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Maximum Likelihood

• Data are sampled from a probability distribution p(x ,y)

• The form of the probability distribution p is known but its 

parameters are unknown

• There is a training set D = {(x1, y1); ……..; (xm, ym)} of 

examples sampled i.i.d. according to p(x, y)
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IID sampling
• Independent: each example is sampled independently from 

others

• Identically distributed: all examples are sampled from the 
same distribution

• The joint probability over D decomposes into a product as
examples are i.i.d (thus independent of each other given
the distribution)
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Liklihood estimator

• Training data  D = {(x1, y1); ……..; (xm, ym)} of  i.i.d. 
examples for the target class y is available

• Assume the parameter vector (θ) has a fixed but unknown 
value

• Estimate of  θ: Maximize its likelihood with respect to the 
training data
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Gaussian with known sigma
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Gaussian with unknown mean & 
sigma

=0

Question: Work out the case where sigma is known and varies
at each point 
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Issues with Maximum Likelihood

Overfitting !

Accurate in training but poor in prediction



01-09-2018

9

Overfitting with Maximum Likelihood

Suppose we fit a MLE with 3 observations of a Bernoulli trial

Prediction: all future tosses will land heads up
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Bayesian update
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Bayesian update
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Example: Bernoulli trial
Likelihood

Prior
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Bernoulli trial: Posterior 
As N increases
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Prediction

What is the probability that the next coin toss will land heads up? 
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Prior: Beta distribution
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Example: Gaussian with known σ

• The likelihood function for is given by

• This has a Gaussian shape as a function of 
(but it is not a distribution over )

• Combine with a Gaussian prior over 
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Example: Gaussian with known σ

This yields

Question: Prove these results ?
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Example: Gaussian with known σ

Question: Check this plot using a simple MATLAB 
code. What happens when N is 100 ?
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Example: Gaussian with known σ
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Example: Gaussian with known μ

• The likelihood function for మ is given by

• This has a Gamma shape as a function of 
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Recognize the posterior becomes :

Example: Gaussian with known μ

Posterior Prior

Question: Prove these results ?
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Gaussian with μ and σ unknown

Gauss-Gamma likelihood

Question: Prove this result ?
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PRIOR LIKELIHOOD POSTERIOR

NORMAL NORMAL NORMAL

BETA BINOMIAL BETA

GAMMA POISSON GAMMA

GAMMA EXPONENTIAL GAMMA

Conjugate Priors
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Gaussian with known σ: Details

Likelihood

Define sample mean and variance
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If ଶis const, we can further write as:
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Prior

Do not confuse ௢
ଶ which is the variance of the prior, with ଶ
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Posterior
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n = 20; %Sample size
sigma = 20; % Gaussian distribution with known sigma
load data_gaussian_mu50_sig20.mat %save it in a file so that the random sequence doesnt change everytime you 
run it
% %==========================================================================
mu = 30;    %hyperparameters
tau = 20;

theta = linspace(-40, 100, 500); dth=(100-(-40))/500;

y1 = normpdf (theta, mean(x),sigma/sqrt(n));  % Liklihood: Derive the formula yourself, sigma known

y2 = normpdf(theta,mu,tau);                 % Prior

postMean = tau^2*mean(x)/(tau^2+sigma^2/n) + sigma^2*mu/n/(tau^2+sigma^2/n); % Using formula

postSD = sqrt(tau^2*sigma^2/n/(tau^2+sigma^2/n)); % Using formula for known sigma

y3 = normpdf(theta, postMean, postSD); % Posterior

y_post_Nr=y1.*y2;   % Likelihood x prior 

sum=sum(y_post_Nr)*dth; % Denominstor
y_post=y_post_Nr/sum; %Posterior using Bayes rule

plot(theta,y1,'m:',theta,y2,'k--',theta,y3,'b','linewidth',2); hold on
plot(theta,y_post,'o-r','linewidth',1); xlim([-30 80])
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A discrete RV example
A plant decides to replace all old temperature sensors in a
nuclear reactor with new sensors that are highly reliable.
Because of lack of information, the supervising engineer
assumes that the failure rate for the equipment is uniformly
distributed between 0 and 6 failures per operating year

• After 3 years operation, the plant has experienced 5 sensor
blips due to the failure of the new temperature sensing
system.

•Compute the posterior distribution of the failure rate given
the observed failures
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Prior: Constant (0 to 6 failures per year discretized coarsely 
into equal intervals of 0.5 failures per year) 

Failures per operating year
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Prior = 0.077 [1 1 1 1 1 1 1 1 1 1 1 1 1] 

0 to 6 failures per year discretized into equal intervals  so p = 1/13 = 0.077
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Likelihood: Poisson process 

Lambda = [0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6 ];

x = 5  and t = 3

Likelihood = (((3*lambda).^5)/factorial(5)). *exp(-3*lambda) 
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%Implementation of the nuclear reactor problem 
prior=0.077*[1 1 1 1 1 1 1 1 1 1 1 1 1]; 

% 0 to 6 failures per year discretized into equal intervals so p = 1/13 = 0.077 

lambda=[0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6]; 

% 0 to 6 failures /year discretized into equal intervals 

L1=(((3*lambda).^5)/factorial(5)) ; 
L2= exp(-3*lambda); 

L=L1.*L2;                            %Liklihood

L_p= L.*prior;                   % Posterior

posterior= L_p/sum(L_p);    % Normalized 
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In some simple problems such as the previous normal mean 
inference example, it is easy to figure out the posterior distribution 
in a closed form. 

In general problems that involve nonconjugate priors, the posterior 
distributions are difficult or impossible to compute analytically.

We will consider logistic regression as an example.

This example involves an experiment to help model the proportion 
of cars of various weights that fail a mileage test.

The data include observations of weight, number of cars    
tested, and number failed. 

Car-experiment Data



01-09-2018

34

% A set of car weights
weight = [2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300]';
weight = (weight‐2800)/1000; % recenter and rescale

% The number of cars tested at each weight
total = [48 42 31 34 31 21 23 23 21 16 17 21]’;

% The number of cars that have poor mpg performances at each weight
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';

Logistic Regression Model

Logistic regression, a special case of a generalized linear model, is 
appropriate for these data since the response variable
is binomial. The logistic regression model can be written as:

௑௕

௑௕

where X is the design matrix and b is the vector 
containing the model parameters

Car-experiment Data
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Y = normpdf (X,MU,SIGMA)

Car-experiment Data
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Parameter update vs data update
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Parameter update vs data update

Gaussian with known 
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Case study: 2 parameter update
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Case study: 2 parameter update

Known:

Data covariance matrix:  C  = [16 0;
0  9];

Hyperparameters:     ఓ and   ఓ

Unknown:
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Case study: 2 parameter update
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Case study: 2 parameter update

What are we trying to seek here ?

Ans: Parameter update ( i.e. mean update). 

So what is the type of information we are looking at ?
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Case study: 2 parameter update
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Case study: 2 parameter update
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Case study: 2 parameter update
Numerical implementation

Posterior statistics
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Case study: 2 parameter update
Numerical implementation using grid integration
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Case study: 2 parameter update


