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/ Random process \
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Random process

RP

>X(t, El)

A random process is a function denoted by X (7,¢)

(a)for a fixed value of 7, X (7, ¢ )is a random variable,
(b) for a fixed value of ¢ X (7, ¢ )1s a function of time (a realization),
(c) for fixed values of 7 and ¢, X (7, ¢ )is a number, and

(d) for varying tand ¢, X (7, ¢ ) is collection of time histories (ensemble)
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/ Random process \
X, (D)
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/ Random process

First-order distribution (for a particular value of t)

Fy(x:t)=PlX(1,) < x]

, d
First-order density function [y (x;7) = d_FX (x:7)
X

X(1)

™~
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2nd Order Averages
/ X, (1) g \
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/ 2"d Order Averages \

2"d order distribution

Fy(x,,x5:1,,1,)=P|X(t;)<x, and X(t,)<x, ]|

2nd order density function
2

O
fX(xlaxzéflJz):ax -~ Fy(x),x,531,15)
10X

v
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/ Expectations \

Ensemble Average
The mean of X(t) is defined by

py (1) = E[X(1)]

X(1) 1s treated as a random variable for a fixed value of ¢

Autocorrelation

+00 +00

Ry (1,15) :E[X(tl)X(fz)]: I Jlxlxz]CX])(2 (1, X531y, 15 )dx, dx,

—00 —a00

Autocovariance

K, (t,5) = Cov[X(8), X(5)] = E{[X(t) — w(DI[X(s) — g ($)]}
: =R, (t,5) — u(Dyls)




Random process

The random process X (£) i1s given by

X (t) = Acos (wt — ®),

where A and ® are random variables with the probability density function,

F o) — % (1+ (3a—1)cos ),

for 0<¢<2w
and 0<a<l.

Derive (a) py, (b) 0%, and (c) Rxx (t1,%2) -
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Random process

{a} The mean can be found by taking the expected value of X (£} or
E{X ()} = E{Acos(wt —3}},
which can be expanded to
E{X ()} = E{A{coswtcosP + sinwisind)}.
Since only A and ¢ are random, coswt and sinwt can be taken out of the expectation so that

E{X ()} = coswtE {Acos P} +sinwtE {Asin P},
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where

Then,

which means that X (¢) is a nonstationary random process.

Random process

E{X (t)} = coswtE {Acosd} +sinwiE {Asin P},

E {A cos @}

1 2w
/ / acos@faa (e, 9)doda
0 0
1

4
1 2w
E{Asin®} = / / asin$faa (e, d) doda
0 0
0.

E{X(@)}= %coswt,
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Random process

(b) The variance can be found using

ok = B{(X () - ux)’} = B{X*} - k-
The root mean square F {X E} 15 g1ven by

E{XE} = E{Aﬂ(cﬂswt COS iIf'—l—sinmtsin(I?']E}
= _-"_*_}{AE cos? wtcos ® + A% sin wtsin? ®
+2A? coswt cos P sinwt sin ®}
= cos’wtFE {AE cos? (IJ'} + sin? wtE {AE sin’ lTJ}
+2coswtsinwtl {AE cos ¢ sin (I?'} :
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Random process

(b) The variance can be found

Each term n the previous equation can be evaluated as follows

1
E{A’cos®®} = -
{ cos } 5
) 1
E{A’sin?®) = =
{ sin } 5
E{A’cos®sin®} = 0.
Then,
1
E{X? =
(x?) - %
and the variance equals
0% = Rxx(t,t)—p%

= E{XE} — 3 = é — l—lﬁcosw?t
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Random process

(¢) The autocorrelation function Ry x (¢1,%2), by definition, 1s given by

Rxx(t1,t2) = E {Ag cos(wt1 — @) cos(wta — P)}
— coswty coswta E{A? cos® B} + sinw (t1 + t2) E {AE cos Psind}
+ sinwty sinwty E{A? sin? ®}
1

- Ecosw(tl —ta) .
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/ Autocorrelation: example\

Consider the random process X(1) X(t) = Ycos wt t=0

where @ 1s a constant and Y is a uniform r.v. over (0, 1).

Find E[X(1)].
(b) Find the autocorrelation function R (1, 5) of X(z).

2
"

(c) Find the autocovariance function K (1, s) of X(r)

v
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/ Autocorrelation: example\

(@) E) = ;and E(YY) = 35 Thus,

E[X(f)] = E(Y cos wf) = E(Y) cos wt = . cos wt
(b) Ryt 5)=E[X()X(s)]= E(¥Y* cos wr cos ws)

=E{F2]cmmrcmms=%cmmcmms

(c) K, (1, 5)= Ry (t, s) — E[X(1)]E[X(5)]

1 1
=3 COS (W COS (0§ "3 COS (UF COS (W5

1
= — COS W COS W5
12

v
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Classification of stochastic
process

Strictly stationary

A random process {X(r),t € T} is said to be stationary or strict-sense stationary if, for all n and for every set
of time instants (¢, €T,i = 1,2, ..., n},

Fy(xpy Xty ont) = Fylx, onxit + 7,00 +1)

Thus both first order and second order distributions are independent of ¢
F,xD=F,xt+9=FQ®
fx 1) = f,(2) Fylx), xp: 1, 1)) = Fylx;, X3 1, — )

py ()= E[X()] = u

Var[X()] = o*

Flx, 2 1) = fo(x, x50, — 1)
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/

1.

Wide sense stationary

If stationary condition of a random process X(t) does
not hold for all n but holds for n <k, then we say that
the process X(t)is stationary to order k.

If X(t) is stationary to order 2, then X(t) is said to be wide-
sense stationary (WSS) or weak stationary.

E[X(6)] = u (constant)

2. Rt s) = EX(OX(s)] = Ry(|s — ¢])

™~

v
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/ Wide sense stationary \

 Stationarity of a random process
IS analogous to
steady state in vibration problems

* One or more of the properties of random process becomes
Independent of time

 Strong sense stationarity (SSS) : defined with respect to
pdf-s

* Wide sense stationarity (WSS) : defined with respect to
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/ Stationary SS: Few Theoremﬁ

1. If a random process which is stationary to order n is also
stationary to all orders lower than n.

2. It {X(1), t € T} Is astrict-sense stationary random
process, then it is also WSS.

3. If arandom process X(t) is WSS, then it must also be
covariance stationary

v
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SSS: Example

Consider a random process X(#) defined by

X(1) = Ucos wt + Vsin wt —0 < << @

where @ 1s constant and UV and V are r.v.’s.
(a) Show that the condition

EWU)=EV)=0

is necessary for X(7) to be stationary.

(b) Show that X(¢)is WSS if and only if U/ and V are uncorrelated with equal variance; that is,

E(UV)=0

E(U? = E(V?) = ¢?




(a)

u, () = E[X()] = E(U) cos wt + E(V) sin wr

must be independent of ¢ for X(¢) to be stationary.

This is possible only if u (£) = 0, that is, E(U) = E(V) = 0.
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(b) If X(r) is WSS, then

T

E[X%(0)] = E| X2 [EE]] = Ryy(0)=0y"

But X(0) = U and X(x/2w) = V; thus,

E(UY) = E(V) = 0,2 = o*

Using the above result, we obtain

R(t,t + ©) = E[X()X( + 7)]
= E{(Ucos wt + Vsin w)[U cos w(t + ) + Vsin w(t + 17)]}
= ¢*cos wtr + E(UV) sin(2wt + w1)
Conversely, if E(UV) = 0 and E(U?) = E(V?) = o?, then from
the result of part (@) and the above result

u( =0
R(t,t+ 1) = 0P cos wr = R (1)
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/ R,.(t) (WSS) examples

1) G(t) = Acos(wot + ¢p),where ¢ is uniform RV with
¢~U (0, 2m). Determine the mean and the autocorrelation ?

AZ
Ans = Y cos(wgyT)

2) G(t) = Acos(wt + 8),where w and @ are independent RVs with
0~U(0,2m) and w~U(w, w,). Determine the mean and
the autocorrelation ?

2

_ A : :
Ans = 0] [sin w,T —SINw4 T]
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/ Autocorrelation: Properties\

1. Itis an even function of t

Ry(7) = Ry (—7)
2. Bounded by its value at origin
[Rx(7)] < R, (0)

3. R,(0) = E[X?]

4, If X is periodic R, (7) is also periodic /
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/ Autocorrelation: Example

A random process Y(r) 1s given by ¥Y(r) = X(1)
cos(wt + ®), where X(7), a zero mean wide-sense stationary random process with autocor-
relation function Rx(7) = 2e M is modulating the carrier cos(wt + ®). The random vari-
able @ is uniformly distributed in the interval (0,27r), and is independent of X(r). We have
to find the mean, variance, and autocorrelation of ¥(1):
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Autocorrelation: Example

Mean. The independence of X(7) and @ allows us to write

E[Y(1)] = E[X(D]E[cos(wt + D)]

and with E[X(1)] = 0 and E[cos(wr + ®)] =0 E[Y(H)] =0

Variance. Since X(t) and @ are independent, the variance can be given by
o3 = E[Y2(1)] = E[X*(1) cos® (wt + ®)] = 62E[cos’ (wi + )]

However

) 1 1 )
E[cos“(wf + P)] = EE[I + cos(2wt + 2®)] = 5 and oy = Cx(0) = Rx(0) =2

2 2
and hence oy, = 0y /2 = 1.
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Autocorrelation: Example

Autocorrelation:
Ry(T) = E[Y(1)Y(t + 7)] = E[X(7) cos(wt + P)X(1 + T) cos(wr + o1 + D)]

]
= RX(T)EE[COS(U)T) + cosLwt + o1 + 2D)]

_ Rx(71)
2

Rx(T)

cos(wT) + E[cosQwt + ot + 2D)]

E[coswt + ot 4+ 2®)] = 0, and hence

—2\|7|

Ry(r) = XD ostor) = 2 cos(e)
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/ Cross-correlation \

1. Two processes X(t) and Y(t) are called jointly
stationary

¢ If each of them are WSS individually
¢ Ry (t,t +7) = R,y (7)
Ryx(t; t+1) = Ryx(T)

2. R,y (7) and Ry, () are mirror images of each
other Ryy (1) = Ry (—7)

v
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/

Noisy signals
Consider a signal buried in white-noise, 1.e. y(t) = s(t) + n(t)

Assume: Noise and signal are uncorrelated and with mean =0

Therefore: Ren(z) = E[s()n(t + )] = fispin
Ryy(t) = E[(s(f) +n(t)) (s(t + 1) +n( + 1))]

Applications \

= E[s(t)s(t+ 1)+ E[n(t)n(t + 1))+ 21ty
Ryy(r) = R5(7) + Ry(7)

As Rnn(z ) decays very rapidly, the autocorrelation function of the
signal Rss (z ) will dominate for larger values of ¢
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/ Application of cross-correlation

«—

Tx) 4 (1)

Consider a wheeled vehicle moving over rough terrain as shown in Figure.

 Let the time function (profile) experienced by the leading wheel be x(t)
and that by the trailing wheel be y(t)
 Let the autocorrelation of x (t) be Ry (7)
« Assume that the vehicle moves at a constant speed V.
Then, y(t) = x(t— A ) where A=L/V

Ryy(t) = E[x(0)y(t + )] = E[x(O)x(t + 7 — A)]
— Rxx(I — A)
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/ Application of cross-correlatiom

«—

IR0 $ (1)

« Let x (t) and y(t) be observed in presence of white noise (~N(0,c2))

x(t) = s(t) + ny(r)
y(t) = st — A) + ny(t)

The cross-correlation function R,,(7) is (assuming zero mean values)

Ryy(t) = E[(s(t) + ne(D) (s(t = A+ 1)+ ny(t + 1))

= E[s(t)s(t + 7 — A)] = Rys(t — A) /
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Erogodicity

Basic idea: Equivalence of temporal and ensemble averages

Ensemble

Direction

/V/ L/ /X Temporal
AVAY " 19 B ~//: wVVYy ?'E
7 Ke) : Direction
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/ Erogodicity \

A random process Is said to be Ergodic If it has the property that
the time averages of sample functions of the process are equal to
the corresponding statistical or ensemble averages.

T/2

EX(O] = (X(0) = 7 [ xwar

—T/2

The sample autocorrelation can be calculated using the following formula

v

T/2

Ry (1) = (X(DX(t + 1)) = % j X0+
-T/2




Erogodicity

* Consider a sample of a random process: x (1), x (2),......... x (N)
« The sample mean of the sequence could be estimated as:
N—-1
. 1
M(N) == ) %
n=0
 Since the sample is a realization of a random process it must have
a constant ensemble mean E[X(n)]=m,

If the sample mean m,. (N ) of a WSS converges to m, in a mean
square sense as N— oo, then the random process is said to be Ergodic
In mean

lim m, (N ) =m,

N—o0

16-10-2019




16-10-2019

/ Mean Ergodic Theorem \

Mean Ergodic Theorem 1. Let x(n) be a WSS random process with autocovariance

sequence cy (k). A necessary and sufficient condition for x(n) to be ergodic in the
mean is

. 1 N—I
Jim, 7 2 e =0

Mean Ergodic Theorem 2. Let x(n) be a WSS random process with autocovariance
sequence ¢, (k). Sufficient conditicns for x (n) to be ergodic in the mean are that
c.{0) < oo and

lim ¢, (k) =0
k—




Sample autocorrelation of a WSS and
Ergodic process

(k) = E[ x(k)x(n — k)]

For each k, the autocorrelation is the expected
value of the process: y,(n) = x(k)x(n — k)

Using Ergodicity properties, the autocorrelation

1s finally estimated as :

7 (k, N) =~ XN =2 x(k)x(n — k)
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WSS& Ergodic process: exampl%

Coming back to the random phase sinusoid

G(t) = Acos(wyt + @), where ¢ is uniform RV with ¢~U(0, 21).
(X(©) = lim — [Lx(D)dt = lim — [ Acos(wot + @) dt = 0

(X(OX(t+1) = lim — [ x(®x(t + D)t

= lim %f_TT A?% cos(wot + weT + P)cos(wpt + P)dt

T—oo

AZ
= 7cos(a)or)
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MATLAB examples

Autocorrelation of a random phase sinusoid
Noisy signal
Time delay problem

™~

v




/ FOURIER TRANSFORM\

« Extension of Fourier analysis to non-periodic phenomena
« Discrete to continuous
» Skipping essential steps, in the limit T oo

250

X{f} — [ -x(if}f_jznfrdf ¢ ' Fourier transfom

—
2

x(t) = f X(f)e!Itdf < ij

— X
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/ POWER SPECTRUM \

Iinowing that a random proecess is composed of energy at
many frequencies, we define a random process that 18 a sum of harmonics,
similarly to the Fourier series. Begin first with a random funetion of one
harmonic process, X(t) = C cos (wt — ¢b) , or equivalently,

X(t) = Acoswt + Bsinwt,

where A and B? are independent random variables. Assuming both to be
woro mean and identically distributed, we have

pa= pg= 0
74 = o= 0o°.




POWER SPECTRUM

The autocorrelation is given by

Rxx(t) = E{X@®O)X({t+71)}
= FE{(Acoswt+ Bsinwt) (Acosw[t+ 7| + Bsinw [t + 7])}.

Expanding the product and utilizing trigonometric identities results in

Rxx (1) = 02 coswr.

T

X(t) = ) Xi(t)

s

— Z (Ay coswyt + By sinwygt),
k=1

>

Suppose that the frequency content of the random process is expanded,

\5\53”* Feyywhere we make the same assumptions as were made above about A and B.

(‘\?
9%
E
£y

&

16-10-2019




POWER SPECTRUM

Suppose that the frequency content of the random process is expanded,

Tre

X(t) = > Xk(t)

TrL

Z (Ap coswyt + Brsinwygt),
k=1

where we make the same assumptions as were made above about A and B.
Following the same procedure as for the above single-frequency process, we

find

Tre T

Rxx (1) = E Rx,x, (T E o3 COS WT.

The total variance for the process is found by recalling that
*=E{X?@t)} - px = Rxx (0),

the last equality being true for the case where the mean equals zero.

Tt

~Y o2
k=1

16-10-2019
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/ POWER SPECTRUM \

P]Db&blht} density p (w) One-sided .
S “( G‘ij ~ Spectral density

§%(w, Ydo, = o2 p(wy)

®, Oy @y o+ Dy
(b)

Each frequency component wy, contributes r:rf_ to the total variance o2. The

fraction of the total is given by the ratio crf, /o2, which can be defined as
p(wy) as shown in Figure Note that >7," ; p(wr) = 1. Then,

TrL

Rxx (1) = o2 Zp{wk}coswk'r,
k=1

where p(wy) acts as a weighting function. The above implies that p(wy)

m behaves like a probability density.
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POWER SPECTRUM

\ Probability density p (w) One-sided

p(w)] S’ o] A spectral density
SD{W}: )dw, = o? p(awy )
.| « 1« ’ a 0 | R
) ) >
(‘01 mz'“mk SRR ) P [64]

(a) (b)

Suppose the frequency spectrum becomes very broad, including many
frequencies, that is m — ©o, resulting in a continuous frequency spectrum.
Define dw = wj1 —wy. In an analogous manner to how we proceeded from
a discrete to a continuous probability density function, replace o?p(wy,) by
5S¢ (w) dw, and the sum above by an integral over the frequency range,

Rxx (T) :/ S°(w) coswT dw.
0

S (w) is called the one-sided spectral density of the random process because
L&m’%&it distributes the variance of the random process as a density across the /
C\% frequency spectrum. The one-sided spectral density is shown in Figure
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/WIENER KHINCHINE THEOREm

1 e -
Sxx () = o= / Ryx (r)e=“"dr
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PROPERTIES

Since Rxx (1) = Rxx (—7), Sxx (w) is not a complex function but a
real even function,

S};x (w) - SXX (—w).

For 7 = 0,
/ Sy x (w)dw:Rxx (D)ZE{Xz(t)} > 0.

On physical grounds, then, it can be argued that since the area under the
power spectral density equals 0% for a zero-mean random process, it must be
a positive quantity for any Aw, that is, Sxx (w) > 0.
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PROPERTIES

For 7 =0,

/Do S~y x (w) dw = Rxx (U) = E{Xg(t)} > 0.

The above integral represents average or, mean-square power of the process
X(t)

For an ergodic process, the expected value can be written as

T/2
E{X?*#)} ~ lim 1 X2(t)dt,
T oo T —Tf?

Which is the total energy over the total time or the average power.

Therefore, power spectrum is a measure of the energy
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ﬂZertain important R,.(7) < S, (w)

R(1) =_f: S(w)e™ dw

S(6) =35 | R(x)e

Jsw
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Certain important R,.(7) & S, (w)

F 3 &
COSE T 1 1le
~ ,”\ {\1 3 S a+am,) 5 Ofeo—n,)
WARY, T T T
w (1)
=1, 0
F 3 F
2n
P ol i 2o
/ wm
»T — )
0 0
F Y "
in T X L
I/ 4 smwIi)
f \ T
|
/ \
T AW, N N
-7 0 ! 0 2n'T '
F
2 I 1
Eﬂ:e—u 1|cosm,T | L li_!'._
'ﬂﬁl ."7\1'5
7% /] [ /;ﬁ\ / ;H‘x )
W U L}U W =y 0 o




Example

Consider for example R, (t) = sin wyT

The spectral density is related to the autocorrelation func-
tion by Equation

1 |
Sxx (w) = 5 ] Rax (7) e~ dr.

If the autocorrelation is a pure sine function, Sxx (w) is given by the
integral,

1 = ' —iwT
Sxx (w) = o sinw,T e dr.
—o0

16-10-2019




Example

Consider for example R, (t) = sin wyT

Using the Euler identity, sinw,7 = [exp (iw,T) — exp (—iw,7)] /24, the spec-
tral density becomes

1 =1 ' : — T
Syx (w) = or % lexp (iw,T) — exp (—iw,T)] e dr
_ % o0 % (E_f[m—wn}’r - E—i{w-l—wt,j?') dr
1

= E[ﬁ(w—wu)—ﬁ(w—f—uﬂ)].

This example shows that a sine function cannot
be a valid autocorrelation function. Why ?

16-10-2019
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/ Units of Power spectral densim

[Units of X ()]

frequency

Units of PSD:

Ex: X (7) 1s displacement
Units of PSD : ~— or ——
Hz  (rad/s)

Stmilarly, 1t X(t) 1s acceleration
(m/s”)’ ) (m/s”)’

Units of PSD: 0
Hz (rad/s)
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Narrow band & broad band processes

X(1)

3

p [\

AN g
\/\/\/\/\/U\

X(w)

A

—(92

b 1)} |

Narrow-band random process X (t) in time and frequency X (w) domains.

X()

A

X(w)

UU

o \J\\WI\ VAN

Broad-band random process X (¢) in time and frequency X (w) domains
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Narrow band & broad band processes

A narrow band spectrum can be expressed as a flat spectrum
Sy 1n the frequency band [w; w5 ]

S ()

¥

Sy |

'Ir8
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Narrow band & broad band processes

Sy ()

S, L

The autocorrelation function for such a process is evaluated as follows,

A

Rj{_?-; {’T) = [ S;{;{ (L.J:l Efi:wTdLu

wa

. = 2 Sy cos wT dw,

—0);

-0,

oy (O] Lt

where the real part of the complex exponential is retained having made use
of the symmetry of the power spectrum function. The integral is evaluated
to give

Ryx (1) = 2& (sinwoT — sinw; 7). (1)
T

Note that the autocorrelation function consists of two harmonic functions
at frequencies w; and ws. When the frequencies are close to each other,
beating is observed. This is clearer when Equation (1) is written as

Ryx () =422 {(%) } {(%) }
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ﬂ\larrow band & broad band process%

A

2
Ry (T) (m/s)
., o o —_
[y Lh = h f— L¥ ]

—
tLh

S

T(s)

Figure: The autocorrelation function for an ideal narrow-band process.

S, =2 m?/s, w; = 3 rad/s, and we = 3.5 rad/s.

v




Broad band processes

A broad band process is one that contains significant energy for a
wider range of frequencies
40 : : : : : H : : :

25 ; : ; ; : : ; : ;

R () (m/s)’

10 . ; ; . ; ; . ; .

B B S SRRt

-10

25 -2 -15 -1 <05 05 1 15 2 25

0
T (s)

Figure : The autocorrelation function for an ideal narrow-band process
So =2 m?/s, w; = 0 rad/s, and wy = 10 rad/s.
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White noise process

What happens when w4 = 0 and Lim w, - o

lim 4&(:05 Wi W leind (2221, ZQSnsmsz
wi—0 T 2 2 T

Rxx(r) = wliglm28051n:)2?-
= 27Sp0 (7)

Elquation can be confirmed using the definition of the spectral density
given in Equation

Sxx (w) i[ 27508 (1) e “"dr = So

T o oo

16-10-2019
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/ White noise process \

Wix ()
SU( ({:J) A

418,

[
o

o (rad/’s) S {HZB

Figure : Two-sided and one-sided white noise spectra.




