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Product Rules (Gradient)

If f and g are scalar �elds, so is fg . And if A and B are vector �elds then A · B
is a scalar �eld.

I ∇ (fg) = f∇g + g∇f
I ∇ (A · B) = (A · ∇)B + (B · ∇)A + A× (∇× B) + A× (∇× B)

Proof of the second Identity:

∇ (A · B) = ∇ (AxBx + AyBy + AzBz)

= (Ax∇Bx + Ay∇By + Az∇Bz) + (Bx∇Ax + · · · )

The x-component of the �rst bracket:

+Ax∂xBx +Ay∂xBy +Az∂xBz

+Ay∂yBx −Ay∂yBx

+Az∂zBx −Az∂zBx

(A · ∇)Bx +Ay (∇× B)z −Az (∇× B)y
(A · ∇)Bx + (A× (∇× B))x
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Product Rules (Divergence and Curl)

I ∇ · (f A) = f (∇ · A) + A · ∇f
I ∇× (f A) = f (∇× A)− A×∇f
I ∇ · (A× B) = B · (∇× A)− A · (∇× B)

I ∇× (A× B) = (B · ∇)A− (A · ∇)B + A · (∇ · B)− B (∇ · A)



Higher Derivatives

Higher order derivatives of �elds can be written in terms of partial derivatives
like

∂2

∂x2
∂2

∂y2
∂2

∂x∂y

∂2

∂y∂x

The last two terms are called mixed partial derivatives.

Theorem

If f has continuous second ordered partial derivatives, then the mixed partial
derivatives are equal that is

∂2

∂xj∂xk
f =

∂2

∂xk∂xj
f

where xj and xk are either x , y or z
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Higher Derivatives

I Laplacian:

∇2f = ∇ · (∇f ) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
f

I If mixed partial derivatives are continuous,

∇×∇f = 0

I If mixed partial derivatives are continuous,

∇ · (∇× F) = 0

I Curl of a curl
∇× (∇× F) = −∇2

F +∇(∇ · F)
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Line (or Path) Integrals

Integration of real valued function of one variable,

ˆ b

a

f (x)dx

is quite familiar.

We want to extend this de�ntion to integrating scalar and vector �elds over
arbitrary paths.



How to describe paths?

De�nition

Let [a, b] ∈ R be a closed interval. A path in Rm is a continuous function
r : [a.b]→ Rm. The path is called smooth if the derivative r′ exists and is
continuous.

When m = 2, the function r(t) = x̂x(t) + ŷy(t) can be split into two
component functions.

Example

x(t) = t
y(t) = t

}
t ∈ [0, 1]

This is directed path.
Starting Point :(0, 0) End Point: (1, 1)

A

B



How to describe paths?

De�nition

Let [a, b] ∈ R be a closed interval. A path in Rm is a continuous function
r : [a.b]→ Rm. The path is called smooth if the derivative r′ exists and is
continuous.

When m = 2, the function r(t) = x̂x(t) + ŷy(t) can be split into two
component functions.

Example

x(t) = t
y(t) = t

}
t ∈ [0, 1]

This is directed path.
Starting Point :(0, 0) End Point: (1, 1)
Reversed path

x(t) = 1− t
y(t) = 1− t

}
t ∈ [0, 1]

A

B



How to describe paths?

Example

Parabola

x(t) = t
y(t) = t2

}
t ∈ [−1, 1]

A B

Helix

x(t) = cos t
y(t) = sin t
z(t) = t/2π

 t ∈ [0, 10π]

x

y

z

A

B
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Line Integral of Scalar Fields

I Split path into small segments of length dr

I Line Integral is limiting value of
∑

f dr over the path.

x

y

z

A

B

dl

De�nition

If r(t); t ∈ [a, b] is a path in Rm and f is scalar �eld over Rm, then line integral
of f over path r is ˆ

f dr =

ˆ b

a

f (r(t)) |r′(t)| dt.

For m = 2, r(t) = x̂x(t) + ŷy(t) and |r′(t)| =
(
(dx/dt)2 + (dy/dt)2

)1/2
.
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Line Integral of Scalar Fields

Example

Length of a circular arc

Let r(t) = (R cos t,R sin t); t ∈ [0, α] then r′(t) = (−R sin t,R cos t) and
|r′(t)| = R

L =

ˆ α

0

|r′(t)|dt

=

ˆ α

0

Rdt = Rα



Line Integral of Scalar Fields

Example

Centre of Mass

If m(r) is linear mass density of a wire given by path r(t) t ∈ [a, b]. Let
Rcm = (xcm, ycm). Then

xcm =
1

M

ˆ
x(t)m(r(t)) |r′(t)| dt

ycm =
1

M

ˆ
y(t)m(r(t)) |r′(t)| dt

Or more compactly

Rcm =
1

M

ˆ
r(t)m(r(t)) |r′(t)| dt

Thus line integral of a vector �eld can be de�ned in a straight-forward manner.
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Line Integral of Vector Fields

To compute the work done by a force along the particle trajectory, we need to
sum terms like

∑
F · dr

A

B

F

dl

De�nition

If r(t); t ∈ [a, b] is a path in Rm and F is vector �eld over Rm, then the line
integral of F over path r is

ˆ
F · dr =

ˆ b

a

F(r(t)) · r′(t) dt.
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Line Integral of Vector Fields

Example

A force �eld is given by αr/r3 where α > 0 is constant and r is position vector.
Find the work done in moving a particle along a curve
r(t) = (cos t, sin t); t ∈ [0, 2π].

Given path is circular and closed (endpoint coincides with starting point).
Along the path r(t) = |r(t)| = 1.

ˆ 2π

0

F(r(t)) · r′(t) dt = α

ˆ 2π

0

(cos t, sin t) · (− sin t, cos t)

r(t)3
dt = 0

Example

Another �eld: α (−x̂y + ŷx). With the same path as above

ˆ 2π

0

F(r(t)) · r′(t) dt = α

ˆ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt = 2πα
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Surface Integrals



How to describe Surfaces

Common Form: z = f (x , y) or x = f (y , z) etc.

Examples

(a) z = c is a plane parallel to XY plane

(b) z = sin
(√

x2 + y2
)
/
√
x2 + y2



How to describe Surfaces

Common Form: z = f (x , y) or x = f (y , z) etc.

Examples

(a) z = c is a plane parallel to XY plane

(b) z = sin
(√

x2 + y2
)
/
√
x2 + y2



How to describe Surfaces

Another Form: f (x , y , z) = c

Examples

(a) Closed surfaces like sphere can be described by

z = ±
√
1− x2 − y2

and a more di�cult boundary x2 + y2 = 1.

Alternatively one describe the entire sphere by

x2 + y2 + z2 = 1



How to describe Surfaces

A general form: S =
{
S(u, v) = (x(u, v), y(u, v), z(u, v)) | (u, v) ∈ D ⊂ R2

}
Example

S = (sin θ cosφ, sin θ sinφ, cos θ) where φ ∈ [0, 2π] and θ ∈ [0, π]

Parametric curves can be seen on the surface.



Elementary Area on a Surface

Consider a surface given by

S (r , φ) =
(
r cosφ, r sinφ, r2

)
with r ∈ [0, 3] and φ ∈ [0, 2π]
Let A = S(2, 0) = (2, 0, 4)



Elementary Area on a Surface

Consider a surface given by

S (r , φ) =
(
r cosφ, r sinφ, r2

)
with r ∈ [0, 3] and φ ∈ [0, 2π]
Let A = S(r = 2, φ = 0) = (2, 0, 4)
Elementary area is shown in green.



Elementary Area on a Surface

S (r , φ) =
(
r cosφ, r sinφ, r2

)
Let A = S(2, 0) = (2, 0, 4)
Elementary area is shown in green.−→
AB = (∂S/∂r) dr and
−→
AC = (∂S/∂φ) dφ
Normal: n = (∂S/∂r)× (∂S/∂φ)

Area: dS =
∣∣∣−→AB ×−→AC ∣∣∣ = |n| dr dφ

Vector Area: dS = n̂ dS

A

B

C



Surface Integrals: Scalar Fields

De�nition

Let S be a surface parametrized by S(u, v) with (u, v) ∈ D. Surface integral of
a scalar �eld f is de�ned by

ˆ
S

f dS =

ˆ
D

f (S(u, v)) dS =

ˆ
D

f (S(u, v))

∣∣∣∣∂S∂u × ∂S

∂v

∣∣∣∣ du dv



Surface Integrals: Scalar Fields

Example

Area of a hemisphere:

I S = (R sin θ cosφ,R sin θ sinφ,R cos θ) with θ ∈ [0, π/2] and φ ∈ [0, 2π]

I ∂S/∂θ = (R cos θ cosφ,R cos θ sinφ,−R sin θ)

I ∂S/∂φ = (−R sin θ sinφ,R sin θ cosφ, 0)

I ∂S/∂θ × ∂S/∂φ = R2
(
sin2 θ cosφ, sin2 θ sinφ, sin θ cos θ

)
I |∂S/∂θ × ∂S/∂φ| = R2 sin θ

I The area of hemisphere

ˆ
S

dS =

ˆ π/2

0

ˆ 2π

0

R2 sin θ dθ dφ

= 2πR2

I How about S = (x , y ,
√
R2 − x2 − y2) with x2 + y2 ≤ R2? Complete at

home.



Surface Integrals: Vector Fields

Consider a steady state �ow of incompressible �uid, which can be described by
a velocity �eld v(r). Amount of �uid passing through a surface of area dS is
given by v · n̂dS . This motivates the de�ntion of surface integrals of vector
�elds

De�nition

Let S be a surface parametrized by S(u, v) with (u, v) ∈ D. Surface integral of
a vector �eld F is de�ned by

ˆ
S

F · dS =

ˆ
D

F (S(u, v)) · n̂ dS =

ˆ
D

f (S(u, v)) n du dv

where n = ∂S
∂u
× ∂S

∂v



Surface Integrals: Vector Fields

Example

Let F(r) = r̂/r2 = (x , y , z)/(x2 + y2 + z2)3/2

I S = (R sin θ cosφ,R sin θ sinφ,R cos θ) with θ ∈ [0, π] and φ ∈ [0, 2π]

I ∂S/∂θ = (R cos θ cosφ,R cos θ sinφ,−R sin θ)

I ∂S/∂φ = (−R sin θ sinφ,R sin θ cosφ, 0)

I ∂S/∂θ × ∂S/∂φ = R2
(
sin2 θ cosφ, sin2 θ sinφ, sin θ cos θ

)
= R2 sin θn̂ =

R2 sin θŜ

I |∂S/∂θ × ∂S/∂φ| = R2 sin θ

I Surface integral is

ˆ
S

F · n̂dS =

ˆ π/2

0

ˆ 2π

0

(
Ŝ

|S|2

)
·
(
ŜR2 sin θ

)
dθ dφ

=

ˆ π/2

0

ˆ 2π

0

sin θ dθ dφ = 4π.



Volume Integrals

A volume in 3D is simply a region in R3. Thus volume integral of a scalar �eld
f over a volume V is de�ned asˆ

V

f (x , y , z) dx dy dz



Fundamental Theorem For Gradients

In some sense, this theorem says, integration is an inverse of di�erentiation.

Theorem

If φ is a di�erentiable scalar �eld with continuous gradient ∇φ on open
connected set S in R3 and a, b ∈ S, then

ˆ b

a

∇φ · dr = φ(b)− φ(a)

over any smooth path joining a and b.

I
´ b
a
∇φ · dr is independent of path, which is not the case ordinarily

I
¸
∇φ · dr = 0
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Fundamental Theorem For Gradients

Another fundamental theorem:

Theorem

Let F be a vector �eld over R3 such that its path integral between two points is
independent of path. De�ne a scalar �eld φ such that

φ(r) =

ˆ
r

a

F · dr

where a is some �xed point. Then ∇φ = F.

I True if
¸
F · dr = 0 for all closed paths (loops)

Since ∇× (∇φ) = 0, for F to be equal to gradient of some potential �eld,
atlest ∇× F = 0. Is this condition su�cient? Yes if it is true over convex sets.



Fundamental Theorem For Gradients

Another fundamental theorem:

Theorem
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Fundamental Theorem For Gradients

Check if F = yz x̂ + xz ŷ + xy ẑ can be written as a gradient of a potential?

if φ(x , y , z) = xyz + c then ∇φ = F



Fundamental Theorem For Gradients

Check if F = yz x̂ + xz ŷ + xy ẑ can be written as a gradient of a potential?

if φ(x , y , z) = xyz + c then ∇φ = F



Fundamental Theorem For Divergence

This is simillar to the previous theorem.

Theorem

(Gauss Theorem) Let V be a solid region in R3 bounded by closed surface S. If
F is continuously di�erentiable on V then

ˆ
V

(∇ · F) dv =

˛
S

F · n̂dS

with n̂ is outer normal to S.



Inverse Square Field

Example

Let F = r̂/r2.

I ∇ · F(r) = 0 if r 6= 0.

I
¸
S
F · n̂dS = 4π if S is spherical surface centered at r = 0.

I by Gauss theorem ˆ
V

(∇ · F) dv = 4π

I Contribution to right hand side integral is only at origin. Then
∇ · F(0) =∞



Fundamental Theorem For Curl

Theorem

(Gauss Theorem) Let S be a smooth surface in R3 bounded by closed curve Γ.
If F is continuously di�erentiable vector �eld, then

ˆ
S

(∇× F) · dS =

˛
Γ

F · dr

where direction of dS vector is determined by the right hand rule.

I
´
S

(∇× F) · dS does not depend on the surface but only the boundary.

I
¸
S

(∇× F) · dS = 0



Fundamental Theorem For Curl

Example

Let F = (2xz + 3y2)ŷ + 4yz2ẑ and surface S be square plane in yz plane given
by S = (0, y , z) with 0 ≤ y , z ≤ 1.

y

z

A

B

C

D



Fundamental Theorem For Curl

Example

Let F = (2xz + 3y2)ŷ + 4yz2ẑ and surface S be square plane in yz plane given
by S = (0, y , z) with 0 ≤ y , z ≤ 1.

I In Figure: dS = dydz x̂

I ∇× F = (4z2 − 2x)x̂ + 2z ẑ

I
´
S

(∇× F) · dS = 4/3

I
´
A
F · dr = 1,

´
B
F · dr = 4/3,´

C
F · dr = −1,

´
D
F · dr = 0

I Stokes Theorem veri�ed. y

z

A

B

C

D



Spherical Coordinate System

I position vector of P: r

I Cartesian coordinates: (x , y , z).

I length of r: r = |r|
I projection of r onto XY plane:

OQ

I angle between z-axis and r: θ

I angle between x-axis and OQ: φ

I θ: zenith angle

I φ: azimuthal angle.

I spherical polar coordinates:
ordered triplet (r , θ, φ)



Spherical Coordinate System



Spherical Coordinate System

r =
√
x2 + y2 + z2

θ = tan−1
(√

x2 + y2

z

)
φ = tan−1

(y
x

)
.



Spherical Coordinate System

r =
√
x2 + y2 + z2

θ = tan−1
(√

x2 + y2

z

)
φ = tan−1

(y
x

)
.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ



Spherical Coordinate System

Ranges of Spherical polar
coordinates:
Clearly, x , y , z ∈ (−∞,∞).

I r ∈ [0,∞),

I θ ∈ [0, π]

I φ ∈ [0, 2π).

Note:

I φ is unde�ned for points on
z-axis

I both θ and φ are unde�ned for
the origin.



Spherical Coordinate System

Coordinate Surfaces can be obtained by keeping one of the coordinates
constant.

r = constant gives a spherical
surface. Let c > 0.

S = {(c, θ, φ) | θ ∈ [0, π], φ ∈ [0, 2π)}

is a sphere of radius c.

x
y

z



Spherical Coordinate System

Coordinate Surfaces can be Obtained by keeping one of the coordinates
constant.

θ = constant gives a conical surface.
Let c > 0.

S = {(r , c, φ) | r ∈ [0,∞], φ ∈ [0, 2π)}

is a cone of angle c.

x

y

z



Spherical Coordinate System

Coordinate Surfaces can be Obtained by keeping one of the coordinates
constant.

φ = constant gives a planar surface.
Let c > 0.

S = {(r , θ, c) | θ ∈ [0, π], r ∈ [0,∞)}

is a half plane.

x

y

z



Spherical Coordinate System

All surfaces:

x

y

z



Spherical Coordinate System

Coordinate Curves: Keeping two coordinates �xed, we get a path. Let
P = (r0, θ0, φ0)

I Sr =
r (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)

I Sθ =
r0 (sin θ cosφ0, sin θ sinφ0, cos θ)

I Sφ =
r0 (sin θ0 cosφ, sin θ0 sinφ, cos θ0)
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Spherical Coordinate System

Coordinate unit vectors are unit tangent vectors to coordinate curves at a given
point. Let P = (r0, θ0, φ0). If S = r (sin θ cosφ, sin θ sinφ, cos θ)

r̂ =
∂S

∂r
/

∣∣∣∣∂S∂r
∣∣∣∣

θ̂ =
∂S

∂θ
/

∣∣∣∣∂S∂θ
∣∣∣∣

φ̂ =
∂S

∂φ
/

∣∣∣∣∂S∂φ
∣∣∣∣

x
y

z



Spherical Coordinate System

Given, S = r sin θ cosφx̂ + r sin θ sinφŷ + r cos θẑ, the Unit Vectors:

r̂ (θ, φ) =
∂S

∂r
/

∣∣∣∣∂S∂r
∣∣∣∣ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

θ̂ (θ, φ) =
∂S

∂θ
/

∣∣∣∣∂S∂θ
∣∣∣∣ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ

φ̂ (θ, φ) =
∂S

∂φ
/

∣∣∣∣∂S∂φ
∣∣∣∣ = − sinφx̂ + cosφŷ

Unit Vectors depend on the location on θ and φ.
Inverse Transformations are

x̂ = sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂

ŷ = sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂

ẑ = cos θr̂ − sin θθ̂



Spherical Coordinate System

Usually, the unit vectors are written without reference to the location, but it is
understood by context.

Point Cartesian Spherical

P (1, 0, 0) (1, π/2, 0)
Q (0, 1, 0) (1, π/2, π/2)

Now,
r̂(P) = r̂(θ = π/2, φ = 0) = x̂ and
φ̂(P) = φ̂(θ = π/2, φ = 0) = ŷ

But
r̂(Q) = r̂(θ = π/2, φ = π/2) = ŷ and
φ̂(Q) = φ̂(θ = π/2, φ = π/2) = −x̂
Vector Cartesian Spherical

A x̂ r̂

B x̂ −φ̂
C ŷ r̂

P
X

Q

Y

A

B

C
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Cartesian unit vectors are constants and do not depend on position, but
spherical unit vectors do!

∂

∂θ
r̂ = θ̂

∂

∂φ
r̂ = sin θφ̂

∂

∂θ
θ̂ = −r̂ ∂

∂φ
θ̂ = cos θφ̂

∂

∂θ
φ̂ = 0

∂

∂φ
φ̂ = − sin θr̂ − cos θθ̂



Spherical Coordinate System

Position vector to any point P = (r , θ, φ) is

−→
OP = r = r r̂(θ, φ) = r r̂

Line Element:

dr = dr
∂r

∂r
+ dθ

∂r

∂θ
+ dφ

∂r

∂φ

= dr r̂ + dθ r
∂ r̂

∂θ
+ dφ r

∂ r̂

∂φ

= dr r̂ + rdθ θ̂ + r sin θdφ φ̂

Surface Elements:

Surface Shape Normal Elementary Area

r = const Sphere r̂ r2 sin θ dθ dφ

θ = const Cone θ̂ r sin θ dr dφ

φ = const Half Plane φ̂ r dr dθ

Volume Element: r2 sin θ dr dθ dφ
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Gradient:

∇f (P) = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

= r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ

Divergence:

∇ · F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂

∂φ
(Fφ)

Curl:
...

Laplacian:

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(Fφ)
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