CE 607: Random Vibration

Budhaditya Hazra

Room N-307

Department of Civil Engineering



CE 607: Random Vibration

Introduction to Stochastic
Differential Equations



Stochastic Differential Equations: Intro

@ At first, we have an ordinary differential equation (ODE):

dX
— =1(x.1).

@ Then we add white noise to the right hand side:

dx

— =f(x, 1) +w(l).

= 10x.0) + w(t)

@ Generalize a bit by adding a multiplier matrix on the right:

dX
T f(x.t) + L(x, t)w(t).

@ Now we have a stochastic differential equation (SDE).
@ f(x, t) is the drift function and L(Xx, t) is the dispersion matrix.
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Stochastic Differential Equations: Intro

Q@ w(t) and w(k) are independent if
i # b.

Q {+— w(t)is a Gaussian process with
the mean and covariance:

@ Qs the specitral density of the process.
@ The sample path t — w(t) is discontinuous almost everywhere.

@ White noise is unbounded and it takes arbitrarily large positive and
negative values at any finite interval.
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Stochastic Differential Equations: Intro

What does a solution of SDE look like?
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Attempts to Solution

@ Linear time-invariant stochastic differential equation (LTI SDE):
dx (1)
dt

@ We can now take a “leap of faith” and solve this as if it was a
deterministic ODE:

= Fx(t) + Lw(t), X(fo) ~ N(mg,Py).

@ Move Fx(t) to left and multiply by integrating factor exp(—F t):

exp(—F 1) d};—(:) —exp(—F t)Fx(t) = exp(—F t) Lw(1).

O Rewrite this as

% [exp(—F t)x(t)] = exp(—F t) Lw(?).

Q@ Integrate from f; to t:

t

exp(—F t)x(t) —exp(—F ) x(fh) = /ru exp(—F7)Lw(7) dr.
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Attempts to Solution

@ Rearranging then gives the solution:

t
X(t) =exp(F(t—1t))x(t) +/r exp(F(t—7))Lw(7r) dr.

@ We have assumed that w(t) is an ordinary function, which it is not.

@ Here we are lucky, because for linear SDEs we get the right
solution, but generally not.

@ The source of the problem is the integral of a non-integrable
function on the right hand side.
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Numerical approaches

@ We could now attempt to analyze non-linear SDEs of the form

3—’; (%, ) + L(x, t) (1)

@ We cannot solve the deterministic case—no possibility for a “leap
of faith”.

@ We don’'t know how to derive the mean and covariance equations.
@ What we can do is to simulate by using Euler—Maruyama:

X(tki1) = X(&) +H(X(&). &) At + L(X(#). &) AB.

where A3, i1s a Gaussian random variable with distribution
N(0,QA1).

@ Note that the variance is proportional to At, not the standard
derivation.
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Numerical approaches

Equivalent integral equation

@ Integrating the differential equation from f to t gives:

t t
X(t) —x() = | f(x(f).t)dt+ | L(x(%),t)w(t) di.
fo fo
@ The first integral is just a normal Riemann/Lebesgue integral.
@ The second integral is the problematic one due to the white noise.

@ This integral cannot be defined as Riemann, Stieltjes or Lebesgue
integral
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Numerical approaches

Brownian motion

@ Gaussian increments:
AP, ~ N(0,QA%L),

where A3, = B(l+1) — B(l) and
Aty = b g — I

Q@ Non-overlapping increments are
independent.

@ Qs the diffusion matrix of the Brownian motion.
@ Brownian motion t — 3(t) has discontinuous derivative

everywhere.

@ White noise can be considered as the formal derivative of

Brownian motion w(t) = dg(t)/dt.
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Numerical approaches

It6 stochastic differential equations

@ Consider the white noise driven ODE

dx

— = 1x.t) - L(x.yw(2).

@ This is actually defined as the It0 integral equation

£ — x(fp) = ff dr+fL B3(1),

which should be true for arbitrary f, and t.
@ Settings the limits to t and t + dt, where dt is “small”, we get

dx = f(x, t) dt + L(x. t) d3.

@ This is the canonical form of an |16 SDE.
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Numerical approaches

Connection with white noise driven ODEs

@ Let’s formally divide by dt, which gives

dx dg
— =f(x,t) + L(x. ) —.
— =00 1) + L(x, 1) —
@ Thus we can interpret d3/dt as white noise w.

@ Note that we cannot define more general equations

() _ gxt). w(t). ).
dt
because we cannot re-interpret this as an It0 integral equation.

@ White noise should not be thought as an entity as such, but it only
exists as the formal derivative of Brownian motion.
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Numerical approaches

Taylor series of ODEs vs. It6-Taylor series of SDEs

@ Taylor series expansions (in time direction) are classical methods
for approximating solutions of deterministic ordinary differential
equations (ODEs).

@ Largely superseded by Runge—Kutta type of derivative free
methods (whose theory is based on Taylor series).

@ [tO0-Taylor series can be used for approximating solutions of
SDEs—direct generalization of Taylor series for ODEs.

@ Stochastic Runge—Kutta methods are not as easy to use as their
deterministic counterparts

@ It is easier to understand [to-Taylor series by understanding Taylor
series (for ODEs) first.
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Evolution of SDEs

Newton and Albert Einstein Wagner and Platen Gjsiro Maruyama
Leibniz (1906) (1982) (1955)
Differential Brownian lto-Taylor Euler-
Calculus model expanSion Maruyama

—0—0— ——————

_ Nor . o . A
Bel{cohuéﬁe orbert Wiener Milstein (1974) Kiyoshi It
ier (1923) (1944)
. Milstein 1.0
: Wiener process
Brownian or generalized strong Ito calculus
motion Brownian motion method
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Evolution of the present techniques:

Euler-Maruyama Scheme

Milstein 1.0 strong Method

x(tir1) = g;) 4 a(Y;)At + b(Y;)AB;

L % ?(Yi)b’(yf){(ABi;z. = 44} +

/ ‘ \
! {a(Ypa'(Y) + bz(y,-)a"(y,-)}é\

I
: Na' (V. Through implicitness in Y; as:
, Per)azs Y, = b(Y; + b(Y)VA,) —
v X b(Y;)
. {a(yi)b’(yi) + b2(Y)b" (Y;)} (AWAt- AZ) Results,
) Stochastic Runge-Kutta
N,

f b(Yl)Tb(Yl)h”(Yl)+b2£Yl)}( - A)(aw)

Taylor 1.5 strong scheme




STOCHASTIC DEQ: Preliminaries

ITO-Taylor expansion: Preliminaries

Consider the ODE % = alx(t)];

The solution can be written as:

Define: dfz(t)] = Lf]x(t)]

For a function f[x(t)] we can write
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X(to)sz & OSt()ST

t
x(t) = x(ty) +j alx(s)]ds
to

dflx(@®)] 0 flx(t)] dx
dt 0x dt

d flx(t)] d flx(t)]
dt 0x

= a[x(t)]
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STOCHASTIC DEQ: Preliminaries

Integral equation : By defining a linear operator L = a|x(t)] aa_x

Eqg. 1 can be written in terms of the integral equation as:

FIx(O] = flx(to)] + j L [x(s)]ds
to

Case-1) Case-2)
flx(@®)] = x(¢) flx(®] = al[x(®)]
d 0
djzlit) = Lx(t) = al[x(t)] % = alx(t)] aSi(t)] = L a[x(t)] = a[x()] aa[x(t)]
t t
x(t) = xq +j a[x(s)]ds EQ. 2 alx(t)] = alx(ty)] +J Lalx(s)]ds
t to
0 Eqg. 3

Dr. B Hazra 18



STOCHASTIC DEQ: Preliminaries

From 2 and 3 ; X(t) = xy + ftt La(xy) + ftt Lalx(s,)ds,]ds

= xo + a[x,] j ds; + J j La[x(s,)]ds, ds;
to to to

Now for, F = Lalx(t)]

dLalx(t)]
dt

= L{La[x(O)]} = L2a[x(t)]

t
Lalx(t)] = La(x,) +J L%a[x(s)]ds} a[x(t)] = a[x(ty)] + tha[x(s)]ds
to to

L alx(sy)] = La(xg) + JSZLza[x(sg)]dsg Eg. 5
to
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STOCHASTIC DEQ: Preliminaries

FromEqg.4and 5 :

t t rsq S1
x(t) = xy + a(xo)j ds; + J f {La(xo) + j Lza[x(sg)]dsg} ds, ds;
to to 7 to to

S1 rS2

t t 51 t
= Xo + a(xo)j ds, + La(xO)J j ds, ds, + L?a[x(s3)] j j ds;ds,ds;
to to to to Jt

o “to

t t S1
=xo +a(xy) | ds; + La(xy) J J ds,ds; + R
Lo Yo

to

t Sq [So
R :f f j L%a[x(s3)]dssds,ds,
to Jto Jto

Dr. B Hazra 20



2. STOCH-DEQ: ITO-Taylor expansion

Starting point: Diffusion Equation and Ito’s lemma

dx(t) = a[x(t)]dt + b[x(t)]dB(t), x(ty) = x

lto’'s Lemma: df[x(t)] = f'[x(t)]dx(t) + %f”[x(t)]bz[x(t)]dt

df[x(@®)] = f'lx(@©Nalx(®)]dt + b[x(©)]dB(t)} + %f”[X(t)]bz[x(t)]dt

{ LT L fh@ﬂ}dt+buaﬂ6f%fﬂ 1B

0
t

=ﬂﬂ%ﬂ+f{[(ﬂ
to

2 t
f[x(S)] b2[x(s)] f[x(S)]}d J bLx(s)] f[ ()] dB(s)
t

0

Eq. 2.1
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STOCH-DEQ: ITO-Taylor expansion

Jd 1 02
— 1 _h2 -
0x + 2 b=[x(s)] 0x?

Define: L% = a[x(s)] and 1= b[x(s)]%

t t
Eqn. 2.1 becomes  fx(6)] = flx(to)] + f LOF[x(s)]ds + f LU x()]dB(s)  Eq. 2.2

to to

flx(®)] = x(0)
2

a 1 d 0
L0 = alx(s)l o+ Ebz[x(S)] ﬁ] x(8) = alx(s)]; L' = [b[X(S)] a‘X(t) = blx(s)]

t t
x(t) = x(ty) +j LOx(s)]ds + f LY[x(s)]dB(s)
to to

t t Eqg. 2.3
= x(ty) +f alx(s)]ds + f b[x(s)]dB(s)
to to
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STOCHASTIC DEQ: FORMULATION

Further for f[x(¢)] = a[x(s)] and using eq. 2.2
alx(9)] = alx(t)] + [ £° alx(s)]ds, + [, * £* alx(s;)1dB(s>) Eq. 2.4
For f[x(t)] = b[x(s)] and using eq. 2.2

b[x(s)] = b[x(ty)] + fjol,co bx(sy)]ds, + fj;l L1 b[x(s,)]dB (s,) Eqg. 2.5
Inserting the results of Egs. 2.4 and 2.5 into Eq. 2.3

t S1 S1
x(t) = x(ty) + ] {a[x(to)] + j LY a[x(s,)]ds, + J L1 a[x(sz)]dB(sz)} ds;
to to to
t S1 S1
+j {b[x(to)] +] LOb[x(s,)]ds, +f L1 b[x(sz)]dB(sz)} dB(s1)
to to to

t t
= x(ty) + j alx(ty)] ds; + f b[x(ty)] dB (s;) + R
to to
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STOCHASTIC DEQ: FORMULATION

t r51 t rS1
R=Utjt Loa[x(sz)]dsz+ftjt Lla[x(sz)]dB(sz)]dsl

U f 11;1 b[x(s;)]ds,dB(s;) +f ijl b[x(sy)] dB(SZ)] dB(s,)

R 1s referred to as the remainder term. We will learn more about this in
the next lecture
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