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Product Rules (Gradient)

If f and g are scalar fields, so is fg. And if A and B are vector fields then A - B
is a scalar field.



Product Rules (Gradient)
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is a scalar field.

> V(fg) = fVg +gVFf
» V(A-B)=(A-V)B+(B-V)A+Ax (VxB)+Ax (V xB)



Product Rules (Gradient)

If f and g are scalar fields, so is fg. And if A and B are vector fields then A - B
is a scalar field.

> V(fg) = fVg +gVFf
» V(A-B)=(A-V)B+(B-V)A+Ax (VxB)+Ax (V xB)

Proof of the second Identity:

V(A-B) = V(AB.+A/B, +A;B;)
= (AVB«+A/VB, +A.VB;)+ (B«VA+ )

The x-component of the first bracket:

+Ax8xBx +Ay8xBy +Azasz
+A,0,B.  —A,0,Bx
+Azasz _Azasz
(A-V)B. +A,(VxB), —A.(VxB),
(A-V)Bx+ (A x (V xB)),




Product Rules (Divergence and Curl)

» V- (fA)=f(V-A)+A-Vf

>» Vx (fA)=f(V xA)—AxVf

» V- (AxB)=B-(VxA)—A-(V xB)

» Vx(AxB)=(B-V)A—(A-V)B+A-(V-B)—B(V-A)



Higher Derivatives

Higher order derivatives of fields can be written in terms of partial derivatives
like o o o o
0x2  0y? Oxdy Oydx

The last two terms are called mixed partial derivatives.




Higher Derivatives

Higher order derivatives of fields can be written in terms of partial derivatives
like o o o o
0x2  0y? Oxdy Oydx

The last two terms are called mixed partial derivatives.

Theorem

If f has continuous second ordered partial derivatives, then the mixed partial
derivatives are equal that is
02 o2
f= f
OXjOx Oxk OX;j

where x; and xj are either x,y or z



Higher Derivatives

> Laplacian:

2 2 2
sz:V-(Vf):(a 4 8)

o a2 tor



Higher Derivatives

> Laplacian:

0? 9? 9?
Ox2 ~ Oy? @)

vzf:v-(w):(—Jr—Jr

» If mixed partial derivatives are continuous,

VxVf=0



Higher Derivatives
> Laplacian:
o2 ? ? )

2 _ . — N — —_
Vi =V (VF) (8x2 + Oy? + 0z?

» If mixed partial derivatives are continuous,

VxVf=0

> If mixed partial derivatives are continuous,

V- (VxF)=0



Higher Derivatives

> Laplacian:

0? 9? 9?
Ox2 ~ Oy? @)

V=V (Vf)= (—+—+
» If mixed partial derivatives are continuous,
VxVf=0

> If mixed partial derivatives are continuous,

V- (VxF)=0

> Curl of a curl
V x(VxF)=-V’F+V(V-F)



Line (or Path) Integrals

Integration of real valued function of one variable,
b
/ f(x)dx
a

We want to extend this defintion to integrating scalar and vector fields over
arbitrary paths.

is quite familiar.



How to describe paths?

Definition

Let [a, b] € R be a closed interval. A path in R™ is a continuous function
r:[a.b] — R™. The path is called smooth if the derivative r’ exists and is

continuous.

When m = 2, the function r(t) = %x(t) + §y(t) can be split into two
component functions.

Example
x(t) =t
te[o,1
Mot f et
This is directed path. .

Starting Point :(0,0) End Point: (1,1)




How to describe paths?

Definition

Let [a, b] € R be a closed interval. A path in R™ is a continuous function
r:[a.b] — R™. The path is called smooth if the derivative r’ exists and is
continuous.

When m = 2, the function r(t) = %x(t) + §y(t) can be split into two
component functions.

Example
x(t) =t
te[o,1
Mot f et
This is directed path. .

Starting Point :(0,0) End Point: (1,1)
Reversed path

x(t)y=1-1t
y(t)zl_t}te[o,l]




How to describe paths?

Example

Parabola

x(t)=t
y(t)=1¢

} te[-1,1]




How to describe paths?

Example
Parabola
x(t) =1t
o —f fret
Helix
x(t) = cost

y(t) =sint } t € [0,107]
z(t) =t/2w




Line Integral of Scalar Fields

» Split path into small segments of length dr
> Line Integral is limiting value of > f dr over the path.



Line Integral of Scalar Fields

» Split path into small segments of length dr
> Line Integral is limiting value of > f dr over the path.

Definition

If r(t); t € [a, b] is a path in R™ and f is scalar field over R™, then line integral
of f over path ris
b
/f dr = / f(r(t)) ¥’ (t)| dt.

For m =2, r(t) = &x(t) + §y(t) and |¢'(£)| = ((dx/dt)? + (dy/dt)*)"'>.



Line Integral of Scalar Fields

Example

Length of a circular arc

Let r(t) = (Rcost,Rsint); t € [0,q] then ¥'(t) = (—Rsint, Rcost) and
() =R

L = /a\r’(t)|dt

/ Rdt = Ra
0



Line Integral of Scalar Fields

Example
Centre of Mass

If m(r) is linear mass density of a wire given by path r(t) t € [a, b]. Let
Rem = (Xem, Yem). Then

em = %/x(t)m(r(t))|r'(t)|dt
Yo = [ YOm0



Line Integral of Scalar Fields

Example
Centre of Mass

If m(r) is linear mass density of a wire given by path r(t) t € [a, b]. Let
Rem = (Xem, Yem). Then

em = %/}ummu»wunm
Yo = [ YOm0
Or more compactly

Rm:%/mmmmwmw

Thus line integral of a vector field can be defined in a straight-forward manner.



Line Integral of Vector Fields

To compute the work done by a force along the particle trajectory, we need to
sum terms like > F - dr




Line Integral of Vector Fields

To compute the work done by a force along the particle trajectory, we need to
sum terms like > F - dr

Definition

If r(t); t € [a, b] is a path in R™ and F is vector field over R™, then the line
integral of F over path ris

/F Cdr — /ab F(r(£)) - ¥'(£) dt.



Line Integral of Vector Fields

Example

A force field is given by ar/r® where a > 0 is constant and r is position vector.
Find the work done in moving a particle along a curve

r(t) = (cost,sint); t € [0,2n].

Given path is circular and closed (endpoint coincides with starting point).

Along the path r(t) = |r(t)| = 1.

/ TR0 (1) de = / 7 (costisin Ll g




Line Integral of Vector Fields

Example

A force field is given by ar/r® where a > 0 is constant and r is position vector.
Find the work done in moving a particle along a curve

r(t) = (cost,sint); t € [0,2n].

Given path is circular and closed (endpoint coincides with starting point).

Along the path r(t) = |r(t)| = 1.

/ TR0 (1) de = / 7 (costisin Ll g

Example

Another field: o (—&y + §x). With the same path as above

27 27
/ F(r(t)) - r'(t)dt = a/ (—sint,cost) - (—sint,cost)dt = 2w
0 0



Surface Integrals



How to describe Surfaces

Common Form: z = f(x,y) or x = f(y, z) etc.

Examples

(a) z = c is a plane parallel to XY plane



How to describe Surfaces
Common Form: z = f(x,y) or x = f(y, z) etc.
Examples

(a) z = c is a plane parallel to XY plane

(b) z =sin (\/x2 +y2) /X Fy?

3 3:
N &s,‘,»'.
K

X3
N
YA




How to describe Surfaces

Another Form: f(x,y,z) =c¢

Examples

(a) Closed surfaces like sphere can be described by

z=%1—-x2—y2

and a more difficult boundary x? 4+ y2 = 1.

Alternatively one describe the entire sphere by

X2—|—y2—|—22:1



How to describe Surfaces

A general form: S = {S(u,v) = (x(u,v),y(u,v),z(u,v))|(u,v) € D C R?}

Example

S = (sinf cos ¢, sin Osin ¢, cos ) where ¢ € [0,27] and 6 € [0, 7]

Parametric curves can be seen on the surface.



Elementary Area on a Surface

Consider a surface given by

S(r,¢) = (rcosg,rsing, rz)

with r € [0,3] and ¢ € [0, 27]
Let A =S5(2,0) = (2,0,4)




Elementary Area on a Surface

Consider a surface given by

S(r,¢) = (rcosg,rsing, r2)

with r € [0,3] and ¢ € [0, 27]
Let A=S(r=2,¢=0)=(2,0,4)
Elementary area is shown in green.




Elementary Area on a Surface

S(r,¢) = (rcosg,rsing, r2)

Let A=S(2,0) =(2,0,4)
Elementary area is shown in green.
AB = (8S/0r) dr and

AC = (8S/9¢) d¢

Normal: n = (9S/9r) x (9S/0¢)
Area: dS = ‘ﬁ x Tc] = |n| drd¢
Vector Area: dS =i dS



Surface Integrals: Scalar Fields
Definition

Let S be a surface parametrized by S(u, v) with (u,v) € D. Surface integral of
a scalar field f is defined by

/sde:/Df(S(u,v)) dS:/Df(S(u,v)) ’%x%‘ du dv



Surface Integrals: Scalar Fields

Example
Area of a hemisphere:

» S =(Rsinfcos ¢, Rsinfsin ¢, Rcosd) with 8 € [0,7/2] and ¢ € [0, 27]
> 0S/00 = (R cos 0 cos ¢, R cos 0 sin ¢, —R sin 0)

> 0S/0¢ = (—Rsin0sin ¢, Rsin 6 cos ¢,0)

> 0S/00 x 9S/0¢ = R? (sin” 6 cos ¢, sin” fsin ¢, sin 6 cos 6)

> |0S/060 x 8S/0¢p| = R*sin 6

» The area of hemisphere
/2 27
/dS / / R?sin6 d6 do
Js Jo Jo
= 27R?

» How about S = (x,y,+/R? — x2 — y2) with x* + y* < R?? Complete at

home.



Surface Integrals: Vector Fields

Consider a steady state flow of incompressible fluid, which can be described by
a velocity field v(r). Amount of fluid passing through a surface of area dS is
given by v - idS. This motivates the defintion of surface integrals of vector
fields

Definition

Let S be a surface parametrized by S(u, v) with (u,v) € D. Surface integral of
a vector field F is defined by

/SF‘dS:/L;F(S(u,v)).ﬁdsz/Df(s(ujv))ndudv

_ 95 85
where n = 32 x 5>



Surface Integrals: Vector Fields

Example
Let F(r) = #/r* = (x,y,2)/(x* + y* + 2°)*/?
» S =(Rsinfcos ¢, Rsinfsin ¢, Rcosd) with 8 € [0, 7] and ¢ € [0, 27]
0S/00 = (R cos 0 cos ¢, R cos 6 sin ¢, —R sin 0)
0S/0¢ = (—Rsin0sin ¢, Rsin 6 cos ¢, 0)
9S/06 x 9S/0¢ = R? (sin® 0 cos ¢, sin” Osin ¢, sin 6 cos §) = R sin O =
R?sin 6S
|0S/06 x 8S/0¢| = R*sin 6

Surface integral is

F-adS = / / SstmQ do dg
/ (7))

/2 27

/ / sinfdfddo = 4r.

0 0

v

v

v

v

v



Volume Integrals

A volume in 3D is simply a region in R®. Thus volume integral of a scalar field
f over a volume V is defined as

/ f(x,y,z)dxdydz
%



Fundamental Theorem For Gradients

In some sense, this theorem says, integration is an inverse of differentiation.

Theorem

If ¢ is a differentiable scalar field with continuous gradient V¢ on open
connected set S inR3 and a, b € S, then

/ V- dr = ¢(b) — ¢(a)

over any smooth path joining a and b.



Fundamental Theorem For Gradients

In some sense, this theorem says, integration is an inverse of differentiation.

Theorem

If ¢ is a differentiable scalar field with continuous gradient V¢ on open
connected set S inR3 and a, b € S, then

b
[ 96 dr=6(b) - o)
over any smooth path joining a and b.

> f: V¢ - dr is independent of path, which is not the case ordinarily
» §Vg-dr=0



Fundamental Theorem For Gradients

Another fundamental theorem:

Theorem

Let F be a vector field over R® such that its path integral between two points is
independent of path. Define a scalar field ¢ such that

o) = [ F-d

where a is some fixed point. Then V¢ = F.

> True if $ F - dr =0 for all closed paths (loops)



Fundamental Theorem For Gradients

Another fundamental theorem:

Theorem

Let F be a vector field over R® such that its path integral between two points is
independent of path. Define a scalar field ¢ such that

o(r) = / F.dr
a
where a is some fixed point. Then V¢ = F.
> True if $ F - dr =0 for all closed paths (loops)

Since V x (V¢) = 0, for F to be equal to gradient of some potential field,
atlest V x F = 0. Is this condition sufficient? Yes if it is true over convex sets.



Fundamental Theorem For Gradients

Check if F = yz& + xz§ + xyZ can be written as a gradient of a potential?



Fundamental Theorem For Gradients
Check if F = yz& + xz§ + xyZ can be written as a gradient of a potential?

if (x,y,z) =xyz+ c then V¢ =F



Fundamental Theorem For Divergence

This is simillar to the previous theorem.

Theorem

(Gauss Theorem) Let V be a solid region in R® bounded by closed surface S. If
F is continuously differentiable on V then

/V(V~F)dv:£F~ﬁd5

with @ is outer normal to S.



Inverse Square Field

Example
Let F=¢/r".

» V-F(r)=0ifr#£0.
> gﬁs F-idS = 4x if S is spherical surface centered at r = 0.

> by Gauss theorem
/ (V-F)dv =4n
v

Contribution to right hand side integral is only at origin. Then
V- F(0) = o0

v



Fundamental Theorem For Curl

Theorem

(Gauss Theorem) Let S be a smooth surface in R* bounded by closed curveT.
If F is continuously differentiable vector field, then

/S(VXF)-dS:ﬁF«dr

where direction of dS vector is determined by the right hand rule.

> [5(V x F)-dS does not depend on the surface but only the boundary.
> ¢ (VxF)-dS=0



Fundamental Theorem For Curl

Example

Let F = (2xz + 3y?)§ + 4yz°2 and surface S be square plane in yz plane given
by S=(0,y,z) with0 <y,z <1




Fundamental Theorem For Curl

Example

Let F = (2xz + 3y?)§ + 4yz°2 and surface S be square plane in yz plane given
by S=(0,y,z) with0 <y,z <1

> In Figure: dS = dydzx
» V x F= (42" - 2x)% + 222 E
Js (VxF)-dS=4/3
JaF-dr=1, [[F-dr=4/3, 9 C
[oF-dr=—1 [ F-dr=0

Stokes Theorem verified. . y

v

v

v




Spherical Coordinate System

> position vector of P: r

» Cartesian coordinates: (x,y, z).

> length of r: r = |r|

» projection of r onto XY plane:
0oQ

> angle between z-axis and r: 0

> angle between x-axis and OQ: ¢

> 0. zenith angle
> ¢: azimuthal angle.

» spherical polar coordinates:
ordered triplet (r, 6, ¢)



Spherical Coordinate System



Spherical Coordinate System

r

/X2 +y2+22

= tan_l (—XZ +y2>
z
¢

40> «F»r «=)»

« =)

DA



Spherical Coordinate System

r — /X2 +y2+22
PR (_\/Xzﬂz>

z

= rsinfcoso
= rsinfsing

z = rcosf

«O» «Fr «

DA



Spherical Coordinate System

Ranges of Spherical polar

coordinates:

Clearly, x,y,z € (—00, 00).
> rel0,00),

» 0 €[0,7]
> ¢ € [0,27).
Note:

> ¢ is undefined for points on
Z-axis

» both 6 and ¢ are undefined for
the origin.




Spherical Coordinate System

Coordinate Surfaces can be obtained by keeping one of the coordinates
constant.

r = constant gives a spherical
surface. Let ¢ > 0.

S ={(c,6,0)|0 € [0.7],6 € [0,27)}

is a sphere of radius c.




Spherical Coordinate System

Coordinate Surfaces can be Obtained by keeping one of the coordinates

constant.

0 = constant gives a conical surface.
Let ¢ > 0.

S={(r.c,¢)|r €[0,00],¢ € [0,27)}

is a cone of angle c.




Spherical Coordinate System

Coordinate Surfaces can be Obtained by keeping one of the coordinates

constant.

¢ = constant gives a planar surface.
Let ¢ > 0. z

S={(r,0,c)|0 € [0,7],r€[0,00)}

is a half plane.



Spherical Coordinate System

All surfaces:

\mvﬂﬂﬂhﬂhﬂﬂﬂftf
CSOTLLL LR
SCSRTTIN




Spherical Coordinate System

Coordinate Curves: Keeping two coordinates fixed, we get a path. Let

P = (ro, 6o, $0)
" e 4
r (sin 6o cos ¢, sin G sin ¢o, cos o) \7'
» Sy =

ro (sin @ cos ¢, sin 0'sin ¢o, cos 0)

e —

ro (sin g cos ¢, sin Og sin ¢, cos O )




Spherical Coordinate System

Coordinate unit vectors are unit tangent vectors to coordinate curves at a given
point. Let P = (ro, 00, ¢o). If S = r(sin 6 cos ¢, sin sin ¢, cos 6)

;05|08 4 i

“or' | or —
5= 95,95 ——

00’ |00 T L
~ 0SS ,|0S _



Spherical Coordinate System

Given, S = rsin @ cos ¢x + rsin 0sin ¢y + r cos 2, the Unit Vectors:

t(0,0) = g—f g—f = sin 6 cos ¢X + sin O'sin ¢y + cos 62
é(&,(j)) = %/ % = cos 0 cos ¢X + cos 0 sin ¢y — sin 62
- oS || 0S A .
?(0,¢) = % % = —sin ¢X + cos ¢y

Unit Vectors depend on the location on 6 and ¢.
Inverse Transformations are

sin 6 cos ¢f + cos 6 cos d)é —sin ¢>$
sin @'sin ¢t + cos 6 sin gzﬁé + cos ¢>ng5

= cos0f —sin 09

N X0
Il



Spherical Coordinate System

Usually, the unit vectors are written without reference to the location, but it is
understood by context.

| Point | Cartesian | Spherical | v

P | (1,0,0) | (1,7/2,0) ‘

Q 1 (0,1,00 | @, 7/2%7/2)
Now, 9
?(P) =#(0 = /2,6 = 0) = % and P
¢(P)=0(0 =7/2,9=0)=§
But
Q) =#0=m/2,p=m/2) =7 and A
H(Q) = b6 = 7/2,6 = /2) = .
[ Vector | Cartesian | Spherical |

A X 4

-9

4

(o]
< %0 | X




Spherical Coordinate System

Cartesian unit vectors are constants and do not depend on position, but
spherical unit vectors do!

Oi _ i Ve e
%r = 0 8¢ —S|n9¢
O A L. 0, R
207 = —t 8—¢9—c059¢>
0 - 0 » N N
2 = 0 8—¢¢775m6r7c0500



Spherical Coordinate System

Position vector to any point P = (r,0,¢) is
—
OP =r =ri(0,¢) = rt

Line Element:

or or or
o or or
= drr“rdor%"—d@r%

= dr?+rd0@+rsin0d¢$

Surface Elements:

Surface Shape Normal  Elementary Area
r = const Sphere 4 rZsinfdo do
0 = const Cone 0 rsin@drdo
¢ = const  Half Plane 1) rdrdf

Volume Element: r?sin @ dr df d¢



Spherical Coordinate System

Gradient:
(’)f Lof Of
VAP) = Ry +ig 2
LOf  A190f  ~ 1 Of
o 87+97%+¢rsin987¢
Divergence:
10 ,, 1 0 1 0
v-F erE(r ')+r5| 989(5”10,:9) rsin987¢(F¢)
Curl:
Laplacian:

2,10 (,0f 1 9 of 1 372
V= ( ar) t Zsin6 00 (S'”aae) + asinzg 0gz ()
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