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Recall: Random Variable Def

𝜉1
𝜉2
:
:
:
𝜉𝑝

𝑋(𝜉1) 𝑋(𝜉𝑝)

RV𝜉𝑖 𝑋(𝜉𝑖)
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Random process

RP𝜉𝑖 𝑋(𝑡, 𝜉𝑖)
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Random process

RP𝜉𝑖 𝑋(𝑡, 𝜉𝑖)



16-10-2019

5

Random process
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Random process

First-order distribution (for a particular value of t)

First-order density function
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2nd Order Averages
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2nd order distribution

2nd order density function

8

2nd Order Averages
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Expectations

Ensemble Average

Autocorrelation

Autocovariance
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Random process
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Random process
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Random process
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Random process
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Random process
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Random process
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Autocorrelation: example
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Autocorrelation: example
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Classification of stochastic 

process

Strictly stationary

Thus both first order and second order distributions are independent of 𝑡
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If stationary condition of a random process X(t) does 

not hold for all n but holds for n ≤ k, then we say that 

the process X(t)is stationary to order k.

If X(t) is stationary to order 2, then X(t) is said to be wide-

sense stationary (WSS) or weak stationary.

Wide sense stationary
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• Stationarity of a random process 

is analogous to

steady state in vibration problems

• One or more of the properties of random process becomes

independent of time

• Strong sense stationarity (SSS) : defined with respect to 

pdf-s

• Wide sense stationarity (WSS) : defined with respect to 

moments

Wide sense stationary
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Stationary SS: Few Theorems

1. If a random process which is stationary to order n is also 

stationary to all orders lower than n.

2. If {X(t), 𝑡 ∈ 𝑇} is a strict-sense stationary random 

process, then it is also WSS.

3. If a random process X(t) is WSS, then it must also be 

covariance  stationary
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SSS: Example
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𝑅𝑥 𝜏 (WSS) examples

1) 𝐺 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝜙 , where 𝜙 is uniform RV with

𝜙~𝑈(0, 2𝜋). Determine the mean and  the autocorrelation ?

Ans = 
𝐴2

2
cos 𝜔0𝜏

2)  𝐺 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜃 , where 𝜔 and 𝜃 are independent RVs with

𝜃~𝑈(0, 2𝜋) and 𝜔~𝑈 𝜔1, 𝜔2 . Determine the mean and 

the autocorrelation ?

Ans = 
𝐴2

2𝜏(𝜔2−𝜔1)
[sin𝜔2𝜏 −sin𝜔1𝜏]
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Autocorrelation: Properties

1. It is  an even function of 𝜏

𝑅𝑥 𝜏 = 𝑅𝑥 −𝜏

2.   Bounded by its value at origin

𝑅𝑥 𝜏 ≤ 𝑅𝑥 0

3.    𝑅𝑥 0 = 𝐸 𝑋2

4.    If X is periodic 𝑅𝑥 𝜏 is also periodic
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Autocorrelation: Example
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Autocorrelation: Example
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Autocorrelation: Example
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Cross-correlation

1. Two processes X(t) and Y(t) are called jointly 

stationary 

 if each of them are WSS individually

 𝑅𝑥𝑦 𝑡, 𝑡 + 𝜏 = 𝑅𝑥𝑦 𝜏

𝑅𝑦𝑥 𝑡, 𝑡 + 𝜏 = 𝑅𝑦𝑥 𝜏

2.  𝑅𝑥𝑦 𝜏 and 𝑅𝑦𝑥 𝜏 are mirror images of each 

other        𝑅𝑥𝑦 𝜏 = 𝑅𝑦𝑥 −𝜏
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Applications

Noisy signals

Consider a signal buried in white-noise, i.e. y(t) = s(t) + n(t)

Assume: Noise and signal are uncorrelated and with mean = 0

Therefore: 

As Rnn(τ ) decays very rapidly, the autocorrelation function of the 

signal Rss (τ ) will dominate for larger values of τ
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Application of cross-correlation

Consider a wheeled vehicle moving over rough terrain as shown in Figure.

• Let the time function (profile) experienced by the leading wheel be x(t) 

and that by the trailing wheel be y(t)

• Let the autocorrelation of x (t) be 

• Assume that the vehicle moves at a constant speed V. 

Then, y(t) = x(t − ∆ ) where ∆ = L/V

𝑅𝑥𝑥 𝜏
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Application of cross-correlation

• Let x (t) and y(t) be observed in presence of  white noise (~𝑁 0, 𝜎2 )
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Erogodicity

Basic idea: Equivalence of temporal and ensemble averages
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Erogodicity

A random process is said to be Ergodic if it has the property that 

the time averages of sample functions of the process are equal to 

the corresponding statistical or ensemble averages.

𝐸 𝑋 𝑡 = 𝑋(𝑡) =
1

𝑇
න
−𝑇/2

𝑇/2

𝑥 𝑡 𝑑𝑡

The sample autocorrelation can be calculated using the following formula

𝑅𝑋(𝜏) = 𝑋 𝑡 𝑋(𝑡 + 𝜏) =
1

𝑇
න
−𝑇/2

𝑇/2

𝑥 𝑡 𝑥 𝑡 + 𝜏 𝑑𝑡
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Erogodicity

• Consider a sample of a random process:  x (1), x (2),………x (N)

• The sample mean of the sequence could be estimated as:

ෞ𝑚𝑥(𝑁) =
1

𝑁
෍

𝑛=0

𝑁−1

𝑥𝑛

• Since the sample is a realization of  a random process it must have 

a constant ensemble mean  E[X(n)]= 𝑚𝑥

If the sample mean ෞ𝑚𝑥(𝑁 ) of a WSS converges to 𝑚𝑥 in a mean 

square sense as N→ ∞, then the random process is said to be Ergodic 

in mean

lim
𝑁→∞

ෞ𝑚𝑥(𝑁 ) =𝑚𝑥
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Mean Ergodic Theorem
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Sample autocorrelation of a WSS and 
Ergodic process

𝑟𝑥 𝑘 = 𝐸 𝑥 𝑘 𝑥 𝑛 − 𝑘

For each k, the autocorrelation is the expected

value of the process:  𝑦𝑘 𝑛 = 𝑥 𝑘 𝑥 𝑛 − 𝑘

Using Ergodicity properties, the autocorrelation 

is finally estimated as :

ෝ𝑟𝑥 𝑘, 𝑁 =
1

𝑁
σ𝑛=0
𝑁−1 𝑥 𝑘 𝑥 𝑛 − 𝑘
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WSS& Ergodic process: example

Coming back to the random phase sinusoid 

𝐺 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝜙 , where 𝜙 is uniform RV with 𝜙~𝑈(0, 2𝜋). 

𝑋(𝑡) = lim
𝑇→∞

1

2𝑇
𝑇−׬
𝑇
𝑥 𝑡 𝑑𝑡 = lim

𝑇→∞

1

2𝑇
𝑇−׬
𝑇
𝐴 cos 𝜔0𝑡 + 𝜙 𝑑𝑡 = 0

𝑋 𝑡 𝑋(𝑡 + 𝜏) = lim
𝑇→∞

1

2𝑇
𝑇−׬
𝑇
𝑥 𝑡 𝑥 𝑡 + 𝜏 𝑑𝑡

= lim
𝑇→∞

1

2𝑇
𝑇−׬
𝑇
𝐴2 cos 𝜔0𝑡 + 𝜔0𝜏 + 𝜙 𝑐𝑜𝑠 𝜔0𝑡 + 𝜙 𝑑𝑡

= 
𝐴2

2
cos 𝜔0𝜏
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MATLAB examples

• Autocorrelation of a random phase sinusoid

• Noisy signal

• Time delay problem



• Extension of Fourier analysis to non-periodic phenomena

• Discrete to continuous

• Skipping essential steps, in the limit Tp ∞

Fourier transform

Inverse 

Fourier transform

FOURIER TRANSFORM
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POWER SPECTRUM
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POWER SPECTRUM
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POWER SPECTRUM
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POWER SPECTRUM
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POWER SPECTRUM
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WIENER KHINCHINE THEOREM
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PROPERTIES
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PROPERTIES

The above integral represents average or, mean-square power of the process 

X(t)

Which is the total energy over the total time or the average power.

Therefore, power spectrum is a measure of the energy
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Certain important 𝑅𝑥(𝜏) ↔ 𝑆𝑥 𝜔
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Certain important 𝑅𝑥(𝜏) ↔ 𝑆𝑥 𝜔
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Example

Consider for example 𝑅𝑥 𝜏 = sin𝜔0𝜏
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Example

Consider for example 𝑅𝑥 𝜏 = sin𝜔0𝜏

This example shows that a sine function cannot

be a valid autocorrelation function. Why ?
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Units of Power spectral density
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Narrow band & broad band processes
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Narrow band & broad band processes

A narrow band spectrum can be expressed as a flat spectrum

𝑆0 in the frequency band [𝜔1 𝜔2]
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Narrow band & broad band processes
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Narrow band & broad band processes
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A broad band process is one that contains significant energy for a

wider range of frequencies

Broad band processes
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White noise process

What happens when 𝝎𝟏 = 0 and Lim 𝝎𝟐 → ∞
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White noise process


