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ﬁonvergence of Random Proceg

Definitions:

Sequence of RVs: {X,,,n=>1}; mneN
E[X2] < oo
Mean squared Error: MSE (X,,, X) == E [(X,—X)?]

Limit in mean square: l.i.m. X,,= X

n—>00

Is the same way of stating lim MSE (X,,,X) - 0 /
£ n—oo
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ﬁonvergence of Random Proceg

Let {X,} converge in mean square to X. Then it holds for n — oo
(a) E(Xn) — E(X):
(b) E(X3) — E(X?).

‘c) if {X,} 1s Gaussian, then X follows a Gaussian distribution as well

v
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/ Mean Square Calculus \

A random process X(t) Is said to be continuous In
mean square (m.s.) If

imE {[X(t+¢&)—X()]*}=0

-0

Theorem:
A random process X(t) is m.s. continuous, then it is

s also continuous in mean
) limpux(t+e) = ux(t)
2 £—0
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/ Mean Square Calculus \

Theorem:
A random process X(t) Is said to be m.s. continuous if and
only if its autocorrelation function Ry (t, s) is continuous

Theorem:
A WSS stationary random process X(t) Is said to be m.s.
continuous if and only if its autocorrelation function Ry (7) is

continuousatt =0

Lemma: Wiener process X(t) is m.s. continuous




10-10-2018

/ Mean Square Calculus \

A random process X(t) is said to have a m.s. derivative X'(t) if

o X(t+e)—X()
l.i. m.
-0 &

= X'(t)
Li. m. implies limit in mean square
E—

X(t) has the m.s. derivative X'(t), then its mean and autocorrelation-
function are given by

ELX'(1)] = % ELX()] = 1y (1)

3*Ry (t, s)
ot ds

Rxf(r,-'}') -
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/ Mean Square Calculus \

Theorem:

A random process X(t) has a m.s. derivative X'(t) if

2
O"Rx(LS) ovists at s = t

ot 0s
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/ Mean Square Calculus \

aZRx(t,S)
Jdt 0s

The autocorrelation function of X'; R,/(t,s) is

d’Rx (1)
dt?

If X(t) is WSS then Ry/ (1) = —

Although Wiener process X(t) Is m.s. continuous, It does not

POSSess M.s. derivative.
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/ Mean Square Calculus \

* Wiener process X(t) does not possess m.s. derivative

ORx(t, s) 5
7 =0°“U(t —5s)

where U 1s the unit step function

* However, a generalized derivative can be defined by using
the relationship between step function and the Dirac Delta

function

0°Ry(t, s)
dsot

R, (t,s) = =026(t—25)
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ﬂ\/lean Sguare Riemann Integrah

*(%6)/
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ﬂ\/lean Square Riemann Integrah

e am

Qn = Sn—fc‘u*) XCSL*) CSL -—sa-,)
t=1

T he Lot Do o il 62 M snigpa and didifudck
o the chr o ST ond (Sim51m1) Do e dfine b,

2
) X(sr) (5i-50) = [ fOX©ds
2 f(s J, i)c ) ;!
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ﬂ\/lean Square Riemann Integrah

/) [fw/()p
’glw‘m For ﬂ,,,‘,ﬂ%mﬂ f'ﬁ et

J ( o f0) Eg %9 X(f)’% drd:

Asnags

rfr.u.é' sk /Wb o A /“ .

Fubini’s Theorem
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ﬂ\/lean Square Riemann Integrah

Variance of Riemann Integral fot f(s)W(s)ds

Var(Y(1) = E[Y?(1)]

—E fo | £(s) W(s)ds fo r 1(r) W(r)a’r}

=5 /D ( [0 £(r) W(r)dr) £(s) W(S)ds}
/ | ( f F(f(s) W(r)W(s)dr) dS:|
0 0

Now Apply Fubini’s Theorem twice and derive the final integral form of

v

=E

E[Y2(t)] =77
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ﬂ\/lean Square Riemann Integral

Example-1: Variance of the Integrated WP

' [ '
Var (f W(s)d.s*) = / / min(r. s) drds
0 0o Jo

The integral with respect to r is decomposed into the sum of two integrals with s as
the integration limit such that the minimum function can be specified explicitly

t t rr 5 'S
f f min(rﬂs)drds=f / min(r, s) dr-l—f min(r:s)dr} ds
0 Jo 0o LJo s

I 5 t

=f / rdr+/ sdr] ds .
0 LJO s

B § f

/ rdr + f .S‘df} ds

| JO 5

fr 52 -9 d 2 27 .
= — 4 s(t—98) ]| ds=| ———| =

(]




