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INTRODUCTION TO NON-LINEAR
BEHAVIOUR

¥ 2 3
. : X + wogx = ax” = F cos wt
Consider Duffing’s Equation 0

or X = —wjx + ax’ + Fcoswt| D

As a first approximation, assume the solution: xi1(t) = A cos wt| (2)

From (1) & (2) ¥y = —Aw§ cos wt + Aa cos’wr + F cos wf

Using cos’wr = 3 cos wr + 3 cos 3wt

Xy = —(Awj = 2A% — F) cos wt + A%« cos 3wt
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o = —(Aw% + %A?’a — F) cos wt = %ASCI cos 3wt (3)

By integrating this equation and setting the constants of integration to zero (so as
to make the solution harmonic with period T = 2;”), we obtain the second
approximation:

1 Aa
Xa(1) = E(Aw% + 2 Aa — F) cos wr =~ o cos 3wt (4)

Duffing reasoned at this point that if x;(#) and x,(¢) are good approximations to the
solution x(#), the coefficients of cos wt in the two equations ( 3) and (4) should not
be very different. Thus, by equating these coefficients, we obtain

1
A= —Z(Aw% 2 o F) /

’ g
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F
Aa — —
A

3
A=—(Aw(2}i' A3cr—F) Or, wzzw%iz

For the free vibration of the nonlinear system, F = (

wzzw%i

Ao (5)

£l

This equation shows that the frequency of the response increases with the
amplitude A for the hardening spring and decreases for the softening

spring
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3:

X+ cX + wfx * ax’ = F cos wt (6)

For a damped system, it was observed in earlier chapters that there is a phase
difference between the applied force and the response or solution

Solution: Itis more convenient to fix the phase of the solution and keep the
phase of the applied force as a quantity to be determined.

Assume that ¢, A, and A, are all small, of order «

Assume the first approximation to the solution to be
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Substituting (7) in (6) one obtains
2 ) 3 44 3
(w0 — ©°)A £ ZaAS cos Wt — cwA sin wt = 3 °o8 3wt

= A;cos wt — A, sin wt

- . 2 — 2 -+ g 3 =
Equating the cos wt and sin wt terms, one obtains; (“0 ~ @4 = sad” =4y

CwA = AQ

The relation between the amplitude of the applied force and the quantities A and w
Wcam be obtained by squaring and adding the .

0 — wz)A + %CEA3]2 =+ (ch)2 — A% + A% — F2
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[(0f — 0?)A = 3283 + (cwA)? = A? + A} = F?

S%(w, A) + *w*A* = F?

S(w, A) = (w% — wE)A + %Q:AS

[A] 1A A

> w > () >
o wp e, g o 0o
: (@) a=0 (b) a>0 (c) a<0
®)
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This behavior Is known as the jump
phenomenon. It is evident that two
amplitudes of vibration exist for a given
forcing frequency, as shown in the shaded
regions of the curves of Fig. The shaded
region can be thought of as unstable in some
sense.

Thus an understanding of the jump
phenomenon requires a knowledge of the
mathematically involved stability analysis of

periodic solutions /
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ﬁH:FERENTIAL EQUATIONS AND DIRECTION FIELDS\
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Consider undamped pendulum

mg sin 6

mi>0 + mglsin @ = (

Q'er%ﬁ':o

9
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DIFFERENTIAL EQUATIONS AND DIRECTION FIELDS

Consider undamped pendulum

where wj = g /L. Introducing x = fandy = x = 4,

dx ay 2 sin x
—_ = — = — W
i di 0
or
dy B ws sin x
dx y
or
ydy = —w§ sin x dx (E.2)

Integrating Eq. (E.2) and using the condition that x = 0 when x = x; (at the end of the swing), we
obtain

y? = 2wj(cos x — cos x,) (E.3)
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ﬁIFFERENTIAL EQUATIONS AND DIRECTION FIELD

Consider undamped pendulum

Introducing z = y /g, Eq. (E.3) can be expressed as

7> = 2(cos x — cos Xg)

:

™~

(E4)
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ﬁIFFERENTIAL EQUATIONS AND DIRECTION FIELD

onsider undamped pendulum

V' =-sm(y)
and the initial conditions

y(0)=1
1'(0) = 0.

Let y;=y and y,=y', this gives the first order system

Y1 =7,
o' = -sin(y;)

™~

o
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Undamped pendulum

Define an @-function f for the right hand side of the first order system

f=@(t, y) [expression for y,"; expression for y," ]

Y1 =Y,
yzl - 'Sm(yl)

Here we define f=@(t, y) [y(2);-sin(y(1))]

o
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Example  Solve the following IVP.

. >
= 5 X(0)=

Solution
So. the first thing that we need to do 1s find the eigenvalues for the matrix.
_ -
det(A4-AI ) —
3 - /.r.
—A7-31-4
=(A+1)(A-4) =  A=-1LA4=4

Now let’s find the eigenvectors for each of these.

A =—1:

1
We'll need to solve,

L

l

FAEAY I?} s

)
-2

7, 0 "
]: 0] — 2-‘1"1"'*"?2:0 = T

I
|
S

s
L4d
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The eigenvector 1n this case 1s,
A, =4

] [’—f}'g‘
,7;,' =
T
We’ll need to solve,
-3 2 ] ) (0
3 =2)\m) (0
The eigenvector in this case i1s,

1

kY

A

™,

A
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Then general solution is then,
-1 2
¥(t)=ce” +eet
=" Jree2)

Now, we need to find the constants. To do this we simply need to apply the initial conditions.

o=l

All we need to do now 1s multiply the constants through and we then get two equations (one for
each row) that we can solve for the constants. This gives,

—¢, +2¢, = 0} 8 4

(VALV} )R]

. — C=——, C,=——
¢, +3¢, =—4

The solution 1s then,




INTRODUCTION TO STABILITY THEORY

) = e

/

0¢03/L/8

}




INTRODUCTION TO STABILITY THEORY

 If we have c,= 0 then the solution = exponential x vector and all that the
exponential does is affect the magnitude of the vector and the constant c,
will affect both the sign and the magnitude of the vector.

« The trajectory in this case will be a straight line that is parallel to the vector,
n*.

« Also notice that as t increases the exponential will get smaller and smaller
and hence the trajectory will be moving in towards the origin.

* If c,>0 the trajectory will be in Quadrant Il and if ¢,<0 the trajectory will be
In Quadrant IV.




INTRODUCTION TO STABILITY THEORY \

?i'{l’ X2 7@

Eigenvalues that are negative will
correspond to solutions that will move
towards the origin as t increases in a
direction that 1s parallel to its
eigenvector.

Likewise, eigenvalues that are positive
move away from the origin as t
Increases In a direction that will be

parallel to its eigenvector. /
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(1) X2

N " // / * For large -ve t’s the solution will be dominated
| )/ by negative eigenvalue since in these cases the
' / exponent will be large and positive. Trajectories

for large negative t’s will be parallel to n &
moving in the same direction.

« Solutions for large positive t’s will be
dominated by the portion with the positive
eigenvalue. Trajectories in this case will be
parallel to @ and moving in the same direction.




FIXED POINTS OR EQUILIBRIUM POINTS

Consider the equation x = sinx

A graphical analysis of (1) is clear and simple, as shown in the figure

x

We think of t as time, x as the position of an imaginary particle

moving along the real line, and x as the velocity of that particle.

Then the differential equation x = sin x represents a vector field
on the line: it dictates the velocity vector x at each x.

0¢03/L/8




FIXED POINTS OR EQUILIBRIUM POINTS

X = sinx » To sketch the vector field, it is
convenient to plot x versus x, and
then draw arrows on the x-axis to
Indicate the corresponding velocity
vector at each x.

» The arrows point to the right when
x>0 and to the left when x<0 .

A more physical way to think about the vector field: Imagine that fluid is flowing
steadily along the x-axis with a velocity that varies from place to place, according

_to the rule
Eal H@r9




FIXED POINTS OR EQUILIBRIUM POINTS

X

% - X
T 27 Y

As shown in Figure, the flow is to the right when x > 0 and to the left
when x <0.

At points where x = 0 there is no flow such points are therefore called
fixed points.

Two Kinds of fixed points in Figure, solid black dots represent stable
fixed points (often called attractors or sinks, because the flow is
toward them) and

open circles represent unstable fixed points

£] (also known as repellers or sources).




FIXED POINTS OR EQUILIBRIUM POINTS

The appearance of the phase portrait is controlled by the fixed
points x*, defined by f ( x*) = 0; they correspond to stagnation
points of the flow.

« The solid black dot is a stable fixed point (the local flow is
toward it) and the open dot is an unstable fixed point (the flow
Is away from it).

« In terms of the original differential equation, fixed points
represent equilibrium solns (sometimes called steady, constant,
or at rest solns).

* An equilibrium is defined to be stable if all sufficiently small
disturbances away from it damp out in time.

 Stable equilibria are represented geometrically by stable fixed
points. Unstable equilibria, in which disturbances grow in
time, are represented by unstable fixed points




EXAMPLE

Solution:  Here f(x) = x?>— 1. To find the fixed points, we set /(x*) = 0 and solve
for x* Thus x* = +1. To determine stability, we plot x*— 1 and then sketch the
vector field . The flow is to the right where x> — 1 > 0 and to the left where

x*—1 < 0. Thus x* = -1 1s stable, and x* = 1 1s unstable.

f(x)=x"—1




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

Consider a single-degree-of-freedom nonlinear vibratory system described by two first-
order differential equations

dx
E — fl(-x:- })
dy

where f; and f, are nonlinear functions of x and y = x = dx/dt.




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

A study of Egs. in the neighborhood of the singular point provides us with
answers as to the stability of equilibrium. We first note that there is no loss of generality if
we assume that the singular point is located at the origin (0, 0). This is because the slope
(dy)/(dx) of the trajectories does not vary with a translation of the coordinate axes x and y
tox" and y":




INEARIZED STABILITY ANALY®SIS OF
NONLINEAR SYSTEMS

If we assume x =y = 0 as an equilibrium point

f1(0,0) = f5(0,0) =0

If fi and f, are expanded in terms of Taylor’s series about the singular point (0, 0), we
obtain

x = fi(x,y) = a;x + ajpy + Higher-order terms

y = fa(x,y) = anx + apy + Higher-order terms




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

where

af

aip = 7,
ax

a1

df2

s az1 =
(0,0) ox

df

aiz =

3 . 3 oy =
(0,0) dy

(0,0) dy | (0, 0)

In the neighborhood of (0, 0), x and y are small; f; and f5 can be approximated by linear
terms only, so that Eqs. can be written as

R

Assume the solution of 1n the form




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

o e )
aa day — A Y 0
The eigenvalues Ay and A, can be found by solving the characteristic equation

app — A ap

as

Eigen-values

AL A =3(p = \/P* — 4q)

While formulating a Jacobian based formulation: p becomes
the trace of the determinant of the Jacobian




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

where C; and C, are arbitrary constants. We can note the following:

If (p? — 4q) < 0, the motion is oscillatory.
If (p2 — 4q) = 0, the motion is aperiodic.

If p = 0, the system is unstable. Matrix of

If p < 0, the system is stable. eigenvectors

If we use the transformation

NE (e HElW

where [7] 1s the modal matrix and « and 3 are the generalized coordinates,

will be uncoupled:
{a}_[al UHQ} o @ = \a
B 0 AlLB B = A




LINEARIZED STABILITY ANALYSIS OF
NONLINEAR SYSTEMS

The solution of Egs. can be expressed as
a(t) = eM

B(t) =

Depending on the values of A; and A, in Eq. the singular or equilibrium points
can be classified as follows




a(t) = ape

A< A <0

Mt

and B(t) = Boe™

Case (i)—A; and A, are Real and Distinct (‘c;v2 > 4q).

are called nodes or centers

y==x

Stable node

Ay > A =0

CLASSIFICATION OF EQUILIBRIUM POINTS

If A, & A, are of same sign, the type of equilibrium points

/o

Unstable node




@SSIFICATION OF EQUILIBRIUM POINTS \

If A; and A, are real but of opposite signs

The origin 1s called a saddle point
and it corresponds to unstable equilibrium

0¢03/L/8




CLASSIFICATION OF EQUILIBRIUM POINTS
Case (ii)—A; and A, are Real and Equal (p% = 4¢). In this case,
a(t) = apeM  and  B(t) = BeeM!

The trajectories will be straight lines passing through the origin and the equilibrium point
(origin) will be a stable node if Ay << 0 and an unstable node if Ay = 0.
Y

A~

Stable node




CLASSIFICATION OF EQUILIBRIUM POINTS

Case (ili)—A; and A; are Complex Conjugates (pz < 4q). Let Ay = 6 + i, and
Ay = 01 — i0,, where 8, and 0, are real. Then

a = (91 + fﬂg)ﬂ! and B = (‘91 — fﬂz)ﬁ
This shows that « and 8 must also be complex conjugates.
ﬂg(f) = (aoeﬁlf)efﬁzf’ B(I) — (Bﬂgﬁlf)g—fﬂyf

These equations represent logarithmic spirals

In this case the equilibrium point is called focus

0¢03/L/8




CLASSIFICATION OF EQUILIBRIUM POINTS

{I(I) _ (EEGEEH)EIBH, B(f) — (BGEEII)E—:'EZI

Since the factor ¢ in «(t) represents a vector of unit
magnitude rotating with angular velocity 8, in the complex plane, the magnitude of the

complex vector a(t), and hence the stability of motion, is determined by €%,

y Y
If 8; < 0, the motion will be asymptotically stable ~ A
and the focal point will be stable
If 6; = 0, the focal point will be unstable X X
Stable focus Unstable focus

™




EXAMPLE: PHASE PORTRAIT OF A DUFFING
OSCILLATOR

0¢03/L/8

Example: Phase portrait for oscillator with cubic stiffness nonlinearity (un-
damped Duffing oscillator)

mx —kix + ;"c:-;.lc3 =0

with mass m = 1kg, negative linear stiffness k; = —1 N/m and cubic stiffness
k3 = 1 N/m?.




EXAMPLE: PHASE PORTRAIT OF A DUFFING\

OSCILLATOR

mx —

First put the system into first-order form by defining x; = x and x» = X,
such that X = x;. This gives

Equilibrium points:

xh=(r=0,x=0),x5=(x; = 1,0 = 0)

0¢03/L/8

kix 4+ kx> =0

X1 =x2 = fi,
X1 = X1 —x?=f2.

xp = =-1,x=0), /




@AMPLE: PHASE PORTRAIT OF A DUFFING
OSCILLATOR

df1 af1

I f1, 1) dx1 dxp 0
Dt = d(xy, x7) |:3f2 ofy | | 1 —3x}

dxi1 dx?

Forx? = (x1 = 0, xo = 0), the Jacobian becomes

0 1
par=[01]

So for equilibrium point x7, tr(A) = 0 and det(A) = —1

SADDLE POINT

\
0

o




@MPLE: PHASE PORTRAIT OF A DUFFING\
OSCILLATOR

For equilibrium point x;; = (x; = 1, xo = 0), the Jacobian becomes

0 1
Dx§f= I:_z 0]1

so 1n this case tr(A) = 0 and det(A) = 2
CENTRE

Equilibrium point x* = (x; = —1, xo = 0) has the
same Jacobian as equilibrium point x,

@ H’Q,r?
CENTRE




EXAMPLE: PHASE PORTRAIT OF A DUFFING

OSCILLATOR

d

i separatrix

¥

AKXz
:/ \1_
{7

-

TN

2l

closed
orbit A

closed
orbit B

Here the separatrix marks the
boundary between

(i) the orbits confined around
each of the centre
equilibrium points

(i1) orbits which enclose both

A further analogy is to imagine
the phase space orbits as
contours. These contours
indicate lines of constant energy




@A\TE SPACE AND MECHANICAL ENERGY \

Consider an unforced undamped linear oscillator

mx +kx =20

Consideringthe work done over a small increment of distance dx,
as the mass moves from resting x = 0 to an arbitrary x value gives

o

the integral
X X X l l
/{m:’f + kx)dx = m,fi’dx + kfxdx =E; = Hmvz + Ekxz
0 0 0 B




STATE SPACE AND MECHANICAL ENERGY

Now a direct link can be made between the system state space and the energy in
the system. To see this, first notice that in terms of state variables the velocity,
v = X = x2 and the displacement x = x|. Now consider the unforced, undamped
nonlinear oscillator

d
mx + p(x) =0~ mvd—v + p(x) =0,
X

where p(x) is the stiffness function. Integrating to find the energy gives

X

1 1
Emvz + / px) =E; ~ Emvz + Vi(x) = Ei,
0

where V (x) = ]Br p(x) 1s called the pofential function.
% T o




EXAMPLE: POTENTIAL FUNCTION OF A \
DUFFING OSCILLATOR

The potential function can be found by integrating p(x;) =—x| + x]3

| ] |
V(x)) = —§x% + gx% +5

where the % constant ensures that the potential function is always positive

o




EXAMPLE: POTENTIAL FUNCTION OF A
DUFFING OSCILLATOR

\ AV

saddle point 4, _

RN

N
)

—

3¢

Q
A-v2
[+]

>




@MPLE: POTENTIAL FUNCTION OF A \
DUFFING OSCILLATOR

The system plotted in Fig actually has a negative linear stiffness

k, = —1 which explains why there is a saddle point at the origin.
This type of system may at first seem to have limited physical
applications, but it can be used to model an interesting class of

systems which have bi-stability.

Or, in other words, they have two stable configurations (like the

two equilibrium points at +1 and -1 respectively




@MPLE: POTENTIAL FUNCTION OF A \
DUFFING OSCILLATOR
The form of V(x) shown in Fig is often called a double potential well.

The sides of the well continue to extend upwards, and energy levels for
two different orbits are shown in Fig.

Orbit A is inside the potential well around the equilibrium point
atx; =1,x, =0.

Orbit B has a much higher energy level and is not confined to either
of the centre equilibrium points.

Here the separatrix marks the boundary between
(i) the orbits confined to the potential wells around each of the

™\ centre equilibrium points and
A1) orbits which enclose both.




LIMIT CYCLES

In certain vibration problems involving nonlinear damping, the
trajectories, starting either very close to the origin, or, far away from
the origin, tend to a single closed curve, which corresponds to a
periodic solution of the system.

An interesting property of the solution is that all the trajectories,
iIrrespective of the initial conditions, approach asymptotically a
particular closed curve, known as the limit cycle, which represents a
steady-state periodic (but not harmonic)

oscillation.

This is a phenomenon that can be observed only with certain nonlinear
vibration problems and not in any linear problem.




K_II\/IIT CYCLES: VAN DER POL EQUATION \

¥—a(l—xDi+x=0, a>0

 This equation exhibits, the essential features of some vibratory
systems, such as certain electrical feedback circuits controlled
by valves where there is a source of power that increases with
the amplitude of vibration.

« Van der Pol invented it by introducing a type of damping that

Is negative for small amplitudes but becomes positive for large
amplitudes

In this equation, he assumed the damping term to be a
multiple of —(1 — x?) x in order to make the magnitude/

of the damping term independent of the sign of x.
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INTRODUCTION TO BIFURCATION THEORY

« As we’ve seen in Stability Analysis, the dynamics of vector fields on the
line or 2D-plane is very limited: all solutions either settle down to
equilibrium or head out to +co.

« What’s more interesting is Dependence on parameters.

« The qualitative structure of the flow can change as parameters are
varied.

 In particular, fixed points can be created or destroyed, or
their stability can change.

These qualitative changes in the dynamics are called bifurcations, and
the parameter values at which they occur are called bifurcation points.




SADDLE-NODE BIFURCATION

Bifurcations provide models of transitions and instabilities as
some control parameter is varied.

Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are
created and destroyed. As a parameter is varied, two fixed points move toward
each other, collide, and mutually annihilate.




SADDLE-NODE BIFURCATION

The prototypical example of a saddle-node bifurcation is given by the
first-order system x =r + x?

where r 1s a parameter, which may be positive, negative, or zero. When r is nega-
tive, there are two fixed points, one stable and one unstable

1 N AL

(a) r<0 (b) r=0 © r>0




SADDLE-NODE BIFURCATION

where r 1s a parameter, which may be positive, negative, or zero. When r is nega-
tive, there are two fixed points, one stable and one unstable

(a) r<0 (b) r=0 (c) r>0

* As r approaches 0 from below, the parabola moves up and the two fixed
points move toward each other. When r = 0, the fixed points coalesce
into a half-stable fixed point at x* =0

This type of fixed point is extremely delicate: vanishes as soon as r >0,
and now there are no fixed points at all




SADDLE-NODE BIFURCATION: DIAGRAMS

X

unstable ~ < _

-
-

This picture is called the bifurcation
rdiagram for the saddle-node bifurcation

stable




SADDLE-NODE BIFURCATION

Show that the first-order system x =r—x—e " undergoes a saddle-node bifurca-
tion as r 18 varied, and find the value of r at the bifurcation point.

Difficulty: We can’t find the fixed points explicitly as a function of r
by setting f(x)=0;

The point is that the two functions r — x and ¢~ have much more famil-
iar graphs than their difference r — x — e~

Plot (r —x) and e™* in the same figure




SADDLE-NODE BIFURCATION

NN N

il [\ =} P X =} - —

« Thus, intersections of the line and the curve correspond to fixed points for
the system

« This picture also allows us to read off the direction of flow on the x-axis: the
flow is to the right where the line lies above the curve

(r —x) > e *inthereforex >0

Hence, the fixed point on the right is stable, and the one on the leftis
unstable




SADDLE-NODE BIFURCATION

For r below this critical value, the line lies below the curve
and there are no fixed points

Now, start decreasing the parameter r. The line r -x slides down and the fixed
points approach each other. At some critical value r = r_, the line becomes
tangent to the curve and the fixed points coalesce in a saddle-node bifurcation

0¢03/L/8




SADDLE-NODE BIFURCATION

To find the bifurcation point » , we impose the condition that the graphs of
r — x and e~ intersect tangentially. Thus we demand equality of the functions and
their derivatives:
e r=r—Xx

and

d
dx

—X

. d
e _dx(f X).

The second equation implies —e= = —I, so x = 0. Then the first equation yields
r = 1. Hence the bifurcation point is » = 1, and the bifurcation occurs at x = 0. m




PITCHFORK BIFURCATION

« This bifurcation is common in physical problems that have a symmetry.
For example, many problems have a spatial symmetry between left &
right.

* In such cases, fixed points tend to appear and disappear in symmetrical
pairs. In the buckling of column, the column is stable in the vertical position
If the load is small.

* In this case there is a stable fixed point corresponding to zero deflection.
But if the load exceeds the buckling threshold, the beam may buckle to
either the left or the right.

« The vertical position has gone unstable, and two new symmetrical fixed
RQoints, corresponding to left- and right-buckled configurations, have been




PITCHFORK BIFURCATION

X =1x—x3

Observe that if x is replaced by —x, nothing changes : Symmetry

Vector fields:

X X

|

() r<0 (b) r=0

(c) r>0

0¢03/L/8




PITCHFORK BIFURCATION

(a) r<0 (b) r=0 (cy r>0

When r < 0, the origin 1s the only fixed point, and it is stable. When r = 0, the origin
i1s still stable, but much more weakly so, since the linearization vanishes. Now solu-

tions no longer decay exponentially fast—instead the decay 1s a much slower alge-
braic function of time




PITCHFORK BIFURCATION

X

(a) r<0

x

<

(by r=0

X

R he

(© r>0

Finally, when » > 0, the origin has become

unstable. Two new stable fixed points appear on either side of the origin, symmet-
rically located at x* = +/r .

stable

3

stable

---------- unstable

stable

0¢03/L/8




