl = Lprs’l = E = (p/2¢)s. For
. - " " - a

two such cylinders, one plus and one minus, the net field (inside) is E = EL + E_ = (p/2¢p) (s+ —s_). But

s, —s. = —d, so E =|—pd/(2¢), | where d is the vector from the negative axis to positive axis. In this case

the total dipole moment of a chunk of length £ is P (7a?f) = (pra®{)d. So pd = P, and | E = -P/(2¢), | for
§< a.




Outside, Gauss’s law gives E2nsf = ép?razf =B = g':—:f, for one cylinder. For the combination, E =

By +B_ =g (3 - =), where

5+ = 8F

-d) _d
y (s + s:l(ss2 ) us E) (keeping only 1st order terms in d).

e el e e 2 e e

— [2(P-8)5s —P],| fors>a.
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5. [G 4.15] A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a “frozen-in”

polarization

r,

where k is a constant and r is the distance from the center (Fig.). (There is no free charge in the problem.) Find

the electric field in all three regions by two different methods:

(a) Locate all the bound charge, and use Gauss’s law to calculate the field it produces.

(b) Use §D-da=Qy.,., to find D, and then get E from D = ¢ E + P.

A  aik @ fiakY v ik [ +P-F=k/b  (atr=0b),
(3}P5-“V'P—‘;55;(” ;)*‘ ' —{ ~P.-f=-k/a (atr=a)

Y =
Gauss's law = E = s

}

Q;?F . Forr<a, Qae =0, so - For r > b, Qene = 0 (Prob. 4.14), 50

Fora<r<b Qenc=(=£) (4ma?) + [ (3£) 4n7’dr = —4mka — 4k(r — a) = —47kr; so|E = —(k/eor)

(b) § D-da = Qy,,. = 0= D =0 everywhere. D =¢E+P =0= E = (—1/¢)P, so
E G(forr(aandr)b)| (E— (k/eor) ¥ (for a < T < b).

6. [G 4.11] A short cylinder, of radius a and length L, carries a “frozen-in” uniform polarization P,
Find the bound charge, and sketch the electric field (i) for L >> a, (i) L << a and (iii) L =~ a.

parallel to its axis.



pp = 0; o = P-nn = £ P (plus sign at one end—the one P points toward; minus sign at the other—the one
P points away from).

(i) L > a. Then the ends look like point charges, and the whole thing is like a physical dipole, of length L and
charge Pma®. See Fig. (a).

(ii) L < a. Then it’s like a circular parallel-plate capacitor. Field is nearly uniform inside; nonuniform “fringing
field” at the edges. See Fig. (b).

(iii) L = a. See Fig. (c).

S 4 €

) Like a dipole ) Like a parallel-plate capacitor

7. [G 4.81] A dielectric cube of side a, centered at the origin, carries a “frozen-in” polarization P = kr, where k is a
constant. Find all the bound charges, and check that they add up to zero.

P=kr=k(zR+yy+228) =>pp=-VP=—k(1+1+1) =
Total volume bound charge: | Qo1 = —3ka®.
op = P-fi. At top surface, i =%, z = a/2; so 0y = ka/2. Clearly, | oy = ka/2 | on all six surfaces.
Total surface bound charge: | Qsurr = 6(ka/2)a? = 3ka?. | Total bound charge is zero.

8. [G 4.19] Suppose you have enough linear dielectric material, of dielectric constant €., to half-fill a parallel-plate
capacitor (Fig.). By what fraction is the capacitance increased when you distribute the material as in (a) of given
Fig.? How about (b) of the same? For a given potential difference V' between the plates, find E, D, and P, in each
region, and the free and bound charge on all surfaces, for both cases.



With no dielectric, Cp = Aeg/d
In configuration (a), with +o on upper plate, —e on lower, D = o between the plates.

E =0o/e (in air) and E = o /e (in dielectric). So V = £ Ei +24 = 2—5‘:}—4 (1+4@).
C 2¢
i g 2 a _ 4
G=3=%{uir) =5

In configuration (b), with potential difference V: E = V/d, so 0 = egE = ¢ V/d (in air).

P=¢ex.E = €ox.V/d (in dielectric), so oy = —eoxV/d (at top surface of dielectric).
Got = €oV/d =05 + 0y = g7 —eox.V/d, s0 a5 = V(1 + xe)/d = €6, V/d (on top plate above dielectric).

1 A A A % v A 14 C 1+¢ |
#Cbzg::—(ﬂ'—'l"ﬂ'f-z")=—"(EU_+EQ—'E)=—€-9—( er). == Eri

v V

2 2V d d " d 2 Co |
[Which is greater? % — G =M - e = “';f]'f;i"' = 1+2;’J_§:§}_4E' = ;H:_:)) > 0. So Cy > C,.]
If the z axis points down:
[ ” E J D J P | o (top surface) || o, (top plate) |
(a) air (E—f‘_’l—j%x {c'f‘_;l]ﬁﬂal’-i 0 0 ((—3‘;‘"1—)%
(a) dielectric {c.—ili %— % :::jl ] ﬂ}di ® 2{(;.-"-&-_1].‘} mdl % —3{{::—_'__11]1 Eﬂdz =
(b) air }f % 55} x 0 0 ‘—‘?J—' (left)
(b) dielectric vx &%k |(er—DNEEX|[ —(e —1)EE | e 2F (right)

9. [G 4.32] A point charge q is imbedded at the center of a sphere of linear dielectric material (with susceptibility x.
and radius R). Find the electric field, the polarization, and the bound charge densities, p, and o,. What is the total
bound charge on the surface? Where is the compensating negative bound charge located?

T . 1 q r ax r
Dida'=Qy, 5D = P ot Pl (s | __Xe T
; 2= Qe dmr2 " 3 dmeg(1 + x.) r*’ P =cox.E dr(l+ xo)r?’
- = aXe r 4 qXe
=-VP=- Vi— | == JJ Eqg. 1. . =pPr=|—-
i (1 + xe) ( rﬂ) Cyen el L e LA b e
Quurt = 0y (47R?) = a3 -I}fex .| The compensating negative charge is at the center:

qXe Xe
dr = ——2—_. e
fpb g 1+Xe[ b qlere

10. /G 4.36] A conducting sphere at potential Vyy is half embedded in linear dielectric material of susceptibility x., which

occupies the region z < 0 shown in the first Fig. Claim: the potential everywhere is exactly the same as it would
have been in the absence of the dielectric! Check the claim as follows:

(a) Write down the formula for the proposed potential V (r), in terms of Vo, R, and r. Use it to determine the
field, the polarization, the bound charge, and the free charge distribution on the sphere.



(b) Show that the total charge configuration would indeed produce the potential V (r).
(c) Appeal to the uniqueness theorem to complete the argument.

(d) Could you solve the configurations in the second F'ig. with the same potential? If not, explain why.

R
(a) Proposed potential: |V (r) = Vu—r—. If so, then |[E=-VV = Vgg‘ £, |in which case |P = eﬁxe‘lf’ogf',

eoxe Vo
R
of dielectric = i = —f.) This o} is on the surface at » = R. The flat surface z = 0 carries no bound charge,
since i = z L . Nor is there any volume bound charge (Eq. 4.39). If V is to have the required spherical
symmetry, the net charge must be uniform:
Ot 4T R? = Quor = dmeg RVp (since Vo = Qyot/4meqR), S0 0ror = €0Vo/R. Therefore

(Note: 1 points out

in the region z < 0. (P =0 for z > 0, of course.) Then g5 = nge%%(f"ﬁ) =

gy =

(e0Vo/ R), on northern hemisphere
(eoVo/R)(1 + x.), on southern hemisphere

(b) By construction, gy, = 0p+0y = €gVp/R is uniform (on the northern hemisphere o = 0, o5 = g Vo/R;
on the southern hemisphere oy = —eox.Vo /R, so oy = €Vo/R). The potential of a uniformly charged sphere is

_ Quot _ otet(47R?) Vo R? v R

— — = Vp—.

4reqr 4mregr R epr T

Vo

(c) Since everything is consistent, and the boundary conditions (V = Vg at r = R, V — 0 at o0) are met,
Prob. 4.35 guarantees that this is the solution.

(d) Figure (b) works the same way, but Fig. (a) does not: on the flat surface, P is not perpendicular to f,
so we'd get bound charge on this surface, spoiling the symmetry.




