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Quadratic variation of Wiener Processes

Again, the considerations are based on an adequate partition of the interval [0, 1].
P,(0.,f): 0=s0<s1 < ... <s5,=1.

For a function g the variation over this partition is defined as :

Va(g. D) = ) 18(s:) — gsi—)] -

i=1
[f the limit exists independently of the decomposition for n — oo

one says that g 1s of finite variation and writes :

Valg,t) — V(g,t), n— 00.
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Quadratic variation of Wiener Processes

The finite sum V,(g.f) measures for a certain partition the absolute increments of
the function g on the interval [0, f]. If the function evolves sufficiently smooth. then

V(g.1) takes on a finite value for (n — o0).

For very jagged functions

an increasing refinement (n — o0) the increments of the graph of g
become larger and larger even for fixed ¢, such that g 1s not of finite variation.
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Quadratic variation of Wiener Processes

PROPOSITION-1  (Variation of Continuously Differentiable Functions) Lef ¢ be
a continuously differentiable function with derivative g" on [0.t]. Then g is of finite
variation and it holds that

[
V(g 1) = [ 12(s)] ds.
0

Example: Let's see when this fails

(Sine Wave) Let us consider a sine cycle of the frequency k on the
interval [0, 2x]:

gk(s) = sin(ks). k=1.2.....
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Quadratic variation of Wiener Processes

(Sine Wave) Let us consider a sine cycle of the frequency k on the
interval [0. 2x]:

gk(s) = sin(ks). k=1.2.....
g.(s) = k cos(ks).

Accounting for the sign one obtains as the variation:
2 /2
V(g.2m) = f lcos(s)| ds = 4 f cos(s) ds
0 0
: T :
=4 (sm (—) — 5111(0))
2
— 4,

/4

2
V(gs.2m) = ] 2 |cos(2s)| ds = 8 f 2 cos(2s) ds
0

0
= 8 (sin (g) — sin(O))
—



Quadratic variation of Wiener Processes

2

2T a2k
Vige,2m) = f k |cos(ks)| ds = 4k f k cos(ks) ds
0 0
. (T :
= 4k (sm (E) — smﬂ]})
= 4k .

[t can be observed, how the sum of (absolute) differences in amplitude
grows with k growing. Accordingly, the absolute variation of gi(s) = sin(ks)
multiplies with k.

For k — oo, g, tends to infinity such that this derivative is not

continuous anymore. Consequently, the absolute variation is not finite

in the limiting case k — oc.
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Quadratic variation of Wiener Processes

Quadratic Variation

In the same way as V,(g. 1) a g-variation can be defined where we are only interested
in the case ¢ = 2, — the quadratic variation:

On(g.1) = Z 1g(si) — g(si)] = Z (g(si) — g(si-1))” .

i=1 i=1

As would seem natural, g is called of finite quadratic variation if it holds that

QOu(g.1) — Q(g.1). n— 0.
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Quadratic variation of Wiener Processes

PROPOSITION-2 (Absolute and Quadratic Variation) Let g be a continuous
function on [0, t]. It then holds for n — oc:

Valg.t) — V(g.1) < o0

implies

Qn(g.1) — 0.

If g is a stochastic process, then “— " is to be understood as convergence in mean
square.
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Quadratic variation of Wiener Processes

(Quadratic Variation of the WP)  For the Wiener process with n — o<

0,(W.1) = t=0Q(W.1).

The expression Q(W, 1) = t characterizes the level of jaggedness or irregularity
of the Wiener process on the interval [0, f]. This non-vanishing quadratic variation
causes the problems and specifics of the Ito integral.

Rephrasing it one can state

If the

Wiener process was continuously differentiable, then 1t would be of finite variation
due to Proposition-1 and it would have a vanishing quadratic variation due to
Proposition-2 . However, this 1s just not the case.
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Quadratic variation of Wiener Processes

To prove: Q,,(W,t) >t = Q(W,t)

1ststage: Show E {[Q,(W,t) — t]*} »0aslimn - o

On(W.1) = (W(s) — W(sim1))’

i=1

E(Qu(W,1) = ) Var (W(s;) — W(si—1))

i=1

i
= 2(55—55—1) = Sp— S0 =1
i=1
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Quadratic variation of Wiener Processes

To prove: Q,,(W,t) = t

2nd stage: Show Var {Q,,(W,t)} »0aslimn - oo

Var (Qu(W, 1) = Y Var[(W(s) — W(si=1))’]

i=1
Var [(W(s) — W(si1))?] = E[(W(s;) — W(sie))*] — (B [(W(s) — Wsiz)?])
= 3 [Var(W(s;)) — W(siz1)]* — (s: — si—1)?

= 2(si — si—1)*.

Var(Qu(W. 1) = 2 (s — 5i-1)°

i=1

H
< 2 max (s; — §;—1) Z(S.f—ﬂ.r:—l)

l=i=n
i=1

= 2 max (5i — 8i—1) (s4 — S0)
l<i=n
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