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Consider Duffing’s Equation

As a first approximation, assume the solution:

(1)

(2)

From (1) & (2)

Using
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By integrating this equation and setting the constants of integration to zero (so as 

to make the solution harmonic with period 𝜏 =
2𝜋

𝜔
), we obtain the second 

approximation:

(3)

(4)
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Or,

This equation shows that the frequency of the response increases with the 

amplitude A for the hardening spring and decreases for the softening 

spring

(5)
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For a damped system, it was observed in earlier chapters that there is a phase 

difference between the applied force and the response or solution

Solution: It is more convenient to fix the phase of the solution and keep the 

phase of the applied force as a quantity to be determined.

(6)

(7)
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Substituting (7) in (6) one obtains

Equating the cos𝜔𝑡 and sin𝜔𝑡 terms, one obtains: 
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This behavior is known as the jump

phenomenon. It is evident that two

amplitudes of vibration exist for a given

forcing frequency, as shown in the shaded

regions of the curves of Fig. The shaded

region can be thought of as unstable in some

sense.

Thus an understanding of the jump

phenomenon requires a knowledge of the

mathematically involved stability analysis of

periodic solutions
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Consider undamped pendulum
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Consider undamped pendulum
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Consider undamped pendulum
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Consider undamped pendulum
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Undamped pendulum

Define an @-function f for the right hand side of the first order system

f = @(t, y) [expression for y1' ; expression for y2' ];

y1' = y2,

y2' = -sin(y1)

Here we define f = @(t, y) [y(2);-sin(y(1))]
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• If we have c2= 0 then the solution = exponential x vector and all that the

exponential does is affect the magnitude of the vector and the constant c1

will affect both the sign and the magnitude of the vector.

• The trajectory in this case will be a straight line that is parallel to the vector,

η1.

• Also notice that as t increases the exponential will get smaller and smaller

and hence the trajectory will be moving in towards the origin.

• If c1>0 the trajectory will be in Quadrant II and if c1<0 the trajectory will be

in Quadrant IV.
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Eigenvalues that are negative will

correspond to solutions that will move

towards the origin as t increases in a

direction that is parallel to its

eigenvector.

Likewise, eigenvalues that are positive

move away from the origin as t

increases in a direction that will be

parallel to its eigenvector.
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• For large -ve t’s the solution will be dominated

by negative eigenvalue since in these cases the

exponent will be large and positive. Trajectories

for large negative t’s will be parallel to η(1) &

moving in the same direction.

• Solutions for large positive t’s will be

dominated by the portion with the positive

eigenvalue. Trajectories in this case will be

parallel to η(2) and moving in the same direction.



FIXED POINTS OR EQUILIBRIUM POINTS

8
/7

/2
0

2
0

21

Consider the equation ሶ𝑥 = sin 𝑥

A graphical analysis of (1) is clear and simple, as shown in the figure

We think of t as time, x as the position of an imaginary particle 

moving along the real line, and ሶ𝑥 as the velocity of that particle. 

Then the differential equation ሶ𝑥 = sin 𝑥 represents a vector field 

on the line: it dictates the velocity vector ሶ𝑥 at each x. 
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ሶ𝑥 = sin 𝑥

A more physical way to think about the vector field: Imagine that fluid is flowing

steadily along the x-axis with a velocity that varies from place to place, according

to the rule

• To sketch the vector field, it is 

convenient to plot ሶ𝑥 versus x, and 

then draw arrows on the x-axis to 

indicate the corresponding velocity 

vector at each x. 

• The arrows point to the right when 

x>0 and to the left when x<0 .
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As shown in Figure, the flow is to the right when ሶ𝑥 > 0 and to the left 

when ሶ𝑥 <0.

At points where ሶ𝑥 = 0 there is no flow such points are therefore called 

fixed points.

Two kinds of fixed points in Figure, solid black dots represent stable 

fixed points (often called attractors or sinks, because the flow is 

toward them) and 

open circles represent unstable fixed points 

(also known as repellers or sources).
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The appearance of the phase portrait is controlled by the fixed 

points x*, defined by f ( x*) = 0; they correspond to stagnation 

points of the flow. 

• The solid black dot is a stable fixed point (the local flow is 

toward it) and the open dot is an unstable fixed point (the flow 

is away from it).

• In terms of the original differential equation, fixed points 

represent equilibrium solns (sometimes called steady, constant, 

or at rest solns).

• An equilibrium is defined to be stable if all sufficiently small

disturbances away from it damp out in time.

• Stable equilibria are represented geometrically by stable fixed

points. Unstable equilibria, in which disturbances grow in

time, are represented by unstable fixed points
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If we assume x = y = 0 as an equilibrium point
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Eigen-values

While formulating a Jacobian based formulation: p becomes

the trace of the determinant of the Jacobian
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Matrix of 

eigenvectors
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If 𝜆1 & 𝜆2 are of same sign, the type of equilibrium points

are called nodes or centers
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In this case the equilibrium point is called focus
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Example: Phase portrait for oscillator with cubic stiffness nonlinearity (un-

damped Duffing oscillator)
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Equilibrium points: 
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SADDLE POINT
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CENTRE

CENTRE
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Here the separatrix marks the 

boundary between

(i) the orbits confined around 

each of the centre

equilibrium points

(ii) orbits which enclose both

A further analogy is to imagine 

the phase space orbits as 

contours. These contours 

indicate lines of constant energy
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Consider an unforced undamped linear oscillator

Consideringthe work done over a small increment of distance dx, 

as the mass moves from resting x = 0 to an arbitrary x value gives 

the integral
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The system plotted in Fig actually has a negative linear stiffness 

k1 = −1 which explains why there is a saddle point at the origin. 

This type of system may at first seem to have limited physical 

applications, but it can be used to model an interesting class of 

systems which have bi-stability. 

Or, in other words, they have two stable configurations (like the 

two equilibrium points at +1 and -1 respectively
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The form of V(x) shown in Fig is often called a double potential well. 

The sides of the well continue to extend upwards, and energy levels for 

two different orbits are shown in Fig.

Orbit A is inside the potential well around the equilibrium point

at 𝑥1 = 1, 𝑥2 = 0. 

Orbit B has a much higher energy level and is not confined to either

of the centre equilibrium points. 

Here the separatrix marks the boundary between

(i) the orbits confined to the potential wells around each of the 

centre equilibrium points and

(ii) orbits which enclose both.
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In certain vibration problems involving nonlinear damping, the

trajectories, starting either very close to the origin, or, far away from

the origin, tend to a single closed curve, which corresponds to a

periodic solution of the system.

An interesting property of the solution is that all the trajectories,

irrespective of the initial conditions, approach asymptotically a

particular closed curve, known as the limit cycle, which represents a

steady-state periodic (but not harmonic)

oscillation.

This is a phenomenon that can be observed only with certain nonlinear

vibration problems and not in any linear problem.
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• This equation exhibits, the essential features of some vibratory 

systems, such as certain electrical feedback circuits controlled 

by valves where there is a source of power that increases with 

the amplitude of vibration. 

• Van der Pol invented it by introducing a type of damping that 

is negative for small amplitudes but becomes positive for large 

amplitudes

• In this equation, he assumed the damping term to be a 

multiple of –(1 − 𝑥2) ሶ𝑥 in order to make the magnitude

of the damping term independent of the sign of x.
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• As we’ve seen in Stability Analysis, the dynamics of vector fields on the

line or 2D-plane is very limited: all solutions either settle down to

equilibrium or head out to ±∞.

• What’s more interesting is Dependence on parameters.

• The qualitative structure of the flow can change as parameters are

varied.

• In particular, fixed points can be created or destroyed, or

their stability can change.

• These qualitative changes in the dynamics are called bifurcations, and

the parameter values at which they occur are called bifurcation points.
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Bifurcations provide models of transitions and instabilities as

some control parameter is varied.

Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are

created and destroyed. As a parameter is varied, two fixed points move toward

each other, collide, and mutually annihilate.



SADDLE-NODE BIFURCATION

53

The prototypical example of a saddle-node bifurcation is given by the 

first-order system ሶ𝑥 = 𝑟 + 𝑥2
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• As r approaches 0 from below, the parabola moves up and the two fixed

points move toward each other. When r = 0, the fixed points coalesce

into a half-stable fixed point at x* = 0

• This type of fixed point is extremely delicate: vanishes as soon as r >0,

and now there are no fixed points at all
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This picture is called the bifurcation

diagram for the saddle-node bifurcation
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Difficulty: We can’t find the fixed points explicitly as a function of r

by setting f(x)=0;

Plot  𝑟 − 𝑥 and 𝑒−𝑥 in the same figure
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• Thus, intersections of the line and the curve correspond to fixed points for 

the system

• This picture also allows us to read off the direction of flow on the x-axis: the 

flow is to the right where the line lies above the curve

Hence, the fixed point on the right is stable, and the one on the left is 

unstable

𝑟 − 𝑥 > 𝑒−𝑥 in therefore ሶ𝑥 > 0
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Now, start decreasing the parameter r. The line r -x slides down and the fixed 

points approach each other. At some critical value r = rc , the line becomes 

tangent to the curve and the fixed points coalesce in a saddle-node bifurcation

For r below this critical value, the line lies below the curve

and there are no fixed points
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• This bifurcation is common in physical problems that have a symmetry.

For example, many problems have a spatial symmetry between left &

right.

• In such cases, fixed points tend to appear and disappear in symmetrical

pairs. In the buckling of column, the column is stable in the vertical position

if the load is small.

• In this case there is a stable fixed point corresponding to zero deflection.

But if the load exceeds the buckling threshold, the beam may buckle to

either the left or the right.

• The vertical position has gone unstable, and two new symmetrical fixed

points, corresponding to left- and right-buckled configurations, have been

born.
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ሶ𝑥 = 𝑟𝑥 − 𝑥3

Observe that if 𝑥 is replaced by −𝑥, nothing changes : Symmetry

Vector fields:
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