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/Recall: Random Variable Dﬁ
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/ Random process \
x1(0)

: —aa =0,
.E;\—.—-:_.__ |
él RP >X(t, 61) xi(7) E
\"_\: »
- ul U :\f
lo




Si

Random process

RP

>X(t! fl)

A random process is a function denoted by X (7,¢)

(a)for a fixed value of 7, X (7, ¢ )is a random variable,
(b) for a fixed value of ¢ X (7, ¢ )1s a function of time (a realization),
(c) for fixed values of 7 and ¢, X (7, ¢ )is a number, and

(d) for varying tand ¢, X (7, ¢ ) is collection of time histories (ensemble)
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/ Random process \
X, (1)
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/ Random process

First-order distribution (for a particular value of t)

Fy(x:t)=PlX(1,) < x]

, d
First-order density function [y (x;7) = d_FX (x:7)
X

X(#)

~
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/ 2nd Orcigr Averages \
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/ 2"d Order Averages \

2"d order distribution

2nd order density function
A2

Sx (xp,x558,0) =——
Ox,0x

Fy(x,,x,:1,,1,)=P|X(t,)<x, and X(1,)<x, |

Fy (X, X551,15)

v
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Expectations

Ensemble Average
The mean of X(r) is defined by

(1) = E[X(1)]

X(r) 1s treated as a random variable for a fixed value of ¢

Autocorrelation

+00 +00

R (11.1,) = E[X (1) X (1,)]= I lexzleXz (x),X 551,15 )dx,dx,

—00 —00

Autocovariance
K, (t,5) = Cov[X(8), X(5)] = E{[X(t) — u(DI[X(s) — py ()1}
=Ry (t,5) — u(Du(s)




Random process

The random process X (%) 1s given by

X (t) = Acos(wt — P),

where A and ® are random variables with the probability density function,

S % (A4 (Ba1)coen)

for 0< <27
and 0<a<1.

Derive (a) iy, (b) 0%, and (c) Rxx (t1,%2) -
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Random process

(a} The mean can bhe found by taking the expected value of X (£} or
E{X ()} = E{Acos(wt —&}},
which can be expanded to
E{X (#]} = E{A coswicos® + sinwisind)}.
Since only A and ¢ are random, coswt and sin:wt can be taken out of the expectation so that

E{X (t]} = coswtE {Acos @} +sinwiE {Asind},
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Random process

E{X(t)} =coswtE {Acos P} +sinwtE {Asind},

where
1 iy
E{Acﬂs*]’} = ff acos ¢ faa (a, ) dpda
0 Jo
=1
4
1 plw
E{Asin®} = ff asin ¢ fas (@, ) dpda
0 JO
= 0.
Then,

E{X ()} = § cosut,

which means that X () is a nonstationary random process.
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Random process

(b) The variance can be found using
o = B{(X () - px)’} = B{X"} - k-

The root mean square E {Xﬂ} 13 given by

E{X*} = FE{A%coswtcos® +sinwtsind)?}

E{A? cos® wt cos® P + A? sin® wtsin® @

+2A2 coswt cos P sinwt sin B}

= cos’wtF {AE cos’ iIJ} + sin? wtE {AE sin’ 'IIJ}
+2coswtsinwtk {AE cos ¢ sin (Iﬁ} :
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Random process

(b) The variance can be found
Each term 1 the previous equation can be evaluated as follows
E {}1? cos” tI)} =

E{A?sn*®} =
E{A’cos®sin®} =

= | = Sl —

Then,
1
E{X?\ —_
(x?} — %
and the variance equals

ok = Rxx(t,t)—pk

= E{Xﬂ} — 3= % = % cosw?t.
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Random process

(c) The autocorrelation function Ry x (1,%2), by defimition, 1s given by

Rxx(t1,t2) = FE {A2 cos(wt1 — @) cos(wita — 'I*)}
= coswiy coswta E{A® cos® ®} + sinw (t1 + t2) E {AE cos @sin®}
+ sinwt; sinwty E{A® sin® }
1

— Ecosm(tl — 1) _
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/ Autocorrelation: example\

Consider the random process X(1) X(t) = Ycos wt t =0

where w is a constant and Y is a uniform r.v. over (0, 1).

Find E[X(1)].
(b) Find the autocorrelation function R (1, s) of X(1).

)
o

(c¢) Find the autocovanance function K (1, s) of X(1)

v
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/ Autocorrelation: example\

EY) = and E(¥*) = -. Thus,

E[X(9)] = E(Y cos wif) = E(Y) cos wr = 1 cos wf
(b)  Ryl(t,5)=E[X(1)X(s)]= E(Y? cos wr cos ws)

=E{f1]cnﬁmrcnﬁms=%cmmcmms

(¢) K, (1, 5)= Ry(t, 5)— E[X()]ETX(5)]

1 1
=3 COS (Wi COS W5 "3 COS (! COS (WS

1
= — COS (Wf COS W5
12

v
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Classification of stochastic
process

Strictly stationary

A random process {X(r),t € T} is said to be stationary or strict-sense stationary if, for all n and for every set
of time instants (¢, €T,i = 1,2, ..., n},

Fy(xpy Xty ont) = Fylx, onxit + 7,00 +1)

Thus both first order and second order distributions are independent of ¢
Fx=F,xt+1=F{)
fy(at) = f(0)

py (D= E[X()] = u

Var[X()] = o?

Fo(x,,x t,1,) = Fy(x, %1, — 1))

Fx(, x5 8, 8) = fulx, x5 8, — 1)
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e

1.

Wide sense stationary

If stationary condition of a random process X(t) does
not hold for all n but holds for n < k, then we say that
the process X(t)is stationary to order k.

If X(t) is stationary to order 2, then X(t) is said to be wide-
sense stationary (WSS) or weak stationary.

E[X(#)] = u (constant)

2. Rt,5) = EIX(NX(s)] = R(|s — t|)

~

v
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/ Wide sense stationary \

« Stationarity of a random process
IS analogous to
steady state in vibration problems

« One or more of the properties of random process becomes
Independent of time

 Strong sense stationarity (SSS) : defined with respect to
pdf-s

« Wide sense stationarity (WSS) : defined with respect to

moments /
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/ Stationary SS: Few Theorenﬂ

1. If a random process which is stationary to order n is also
stationary to all orders lower than n.

2. I {X(1), t € T} Is a strict-sense stationary random
process, then it is also WSS.

3. If arandom process X(t) is WSS, then it must also be
covariance stationary

v
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SSS: Example

Consider a random process X(#) defined by

X(t) = Ucos wt + Vsin wt —0 < << @

where @ 1s constant and [/ and Vare r.v.’s.
(a) Show that the condition

EU)=EV)=0

is necessary for X(7) to be stationary.

(b) Show that X(¢)is WSS if and only if U/ and V are uncorrelated with equal variance; that is,

E(UV)=10

E(U? = E(V}) = ¢?




(a)

p,(t) = E[X(1)] = E(U)cos wt + E(V) sin wt

must be independent of ¢ for X(f) to be stationary.

This is possible only if u (£) = 0, that is, E(U) = E(V) = 0.
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(b) If X(r) is WSS, then

T

E[X%(0)] = E|Xx* [5;]] = Ryy(0)=0,"

But X(0) = U and X(x/2w) = V; thus,

E(UY) = E(V) = 0,? = o?

Using the above result, we obtain

R(t,t + ©) = E[X(DX( + 7)]
= E{(/cos wt + Vsin wi)[U cos w(t + T) + Vsin w(r + )]}
= ¢g*cos wtr + E(UV) sin2wt + 1)
Conversely, if E(UV) = 0 and E(U?) = E(V?) = ¢?, then from
the result of part (@) and the above result

p(n) =0
R(t,t+ 1) = dcos wr = R (7)
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/ R,.(t) (WSS) examples

1) G(t) = Acos(wyt + @), where ¢ is uniform RV with
¢~U(0,2m). Determine the mean and the autocorrelation ?

Az
Ans = Y cos(wqyT)

2) G(t) = Acos(wt + 6),where w and @ are independent RVs with
6~U(0,2m) and w~U (w4, w,). Determine the mean and
the autocorrelation ?

AZ

Ans = (@100 [sin w,T —SINw T]
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/ Autocorrelation: Properties\

1. Iti1s an even function of

Ry(7) = Ry (—7)
2. Bounded by its value at origin
[Rx ()| < R, (0)

3. R.(0) = E[X?]

4. If Xis periodic R,.(7) is also periodic /
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/ Autocorrelation: Example

A random process Y(¢r) 1s given by Y(r) = X(r)
cos(wt + @), where X(1), a zero mean wide-sense stationary random process with autocor-
relation function Rx(7) = 2e~*M" is modulating the carrier cos(wt + ®). The random vari-
able ® is uniformly distributed in the interval (0,277), and is independent of X(¢). We have
to find the mean, variance, and autocorrelation of ¥(r):
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Autocorrelation: Example

Mean. The independence of X(7) and ® allows us to write

E[Y()] = E[X()]E[cos(wt + )]

and with E[X(7)] = 0 and E[cos(wf + ®)] =0 ElY()] =0

Variance. Since X(r) and @ are independent, the variance can be given by
o3 = E[Y?(1)] = E[X*(1) cos’ (wt + ®)] = 0¥ E[cos (o + D))

However

9 1 1 ’
E[cos™(wt + D)] = EEU + cos(2wt 4+ 2D)] = 5 and oy = Cx(0) = Rx(0) =2

2 2
and hence 0y = oy /2 = 1.
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/ Autocorrelation: Example

Autocorrelation:
Ry(t) = E[Y(HY(t + 7)] = E[X(1) cos(wr + P)X (1 + T) cos(wf + wT + D)]

]
= RX(T)EE[COS(U)T) + cos(2wt + ot + 2D)]

Rx(T) cos(orT) + Rx(T)

El[cosLwt + ot + 2D)]

E[cosQwt + ot + 2®)] = 0, and hence

Rx(T) —2\|T

Ry(T) cos(wT) = ¢ | cos(mT)

A graph of Ry(7) is shown in Fig. with A = 0.5 and w = 2.
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/ Cross-correlation \

1. Two processes X(t) and Y(t) are called jointly
stationary

¢ If each of them are WSS individually
¢ Ry (t,t+7) =R,y (7)
Ryx(t; t+1) = Ryx(T)

2. R,y (7) and Ry, (7) are mirror images of each
other Ryy (1) = Ry (—7)

v
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White-Noise

Consider a time function that switches between two values +a and —a as shown
The crossing times #; are random and we assume that it is modelled as a Poisson process
with a rate parameter A. Then, the probability of k crossings in time t is

_ e M)
k!

Pk =

where A is the number of crossings per unit time.

x(1)
A

+d

J

> |/

=

—
===
= e o
=

-

—a L

Figure Asynchronous random telegraph signal
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White-Noise

—d

1o Aalo If we assume that the process is in steady state, i.e. I — 00,
— ——— then P[X(1) =a] = P[X(t) = —a] =12
L uu o So the mean value pu, = E[x(t)] = 0.

The product x(1)x(t + 1) is either a® or —a?

it is a@? if the number of crossings is even in time 1

—a? if the number of crossings is odd in time T

The total probability for a® (i.e. an even number of crossings

occurs)is Y -, Pax, and the total probability for —a?is Y - Part1
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White-Noise

x(1)

+d

J

—a | I

[

Thus, the autocorrelation function becomes
o0

Rex(t) = E[x(Dx(t + 1) = ) _[a’pax — @ prcs1]
k=0
y _ T (T _ 2, (=T
—_ 2,7 AlT] _ _ 2,—AlT|
—ac LZ;( 200 2k + 1) )}_ae [; i }

9
— ad’e 2A00T]
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idea of a ‘completely erratic’ random process whose autocorrelation (autocovariance)
function is like a delta function, and the process that has this property is called white

noise, 1.e.

White-Noise

Note that, as the parameter A gets larger, R, (t) becomes narrower
We use this to define a special WSS called White Noise
As J—oo, the process is very erratic and R, (1) becomes a Dirac delta function|

In order that R,.(t) doesn’t disappear completely, a becomes very large

Autocorrelation function of white noise: R,,(t) = kdé(7)

This gives an
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Erogodicity

Basic idea: Equivalence of temporal and ensemble averages

Ensemble

Direction

g [t Temporal

X A p
7 ey Direction
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/ Erogodicity \

A random process Is said to be Ergodic if it has the property that
the time averages of sample functions of the process are equal to
the corresponding statistical or ensemble averages.

T/2

1
EIX(0] = (X(0) = j x(6)dt

~T/2

The sample autocorrelation can be calculated using the following formula

v

T/2

Ry(t) =(X()X(t+ 1)) = %f / x(t)x(t+1)dt
—T/2
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Erogodicity

* Consider a sample of a random process: x (1), x (2),......... x (N)

« The sample mean of the sequence could be estimated as:
N-1
e 1
M(N) =% ) %
n=0
* Since the sample is a realization of a random process it must have
a constant ensemble mean E[X(n)]=m,

If the sample mean m,. (N ) of a WSS converges to m,, in a mean
square sense as N— oo, then the random process is said to be Ergodic
In mean

lim ML (N ) =m,

N—->oo
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/ Mean Ergodic Theorem \

Mean Ergodic Theorem 1. Let x(n) be a WSS random process with autocovariance

sequence cy (k). A necessary and sufficient condition for x(n) to be ergodic in the
mean is

. 1 N—I
Jim, 7 2 e =0

Mean Ergodic Theorem 2. Let x(n) be a WSS random process with autocovariance
sequence ¢, (k). Sufficient conditicns for x(n) to be ergodic in the mean are that
¢, {0) < oo and

lim ¢, (k) =0
k—oa
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Sample autocorrelation of a WSS and
Ergodic process

re(k) = E[ x(k)x(n — k)]

For each k, the autocorrelation is the expected
value of the process: y,(n) = x(k)x(n — k)

Using Ergodicity properties, the autocorrelation
1s finally estimated as :

7k, N) = 4 Z0=3 x()x(n — )
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WSS& Ergodic process: example\

Coming back to the random phase sinusoid

G(t) = Acos(wyt + @), where ¢ is uniform RV with ¢~U(0, 21).

.1 (T .1 (T
(X(t)) = TII_I,EOEI_Tx(t)dt :TIEEOEI—TA cos(wot + @) dt =0

(X(OX(t +1) = lim — [Lx(®x(t + 1)dt

= lim %f_TT A? cos(wgt + woT + P)cos(wot + P)dt

T—oo

AZ
== cos(wyT)
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/ Applications \

Noisy signals
Consider a signal buried in white-noise, 1.e. y(t) = s(t) + n(t)

Assume: Noise and signal are uncorrelated and with mean =0

Therefore: Re(t) = E[s(®)n(t + )] = fisitn

Ryy(t) = E[(s(t) +n(1)) (s(t +7) +n(t + 7))]
= E[s(t)s(t+71)]+ E[n(t)n(t + 1))+ 215ty

R}!y(r) = Rss(T) + Rpa(7)

"N As Rnn(z ) decays very rapidly, the autocorrelation function of the
Asignal Rss (z ) will dominate for larger values of ¢
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/ Application of cross-correlation

«—

Tx) 4 (1)

Consider a wheeled vehicle moving over rough terrain as shown in Figure.

« Let the time function (profile) experienced by the leading wheel be x(t)
and that by the trailing wheel be y(t)
 Let the autocorrelation of x (t) be Ry, (7)
« Assume that the vehicle moves at a constant speed V.
Then, y(t) = x(t— A ) where A=L/V

Rxy(t) = E[x()y(t + )] = E[x(t)x(t + 7 — A)]
= Ryx(t — A)
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/ Application of cross-correlatiom

«—

IR0 $ (1)

« Let x (t) and y(t) be observed in presence of white noise (~N(0,52))

x(t) = s(f) + ny(1)
y(&) =5 — A) +ny(1)

The cross-correlation function R,,(7) is (assuming zero mean values)

Ryy(t) = E[(s(t) + nx(1) (st — A+ 1) + ny(t + 1))]

— E[s()s(t + T — A)] = Rys(z — A) /
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e

MATLAB examples

Autocorrelation of a random phase sinusoid
Noisy signal
Time delay problem

~

v
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Independent Increment Process&

Independent Increment Process:

{X(t),t> 0 } issaid to have independent increments when

X(0),X(t;) —X(0),X(ty) —X(t1), v e vee e, X(t) — X (t1—1)

are independent

If {X(t), t> 0 } possesses independent increments and

X(t + h) — X(s + h) has the same distn as X(t)- X(s), then process

X (t) i1s said to have stationary independent increments.

v




Arrival Process

Let t represent a time variable
« Suppose an experiment beginsatt =0

« Events of a particular kind occur randomly,
the first at T, the second at T,, and so on.
« The RV (T;) denotes the time at which the i event occurs, and

* Thevaluest, of T;(i= 1, 2, . .. ) are called points of occurrence

»ie Zy———pie—Z;—» e Z, >

04-10-2018




Arrival Process

- Z1 i Zz 'H“"'-za—'ﬂ I zn

Y

l | | | | l
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i
0 t, t, t, t

Let Z, =T, —Ty1& To=0

Then Z,, denotes the time between the (n - 1)st and the nth events

The sequence of ordered RV's {Z,,, n = 1} iIs sometimes called an
Interarrival process.

Observethat T, =Zo+Z4,+2Z,+--+7Z,

The sequence {T;,, n = 1} is called Arrival Process
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/ Counting Process \

A random process {X (t), t = 0} is said to be a counting process
If:
«  X(t) represents the total number of events that have occurred

In the interval (0O, t)
e X(t)=0andX(0)=0
« X(t)isinteger valued & X(s) < X(t) ifs<t

* X(t)-X(s) equals to the no of events that have occurred in the

v

Interval (s, t)
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Counting Process

X(t) represents the total no of events that have occurred in the interval (0, t)

X(t) = 0&X(0) =0;X(t)isinteger valued & X(s) < X(t) ifs<t

X (t)-X(s) equals to the no of events that have occurred in the interval (s, t)

X(t) is a independent increment process if the no of events which occur in

disjoint time intervals are independent

A counting process X (t) possesses stationary increments if X(t + h) —

X (s + h) has the same dist. as X (t)- X(s)
x(t)

l'1
-

i 4
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Poisson counting Process

A counting process X(t) is said to be a Poisson process with rate (or intensity) 4
(>0)if

1. X(0O) =0.

2. X(t) has independent increments.

3. The number of events in any interval of length t is Poisson distributed with
mean At

-~ (A1)

n!

Pl X(t+s)—X(s)=n]=e n=0,12,... for all s,t> 0,

E[X(0)] = Mt Var[X(1)] = Mt

Thus, the expected number of events in the unit interval (0, 1), or any
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Example

Suppose vehicle are passing a bridge with the rate of two per minute.

Q1. In 5 minutes, what is the average number of vehicles?

Q2. what is the variance in 5 minutes ?
Q3. What is the probability of at least one vehicle passing the bridge in

that 5 minutes?

To determine the above, the Poisson process is assumed ,where v(t)is the
number of vehicles in the interval [0, t], with a rate of A = 2.

6"
P{V(t) =n} = (n') e Mn=123....
For t=5 PIV(t) =5} =32e752 = 11,(5) = 10 = 63(5)
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Interarrival times for Poisson
counting Process

A counting process X(t) is said to be a Poisson process with rate A (> 0) if
1. X(0) = 0 & X(t) has independent increments.
2. The no of events in any interval of length t is Poisson distributed with mean At

P[X(r+s)-X(s)=n]=e'*“‘£—)i%— n=012,... forall s,t> 0,
: n!

The time intervals between successive events (ti) or interarrival times
in a Poisson’s process X(t) with rate A are 1D exponential with parameter A

Let Z1, Z2, « » * be the r.v. 's representing the lengths of interarrival times in the Poisson process
X(t)

{Z1 > t} takes place if and only if no event of the Poisson process occurs in the interval (0, t),

P{Z;< t}=1-P{Z; >t} =1—-eH
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Interarrival times for Poisson
counting Process

The time intervals between successive events (ti) or interarrival times
in a Poisson’s process X(t) with rate A are II1D exponential with parameter A

Let Z,, Z,, * * * be the r.v. 's representing the lengths of interarrival times in the Poisson process X(t).

{Z, > t} takes place if and only if no event of the Poisson process occurs in the interval (0, t),
P{Z, < t}=1-P{Z; >t}=1—-eH

P{Z,> t} = [ P{Z, > t|Z, = 1} fy(7)dr
= [ P{X(t +0)-X(1) = 0] fi()dr =™

which indicates that Z,, is also an exponential with parameter A and is
independent of Z;.

Repeating the same argument, we conclude that Z, , Z,, .... are iid
exponential r.v.'s with parameter 1
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/ Arrival times for Poisson counting
Process

LetT, = Zy + Z; + Z, + - + Z,, denote the time of the nt! event
of a Poisson process X(t) with rate A.

T,, 1s a gamma r.v. with parameters (n, A)

we know that Z,, are 1id exponential r.v.'s with parameter A.

It can be proved that the sum of n iid exponential r.v.'s with
parameter A iIs a gamma RV with parameters (n, A)

' et (A1) >0
fr, ()= (n—1)!
‘ﬂ <0
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Example: Semirandom telegraph
signal

-1k

Consider the random process
Y(r) = (=1

where X(7) is a Poisson process with rate A. Thus, Y(¢) starts at Y(0) = 1 and switches back and forth
from +1 to —1 at random Poisson times T, as shown in Fig. The process Y(z) is known as the
semirandom telegraph signal because its initial value ¥(0) = 1 is not random.

Determine the mean and covariance of Y(t)
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fxample: Semirandom telegraph signal

Y(I)={

1
-1

if X(z)1s even
if X(¢)is odd P[Y(t)=1]= P[X(t) =even integer]

- —A

2!

P[Y(:) = —1] = P[X(¢) = odd integer]

3
=E-"‘ﬂ"Ir [;1_;4.@4....
3!

py () = ELY(0] = (HP[Y(2) = 1] + (—D)P[Y(1) = —1]
= ¢~M(cosh Az — sinh At) = ¢~

2
1_|_(?-.I) +] = ¢ Mcosh A

= ¢ Msinh At

v
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Example: Semirandom telegraph signal

1 if X(¢)is even
Y(t)= : :
—1 if X(¢)is odd

Similarly, since Y(r)¥(r + 1) = 1 if there are an even number of events in (¢, 7 + 7) for > 0 and
Y(©)Y(t + ©) = —1 if there are an odd number of events,thenfort> 0and ¢t + 7> 0,

Ry(t,t +T)=E[Y(D)]Y (t +7)]

=Y ey ) oo

n. n
neven

= ]
- At i - _
—e JL‘FE( I) —¢ J.'re }L'r=e 2At
n.

n=0
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/ Bernoulli Process \

o Let X{, X, ...... be independent Bernoulli RVs with P(X,, = 1) =
pand P(X,, =0)=qg=1-p forall n.

* The collection of RVs {X(n),n>1 } Isarandom process, and
It is called a Bernoulli process.

» Asample sequence of the Bernoulli process can be obtained by

tossing a coin consecutively

» If a head appears, we assign 1,
» If a tail appears, we assign 0.




Bernoulli Process

n 1 2 3 4 5 6
Coin tossing H T T H H H
b 1 0 0 1 1 1

H

The sample sequence {x, } obtained above is plotted in Fig.

oo
'}
B
23]
o
S

04-10-2018




04-10-2018

/ Random Walk \

* Let 24,7, ...... be independent Bernoulli RVs with P(Z,, = 1) =
pand P(Z,, =-1)=q=1-pforalln.

X,=YZ n=L2,.. and X, =0

i=1

The collection of RVs {X(n),n=1 } is arandom process,

and it 1s called Random Walk




Random Walk

Repeat the same coin tossing exercise as Bernoulli process
n 0 1 2 3 4 5 6 1 8 9
Coin tossing H T T H H H T H H
x(n) 0 i1 o0 -1 o 1 2 1 2 3
x(n)
3+ e
2 [} ° °
1+ e ° ]
0 | ‘ 1 ‘ l 1 1 1 1 1 1 ] >
2 4 6 8 10 n
-1 ®

Homework: Find the mean, variance and the autocorrelation of a simple
random walk
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Wiener Process

A random process {X (t), t> 0 } is called a Wiener process if

1. X(t) has stationary independent increments.

2. The increment X(t)- X(s) (t > s) is normally distributed.
3. EX@®]=0

4. X(0)=0

The Wiener process is also known as the Brownian motion process, since it originates as
a model for Brownian motion, the motion of particles suspended in a fluid.




Wiener Process

A Wiener process X(t) has stationary independent increments in which the
increment X(t)- X(s) (t > s) is normally distributed with:

1. E[X()]=0

2. VAR[X(t)] = ot

3.  Whenag?=1, X(t) is called a STANDARD Wiener process

The autocorrelation function of Wiener process R, (t,s) = g?min(t, s)
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/ Wiener Process with Drift

1. X(t) has stationary independent increments.

2. Theincrement X(t)- X(s) (t > s) is normally distributed.
3. E[X(t)] = ut

4, X(0)=0

The pdf of a standard Wiener process with drift coefficient u is given by :

_ _ 2
fro () = —¢ (e-utf/2t
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Other processes related to Wiener

 Brownian Motion:

« Brownian Bridge:

B(t) = 0.5W(t)

X(t)= B(t)- tB(1)

- Geometric Brownian Motion : G(t) = e#t+oW(®)

1 1 1
0.0 0.2 0.4

WP and Brownian bridge (o = 1)

0.6

1
1.0

— W)
- XM

Geometric Brownian motion with £ = 1.5 and 0 = 1 along with expectation

-
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ﬁonvergence of Random Proceg

Definitions:

Sequence of RVs: {X,,,n=>1}; mneN
E[X2] < oo
Mean squared Error: MSE (X,,, X) == E [(X,—X)?]

Limit in mean square: l.i.m. X,,= X

n—>00

Is the same way of stating lim MSE (X,,,X) - 0 /
£ n—oo




04-10-2018

ﬁonvergence of Random Proceg

Let {X,} converge in mean square to X. Then it holds for n — oo
(a) E(Xn) — E(X):
(b) E(X3) — E(X?).

‘c) if {X,} 1s Gaussian, then X follows a Gaussian distribution as well

v




