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SET THEORY
EVENTS Sample space

Event A

A

Every subset of  S is an event, including S and the null set Ø

Then

S = the certain event

Ø = the impossible event
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SET THEORY

Equality:

Two sets A and B are equal, denoted A =B, if and only if

Complementation:

Suppose              The complement of set A, denoted  by    , is 

the set containing all elements in S but not in A

Union:

The union of sets A and B, denoted A U B, is the set containing 

all elements in either A or B or both
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SET THEORY

Intersection:

The intersection of sets A and B, denoted by            , is the 

set containing all elements in both A and B.

Difference:

The difference of sets A and B, denoted A \ B, is the set 

containing all elements in A but not in B .



11-08-2019

5

SET THEORY

Null Set:

The set containing no element is called the null set , denoted  

by Ø. 

Disjoint Sets:

Two sets A and B are called disjoint or mutually exclusive if 

they contain no common element
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SET THEORY

The definitions of the union and intersection of two sets can be 

extended to any finite number of sets as follows:
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SET THEORY

If A and B are events in S, then

Similarly, if                       are a sequence of events in  S, 

then
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SET THEORY

Size of Set:

When sets are countable, the size (or cardinality) of set A, denoted

|A|, is the number of elements contained in A. When sets have a

finite number of elements, it is easy to see that size has the

following properties:
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Venn-diagrams
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SET THEORY: Useful identities
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SET THEORY

Commutative Laws

Associative Laws

De Morgan's Laws

Distributive Laws
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FIELDS

Fields:

The elements of a field are called events

• The first condition implies that the set of all outcomes is an event

• The 2nd condition means that the complement of an event is an event

• The 3rd condition implies that the union of 2 events is an event
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Properties of fields
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SIGMA FIELDS

The assumption of equally likely events as we will

study later leads to a lot of problems in computing

probability particularly when of possible outcomes of

a random experiment is infinite.

That is precisely the reason why modeling the event

space as ordinary fields is not adequate and the notion

of sigma field becomes particularly important.
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SIGMA FIELDS

 First condition implies that the set of all outcomes is an event

 2nd condition means that the complement of an event is an 

event

 3rd condition implies that the union of a sequence of events 

is an event
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SIGMA FIELDS

Properties:

A      -field   is also a field

If a field –F is finite, then it is also a    - field

A family of all subsets of Ω is a     - field

If  A and B are in sigma field –F , then                               are

also in –F 
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More on 𝜎- fields/algebras

σ-algebras are a subset of algebras in the sense that all σ-algebras are

algebras, but not vice versa.

Algebras only require that they are closed under pairwise unions while

σ-algebras must be closed under countably infinite unions.

Roll of a die: The sample space is Ω = {1, 2, 3, 4, 5, 6}

In probability space, the σ-algebra is σ (Ω), also called the σ-algebra

generated by Ω. 

Take the elements of Ω and generate the "extended set" consisting of

all unions, compliments, compliments of unions, unions of

compliments, etc. include Φ

With this "extended set“ and the result is σ (Ω), is denoted by Σ.



11-08-2019

18

Let

However, the collection of the following subsets of S,

is not a field because (2) ∪ (4,5,6) = (2,4,5,6) is not in the field

ℱ1= 𝑆,Φ, 1,2,3 , 4,5,6 , (2)

But we can adjoin the missing sets and make ℱ1 into a field. This is known as 

completion. In the example above, if we adjoin the collection of sets 

to ℱ1, then

ℱ1 ∪ ℱ2= 𝑆,Φ, 1,2,3 , 4,5,6 , 2 , 2, 4, 5, 6 , 1,3 is a field

𝓕𝟐= 𝟐, 𝟒, 𝟓, 𝟔 , 𝟏, 𝟑

Example
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Borel 𝜎- fields
• In many random experiments the outcome is a real number

• We may be interested in finding probability that it belongs to a given

interval (a, b)

• To consider all such events, we need a 𝜎-field of the subsets of the

real number line ℝ, containing all intervals. This makes the

𝜎-field very large especially when we consider all possible intervals.

• Many 𝜎-fields may contain the subsets of {Ai}, but the smallest 𝜎-

field containing the subsets of {𝐴𝑖}, is called the Borel 𝜎-field. The

smallest 𝜎-field for S by itself is F = {𝑆,Φ}
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Measure on a set S: A systematic way to assign a positive number

to each suitable subset of S, intuitively interpreted as its size. In a

sense, it generalizes the concepts of length, area, volume

A brief intro to measure

Examples of measures:

Counting measure: μ(S) = number of elements in S

Lebesgue measure : μ(S) = conventional length of S

That is, if S = [a, b] ⇒ μ(S) = λ[a ,b] = b − a.
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A brief introduction to measure
A pair (X, Σ) is a measurable space if X is a set and  Σ is a nonempty σ-algebra 

of the subsets of X.

A measurable space allows us to define a function that assigns real-numbered 

values to the abstract elements of Σ

Definition:

Let (X, Σ) be a measurable space. 

A set function μ defined on Σ is called a measure iff :

1. 0 ≤ μ(A) ≤ ∞ for any A ∈ Σ.

2. μ(Φ) = 0.

3. (σ-additivity). For any sequence of pairwise disjoint sets {𝐴𝑛} ∈ Σ
S.T.  ڂ𝑛=1

∞ 𝐴𝑛 ∈ Σ
we have  𝜇(ڂ𝑛=1

∞ 𝐴𝑛) = σ𝑛=1
∞ 𝜇(𝐴𝑛)
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Probability measure

A triplet (X, Σ, μ) is a measure space if (X, Σ) is a measurable space 

and μ: Σ → [0; ∞) is a measure

• If μ(X) = 1, then μ is a probability measure, which we usually use 

notation P, and the measure space is a probability space.

• A measure space (Ω, Σ, μ) is called finite if μ(Ω) is a finite real 

number

• A measure μ is called σ-finite if Ω can be decomposed into a 

countable union of measurable sets of finite measure.
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PROBABILITY SPACE

An assignment of real numbers to the events defined in an

event space F leads to probability measure P.

Consider a random experiment with a sample space S, and

let A be a particular event defined in F.

The probability of the event A is denoted by P(A). Thus, the

probability measure is a function defined over F. The triplet

(S, F, P) is known as the probability space.
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FINITELY ADDITIVE PROBABILITY 
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Example
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Example

Is P a finitely additive probability measure ?
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Prove that

Example
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COUNTABLY ADDITIVE PROBABILITY 
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COUNTABLY ADDITIVE PROBABILITY 
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Conditional events

B

A/B

• Event B occurs first

• A occurs given that B has 

already occurred

P (A/B) =  ?

= P (A ∩ B) / P(B)
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Example

F

a [P(a) =0.05]
c [P(c) =0.03]

b [P(b) =0.04]

Find the probability of failure of 

the truss ?

Assume: The failures of each of 

the members are mutually 

independent

Hint: Define the failure event first
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• Prob of settlement of each footing = 0.1

• Prob of settlement of each footing  given the other one has settled = 0.8

Find the probability of differential settlement

Example

Hint: Define the failure event (i.e. differential settlement) 

first

A B
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• Sometimes probability of an event A cannot be assigned directly but can 

be assigned conditionally for a number of other events Bi

• Bi must be mutually exclusive and collectively exhaustive

Theorem of total probability
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Example
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Random variable

Random Variable (RV): A finite single valued function that

maps the set of all experimental outcomes in sample space S into

the set of real numbers R, is said to be a RV

A random variable does not return a probability
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Example: a coin toss
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• Random variable is a function X that assigns a rule of

correspondence for every point ξ in the sample space S, a

unique value X(ξ) on the real line ℛ called the range

• Let Σ be the sigma field associated with the sample space and

Σ𝑋 be the sigma field associated with the real line

• The RV X induces a probability measure 𝑃𝑋 in R, and hence X

is a mapping of the probability space {S,Σ,P} to the probability

space {ℛ, Σ𝑋, P𝑋} as shown below:

Random variable
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Random variable

What sort of Sigma field is Σ𝑋
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Discrete Random Variable

• Discrete random variables are generally used to

describe events that are counted, for example: no

of cars crossing the intersection

• Discrete random variables are expressed using 

integers

• The probability content of a discrete random

variable is described using the probability mass

function(PMF) and is denoted by pX(x)
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• The cumulative distribution function(CDF) is defined as a 

function of x, whose value is:

The probability that X is less than or equal to x:  P(X ξ ≤ 𝑥)

• Because the events are mutually exclusive(i.e. X can only 

assume one value at a time) the CDF is obtained simply by 

adding the discrete probabilities as

Discrete Random Variable
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Consider the problem of three nuclear reactors. 

Assume that a reactor will be active and

operating 90% of the time. What is the

probability that at-least two reactors are

operating at a given time?

Example: PMF
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Let

X = no of reactors operational at any given time

A = event that a reactor is active

O = event that a reactor is offline for service

Also let

0 = event that all reactors are offline 

1 = event that 1 reactor is active and 2 are offline 

2 = event that 2 reactors are active and 1 is offline 

3 = event that all 3 reactors are active 

Example: PMF
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We are given: P(A) = 0.9, P(O) = 0.1

Assuming the operation of the reactors is statistically 

independent, we can construct the PMF for the random 

variable X as

pX (0) = P(X = 0) = (0.1)(0.1)(0.1) = 0.001

pX(1) = P(X = 1) = 3[(0.9)(0.1)(0.1)] = 0.027

pX (2) = P(X = 2) = 3[(0.9)(0.9)(0.1)] = 0.243

pX (3) = P(X = 3) = (0.9)(0.9)(0.9) = 0.729

Example: PMF
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Therefore, the probability that at least two reactors are operating 

is given by X ≥ 2which is computed as

Example: PMF
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A discrete random variable X can take m possible values X = 

{x1, x2, …, xm} is the sample space

Rolling a die, X= {1, 2, 3, 4, 5, 6}

• P(xk) = Probability of RV X taking a kth value (= xk)

• Expected Value or Mean = 

• Variance of X = 

Properties of RV
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• Bernoulli random variable:  

 Takes only two values, X ≡ {0, 1}

• Occurrence of an event (i.e., X = 1) with 

probability = p 

• No occurrence of event (i.e., X = 0) with 

probability = (1-p) 

Bernoulli trials
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Bernoulli trials
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• Suppose a system has 4 standby or backup units 

The probability of failure of each unit is p per year

• What is the probability that 1 unit will fail in the next year 

?

Unit No. 1 2 3 4 Probability

Sequence

1 F S S S p(1-p)3

2 S F S S (1-p)p(1-p)2

3 S S F S (1-p)2p(1-p)

4 S S S F (1-p)3p

Total:      4 p(1-p)3

F = Fail; S = Safe

Bernoulli trials example
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• Suppose, the distribution of the number of failures X in a group 

of 4 machines is a RV

• The RV follows binomial distribution

𝑃 𝑋 = 𝑘 = 4C𝑘
𝑝𝑘(1 − 𝑝)(4−𝑘)

Binomial Distribution
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The number of trials (occurrence of transients or accidents = m)

• The number of failures in m trials = X,  a RV (X ≤ m)

• Probability of failure per transient/accident = p

• Binomial distribution (Prob of exactly k occurrences in m 

trials)

k = 1, 2, 3,…m

• Distribution parameters are = m and p

𝑷 𝑿 = 𝒌 = 𝒎C𝒌
𝒑𝒌(𝟏 − 𝒑)(𝒎−𝒌)

Binomial Distribution
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• Parameters: m = 4 machines and probability of failure p = 0.1

• The distribution of number of failures 

PMF

Binomial Distribution
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• What is the probability that there will be 2 or less failures? 

(Cumulative probability up to 2 )

Answer = P(X=0) + P(X=1) + P(X=2) = 0.97 

Binomial Distribution
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• Binomial distribution converges to the Poisson distribution 

 When probability of failure p →0 (very small) 

 And the population of component 𝒎 → ∞(very large)

 Such that 𝒎𝒑 → 𝝁, constant called mean number of failures

• Poisson distribution gives the distribution of the number of 

failures (N)

Poisson Distribution



11-08-2019

56

• Probability of failure of a component 

p = 0.0025 per year

• The number of components in service

m = 1000

• Mean number of failures

μ= m p = 2.5 failures per year

Example: Poisson distribution
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