CYK\2009\PH102\ Tutorial 5 Physics IT

1. /G 8.11] Two long, straight copper pipes, each of radius R, are held a distance 2d apart. One is at potential Vj, the
other at —Vy . Find the potential everywhere.

Problem 2.47

(a) Potential of +X is V4 = —5 :‘m In (2+), where s is distance from A, (Prob. 2.22).
Potential of —X is V_ = +32—In (%), where s is distance from A_.
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Now s, = /(y — a)? + 22, and s_ = /(y + a)? + 2%, so
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(b) Equipotentials are given by %—Eﬁﬁi = g\#"€0Y0/A) = k = constant. That is:
VP+2y+al+22=k(y?-2ay+a®+2?) >y} (k—1)+2%(k—-1)+a*(k—1)—2ay(k+1) =0, or
y? + 2% + a® — 2ay (ﬁ—‘i%) = 0. The equation for a circle, with center at (yo,0) and radius R, is
(y—y0)® + 2% = R?, or y? + 2% + (y2 — R?) — 2yyo = 0.

Evidently the equipotentials are circles, with yo = a ("L}) and
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R= 2:_1"“' ; or, in terms of Vj:
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From Prob. 2.47 (with yo = d): |V = A In (B+a) +u , | where a® = yo? — R? = |a = V/d? — R?,
dreg | (z — a)? + 2

and

acoth(2megVp/A) = d Nz d _ 2men Vo _ 2meVy
{a'csch<2wfo%/«\)=R = (dividing) @ =eosh{ =5 ). & 1A= R (@)

2. [G 3.14] A rectangular pipe, running parallel to the z—axis (from —oo to 00), has three grounded metal sides, at
y=0,y=a, and x = 0. The fourth side, at x = b, is maintained at a specific potential Vy(y).

(a) Develop a general formula for the potential within the pipe.
(b) Find the potential explicitly, for the case Vo(y) = Vo (a constant).

v 8%*v y
(a) ) W = 0, with boundary conditions
(@) V(z,0)=0,
(i) V(z,a) =0, / 5
(?ii) V(O’y) = 0, I,I/III///II///I‘.'
(iv) V(by) = Vo(y) z

As in Ex. 3.4, separation of variables yields
V(z,y) = (Ae** + Be™**) (C'sinky + Dcosky).
Here (i)= D = 0, (iii)=> B = —A, (ii)= ka is an integer multiple of =:
V(z,y) = AC (e"”fﬂ = e"‘”/“) sin(ny/a) = (2AC) sinh(n7z/a) sin(nry/a).

?ut (2AC) is a constant, and the most general linear combination of separable solutions consistent with (i),
ii), (iii) is

V(z,y) = Z Cy sinh(nwz/a) sin(nry/a).

n=1

It remains to determine the coefficients C, so as to fit boundary condition (iv):

Z Cn sinh(nmb/a) sin(nmy/a) = Vo(y). Fourier’s trick = C, sinh(nnb/a) = % [Vo(y) sin(nny/a) dy.

Therefore

9 a
Cn = W‘/Vo(y} sin(nmy/a) dy.
o




asinh(nwb/a) 1 28, if nis odd.

nwx’

a
- 2 : . 2Vo 0, if nis even,
(b) Cpr = ey ) Vo / sin(nwy/a) dy = { %a }
0

_ 4V sinh(nrz/a) sin(nmy/a)
Viz,y) = Z nsinh(nwb/a) '

n=1,3,5,...

3. [G 3.1] Find the average potential over a spherical surface of radius R due to a point charge q located inside. Show
that in general,

_ Q
Vave — Vcenter + 47;;;3}

where Veenter 15 the potential at the center due to all the external charges, and Qecnc is the total enclosed charge.

The argument is exactly the same as in Sect. 3.1.4, except that since z < R, V22 + R2 — 2zR = (R - z),
1
instead of (z — R). Hence Vyye = — (z+R)-(R-2)] = | —12

T —— —, | If there is more than one charge

4dmeg 2zR 4dmeg R sl

inside the sphere, the average potential due to interior charges is %{E, and the average due to exterior
meEg

Chafgeﬁ is u:enten 80 Vave = Veenter + 4%::;%‘ v

4. [G 8.3] Find the general solution to Laplace’s equation in spherical coordinates, for the case where V' depends only
on r. Do the same for cylindrical coordinates, assuming V depends only on s.

Laplace’s equation in spherical coordinates, for V' dependent only on r, reads:

1d dV dV dV c c
4 = —— o = 2—— — & .- — T — V = —— .
AVAd 4 g (r dr) 0=2r = ¢ (constant) = = = = < + k

Ezample: potential of a uniformly charged sphere.

v V |74
In eylindrical coordinates: ViV = li (sd—) =) =% s‘fi— =c=> f-:i—- = = V=clns+k.
s s s

Ezample: potential of a long wire.

5. [G 3.7]
(a) Using the law of cosines, show that V (r) = 47350 (g + g—:) (where v and v’ are the distances from q and
¢’ respectively) can be written as follows:
=1 q _ q
V(’f‘, 9) T dmeo | /r2+s2—2rscosf \/R2+(rs/R)2—2r50050:| ’

where r and 0 are the usual spherical polar coordinates, with the z- axis along the line through q. In this form it is
obvious that V =0 on the sphere, r = R.

(b) Find the induced surface charge on the sphere, as a function of 6. Integrate this to get the total induced charge.
(¢) Calculate the energy of this configuration.



(a) From Fig. 3.13: 2 = vr2 +a? — 2racosf; 4’ = vr? +b* — 2rbcosf. Therefore:

q' R

q : R?
(Eq. 3.15), while b= ~— (Eq. 3.16).
q

¥ T ai?+ - 2rbcosd

Therefore:
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Clearly, when r = R, V — 0.
(b) 0 = —c0%-  (Eq. 2.49). In this case, 3% = 4% at the point r = R. Therefore,
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But a > R (else ¢ would be inside), so /R? +a? —2Ra=a — R.
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(¢) The force on g, due to the sphere, is the same as the force of the image charge ¢/, to wit:

1 qq’ 1 ( R 2) 1 - 1 ¢’Ra

T dme (a—-b)? dme \ al ) (a-RZja)? | dmeo (a® - RO

To bring ¢ in from infinity to e, then, we do work

. 4B i a R [ 1 1 ]
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6. [G 3.8] Consider a point charge q situated at a distance a from the center of a grounded conducting sphere of radius
R. The same basic model will handle the case of a sphere at any potential Vi (relative to infinity) with the addition
of a second image charge. What charge should you use, and where should you put it? Find the force of attraction
between a point charge q and a neutral conducting sphere.

Place a second image charge, ¢”, at the center of the sphere;

this will not alter the fact that the sphere is an equipotential, P, |
"
. ) —_—
but merely increase that potential from zero to Vp = : q—; o7 *; N
dreg R 4 q q
g" = 4dmwegVo R at center of sphere. a
For a neutral sphere, ¢’ + ¢" = 0.
1 q" q qq' 1 1
P = ——aglLl - RIS N
dmeg ! (a" & (a— b]z) 4meg \ a? T (a— b)i)
¢’ b(2a—b) _ q(—Rg/a) (R*/a)(2a - R*/a)
dreg a%(a — b)? 4rep a?(a — R%/a)?
_ _| 4 (B @-RY
B 4meg \a /) (a® - R?2)?’

(Drop the minus sign, because the problem asks for the force of attraction.)

7. [G 3.12] Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the other at y = a. The left
end, at © = 0, consists of two metal strips: one, from y =0 to y = a/2, is held at a constant potential Vy, and the
other, from y = a/2 to y = a, is at potential —Vy. Find the potential in the infinite slot.

a

V(z,y) = ZCne_"‘”"“ sin(nwy/a) (Eq. 3.30), where C, = E/Vo[y) sin(nmy/a)dy (Eq. 3.34).

n=l1 0

+Vo, for0<y<a/2 } . Therefore,

InthiscaseVa(y)={ -V, fora/2<y<a

a2 a a/2 . &
Ca = g% /sin(nry/a) dy — / sin(nmy/a)dy ) = L {" CU’ES:}?;;“) & LO?S::;%“) /2}
0 a/2
i 2V nw
= % {— cos (%r) + cos(0) + cos(nm) — cos (%)} = n—rf {I + (=1)" — 2cos (T)} :



The term in curly brackets is:

n=1 : 1-1-2cos(n/2) =0,
n=2 : 1+1-2cos(r)=4,
n=3 : 1-1-2cos(3n/2)=0,
n=4 : 141-2cos(27)=0,

etc. (Zero if n is odd or divisible by 4, otherwise 4.)

Therefore
C. = 8Vp/nm, n = 2,6,10, 14, etc. (in general, 45 + 2, for j =0,1,2,...),
*1 0, otherwise.
So
8V, e ""2/% gin(nmy/a 8V, o e—(4i+2)nz/a ginl(445 + 2)y/a
V(:r,y}:-;r—?- Z n( /a) =..___E'_Z = [(2.? )7y / 1
n=2,6,10,... = (47 +2)

8. [G 3.15] A cubical box (sides of length a) consists of five metal plates, which are welded together and grounded. The
top is made of a separate sheet of metal, insulated from the others, and held at a constant potential V. Find the
potential inside the box.

Same format as Ex. 3.5, only the boundary conditions are:

(i) V=0 when z=0, )
(i) V=0 when z=ag,
(iii) V=0 when y=0,

< (iv) V=0 when y=a, r
(v V=0 when z=0,
| (vi) V=V when z=a. |

This time we want sinusoidal functions in z and y, exponential in z:
X(z) = Asin(kz) + Beos(kz), Y(y)= Csin(ly) + Dcos(ly), Z(z) = EeVF¥% 4 Ge~VFFlz,
(i)=> B = 0; (ii)= k = nn/a; (iii))=> D = 0; (iv)=> | = mn/a; (v)= E + G = 0. Therefore
Z(z) = 2Esinh(7\/n? + m2z/a).

Putting this all together, and combining the constants, we have:

V(z,y,2) = i i Ch,m sin(nwz/a) sin(mny/a) sinh(ry/n? + m2z/a).

n=1 m=1

It remains to evaluate the constants C, n,, by imposing boundary condition (vi):

Vo = Z E [C,,_m sinh(wy/n? + mz)] sin(nmz/a) sin(mny/a).



According to Egs. 3.50 and 3.51:

Therefore

0, if n or m is even,
g Jairm? 2 ) y in .
Cnm Slnh( n? + m ( ) 1) f[sm(mr:c/a)sm(mﬂy/a)da:dy lfvc 3t Bokl meeisda.
Tnm
Viie, 5, &) 162’0 Z 1 sinfnela) ity /o) sm.h (mv/n? + miz/a)'
n=1,3,5,... m=1,3,5,... e sinh (m/n? + mZ)
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