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Continuous RVs

* A continuous random variable can assume any value
within a given range e.g. Concrete crushing strength

® The probability content of a continuous random variable is
described by the probability density function(PDF)
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Continuous RVs

* The probability associated with the random variable In
a given range is represented by the area under the PDF
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/ CDF \

The cumulative distribution function (CDF)

Fy(z) = P(X < 2) = ffx(”)d”

« The CDF is equal to cumulative probability (ranges
between O and 1)

 Itis apparent from above that the PDF
IS the first derivative of the CDF

_ dFy(z)

fi(w) .

L=

v
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/ Properties of fx(x) \

. f,0)=0

2. f_mfx(-’f)dx =1
3. fy(x) is piecewise continuous.

4.P@<X£®=ﬁ}ﬂﬂﬁ

If X 1s a continuous r.v., then

Pa<X=b)=Pla=X=b)=Pa=X<b)=Pa<X<b)

=J‘:fx(x)df = Fy (D) — Fx(a)
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/ CDF & Quantile function \

® In some cases, we may be interested in finding out what
IS the value of the random variable for a given probability

® Probabillistic bounds that are important for design
purposes

* The result is called the percentile or quantile value

* For example, the value of the random variable
associated with 95 % (cumulative) probabillity is the

95™ percentile value /
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/ CDF & Quantile function \

To estimate the percentile values, we must invert the CDF

as .
Fx(m) = F)
:I:P == Ffl(g}) f2

v
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e

Uniform distribution
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Normal distribution \

, 20 0.8
o =05 f(x) /
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Probability Density

Normal distribution
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/ Standard normal distributiom

The Standard Normal variate is used to transform the
original random variable x into standard format as

_B—p
(¥

]

« The Standard Normal distribution is denoted as
N(0,1)and has a mean of zero and standard
deviation equal to one

 Because of its wide use, the CDF of the Standard

v
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Example: A reliability problem

A concrete column is expected to support a stress of 34 MPa.

« Assuming the Normal distribution for concrete strength,
what is the probability of failure?

 The sample mean and standard deviation computed from
tests are equal to 40 Mpa and 4.56 MPa

Soln: Probability of failure is the area under the Normal PDF
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-/The probabllity that the concrete strength is Iess\

than or equal to the applied stress (34 MPa) is
obtained using the Standard Normal CDF as

34 — 40
4.56

P(X < 34) = @[ ] — §(—1.316) = 0.094

« Therefore, given an estimated average value of
40 Mpa from the 35 laboratory tests with a standard
deviation of 4.56 MPa, the probability of failure is

9.4 %
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/ Log-Normal distribution \

« The logarithmic or Log-Normal distribution is used when the
random variable cannot take on a negative value

« Arandom variable follows the Log-Normal distribution if the
logarithm of the random variable is Normally distributed

* In (X) follows the Normal distribution; X =>follows the
Lognormal distribution

(lnz—A)°
e x=>0,¢ >0

ﬂ)_@mg

v
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/ Log-Normal distribution \

Z'Is the scale parameter
A Is the shape parameter

=10
=01
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/ Log-Normal distribution \
« The Log-Normal distribution is related to the

Normal distribution, and can be evaluated using
the Standard Normal distribution as

F (@)= [ f(x)dz = @[L" ”}g_ ’3‘]

« The distribution parameters are related to the Normal
distribution parameters as

1,
A = In(g) — —¢*
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/ Log-Normal distribution \

N= ln(f)—%g'z

¢ =Vln[1+;—:]

The distribution parameters are :

« Shape parameter A= Mean of In(x)
« Scale parameter (= STDEV of In(x)

v
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/ Log-Normal distribution \

Assuming the concrete strength is described
by the Log-Normal distribution, what is the
probability that the concrete strength is less
than or equal to 34 MPa?

Soln: The lognormal distribution parameters are :

€=\/1nll+;i] \/ln 1 4 (&5OF ] = 0.114

(40.0)2

A = ln(z) - égﬂ — 1n(40.0) — é(D.llril]“ — 3.682 /
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Probability Density
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/The probability that the concrete strength is less tham

equal to 34 Mpa is obtained using the Standard Normal
CDF as

In(34) — 3.682
0.114

P(X < 34) = @[1“(3? = J‘] y; ] — 0.085

« Assuming the concrete strength follows the Log-Normal
distribution (i.e., the LOG of the concrete strength follows
the Normal distribution), there is a 8.5 %chance that the

concrete strength is less than or equal to 34 MPa




/ Exponential distribution \

22-01-2020

f{x)

3.5 =

1=30 f(z) = Ae™™

A i1s the scale parameter
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/ Exponential distribution \

The cumulative distribution function (CDF) of the
Exponential distribution is given by:

F(x)=1—e

« The distribution parameters can be estimated using

the sample data (i.e. sample statistics)

e The scale parameter A is equal to or simply the
reciprocal of the sample average
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/ Exponential distribution \

Assuming the concrete strength is described
by the exponential distribution, what Is the

probablility that the concrete strength is less
than or equal to 34 MPa?

||
== =75 = 0.025
X<3

d) = F(34) = 1 — e-09561) — 0,573

v
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/ Weibull distribution \

« The Welbull probability distribution is a very

flexible distribution
* Due to the shape parameter

« Itis used extensively in modeling the time to
failure distribution analysis

« The Welbull distribution is derived theoretically as
a form of an Extreme Value Distribution

« Itis also used to model extreme events like
strong winds, hurricanes, typhoons etc

v
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/ Weibull distribution \
The probability density function (PDF) of the Weibull

distribution is

3.9 =

f{x)
3.0 -

flo) = e )

o 1s the shape parameter
F1s the scale parameter
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/ Weibull distribution \

o The cumulative distribution function (CDF) of the Weibull
distribution is

:Eﬂ:

F(z)=1— eh(ﬁ

o The distribution parameters can be estimated from the sample
statistics using the Method of Moments as

1
e Sample Average = T = 5F[1+E]

2 1Y
e Sample STDEV = s= ﬁJF[l +E] —-F[l +H]

v
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/ Reliability problem using Weibull \

distribution

Assuming the concrete strength is described by
the Weibull distribution, what is the probability
that the concrete strength is less than or equal
to 34 MPa?

v
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Reliability problem using Weibull
distribution

Solution:

e From before, the sample mean and standard deviation were
equal to 40 MPa and 4.56 MPa, respectively

e The Weibull distribution parameters are obtained from

ﬁI‘[1+$]=4n and 5JF[1+E]—F[1+EI]224.56

e Solving 2 equations and 2 unknowns (using the SOLVER function

in Excel) results in o =10.59 and p =41.95
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@rnate approach: Solve for ¢ and 3 us@

Use bisection method to solve fora

nonlinear equation solution techniques

1 +s2/x2 = 1ty =) [\ 21N equation to be solved

Task: Solve the above problem in MATLAB and
verify using Excel goal-seek solver
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- 2

he probability that the concrete strength is less than or equal to
34 MPa is therefore

a4 1054
PX<34)=F(34)=1—e e R 0.103

Using MATLAB command:

p = wblcdf (34, 41.95, 10.59) = 0.1024
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Inverse Weibull distribution \

The Fréchet distribution, also known as inverse Weibull
distribution, is a special case of the generalized extreme
value distribution. It has the cumulative distribution function

Pr(X <z)=e% ife>0.

where a > 0 is a shape parameter. It can be generalised to
include a location parameter m (the minimum) and a scale
parameter s > 0 with the cumulative distribution function

B

£L =TIk

Pr(X <z)= e (57) T ifz > m.
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Inverse Welbull distribution
Probability density function

l.d: ) : _— w=1;a=1; m=(
—_— a=28=1; m=0
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/ Gamma distribution \

« The Gamma distribution is another flexible probability
distribution that may offer a good model to some sets of failure
data

« The Gamma distribution arises theoretically as the time to first
fail distribution for a system with standby Exponentially
distributed backups

« The Gamma distribution is commonly used in Bayesian
reliability applications e.g. using prior information to update the
constant (Exponential) repair rate for a system following a

homogeneous Poisson process (HPP) model
> /
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Gamma distribution

Similar to the Weibull distribution, there are many different
variations of writing the Gamma distribution

* The probability density function (PDF)is

X

“le B 0<x<o0; apf>0

)= gt ™

o 1S the shape parameter; p is the scale parameter

 When a =1 the Gamma distribution reduces to the Exponential

distribution with 1/p= A
2 CDF.F( ) — )/(CZ,,B.')C)
) T T
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Gamma distribution

1.4 =
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/ Gamma distribution

Task: Find out the mean and the variance for the gamma
distributed random variable, using the form of f(x)
given underneath

™~
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/ Multiple RVs \

® Consider2RVs XandyY

* If the RVs are discrete, then the joint probability distribution is
described by the joint probability mass function(PMF)

* pxy(x,y) =PlX=x)NF =y)]

CDF:
Fay(uy)= ) ) pxy =PIX <x) 0 (¥ <))

Xi<Xyi<y
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/ Continuous RVs \

® Consider 2 continuous RVs Xand Y

fxy{z,y)dedy ~Prz < X <z+4+dr,y <Y <y+dy),

Prla< X <bc<Y <d)= //flyzy)drdy

Y x
Fxy(z,y) = f_ /; Ixv(u,v)dudv.

2p
fxv(z,y) = J ;;gj’y)- /
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/ Continuous RV \

' f surface =_f,,(x,)) CDF

Fix, y)= [ fp(r.r, vidvedu

—i — 30

Marginal PDF

. , Silx,b)
”;.'3 area = f(b)

fx(x) = jfxy(x»}’)d}’

fry) = ijY(XJ’)dx/
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/Moments of continuous R\N

E[XY] = j j %y fir(Ce,y)dxdy

Cov X,Y)= 0,y = E[(X — ) (Y — py)]

= f f (x — ,le)(y - .uy)fX,Y(x: y)dx dy

_ Cov(xY) _ E[X—p x)(Y—# y)]
ny o Ox 0y Ox Oy /
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/ Properties of moments \

e ElaX+ bl =aE[X]+ D

+ Var[X] = E[X?] — (E[X]) 2

* Var[aX + b] = a*Var(X)

. Cov(X,Y)= E[XY] — E[X]E[Y]

* Var(X+Y)=Var(X)+Var (Y) + 2Cov(X,Y)

v
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.

Independence

Recall

AmB}

P(A|B)= i

A1 B= P(A~B)=P(4)P(B)

(5 .P(B)=0.

™~

e,

Define 4 = {X < 1} and B=1Y < 1}

X1Y=>PX<xnY<y)=P(X<x)P(Y<y)

=P, (x_, y) =P, (x)P}, (}:')
= Pyy (I, 3”") = Px (I )p Y (3”')

v
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/ Bi-variate Gaussian distributi(m

1 1 ] Ter_1
p(x,y)= 2 ISP exp [—E("v — 1) ST (v - Hv)]
-axz 0'1)’_ x| —fix—
S = |y v= and p, =
| o0xy Oy | | ¥ ] | 4y |

v
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/ Bivariate Gaussian distribution
Alternate Form

X and Y are said to be jointly Gaussian if

™~

Pﬂ(x:y) =

—0D < X < o0, —00 < Y < oD

Notes : [X} ~ N {}L‘i_’ } E‘i' et gf or
Y "y FyyO xOy Oy

] is known as the covariance matrix.

Tl e R e |

v
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/ Example-1 \

The joint pdf of a bivarnate r.v. (X, Y) is given by

kxy 0<x<l,0<y<1
fxl’ {I:r.}r)= 0

otherwise

where k is a constant.

(a) Find the value of k.

(b) Are X and Y independent?
(¢) FiIndP(X+ Y <1).

v
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/ Solution \

How will you find k ?
2]
2 0

[ [ faGy)dedy=k f';f';ljadxdy-:kf'; y[

l}! k _
=k il
d 4

v
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/ Solution

How will you find marginal pdfs

t
dxydy=2x 0<x<]
fx(x)="{“

otherwise

2y 0<y<1
()= 0 otherwise

IS Frp(x,3) = £ Df, ) ?

™~




Solution

0<x<l, 0<y<l

4xy
fIl"(I!« }'}= !ﬂ

otherwise
fx(x)=2x D<x<1
Jr(y)=2 D<y<l1

Conditional densities

Fx Ox)=—==2y 0<y<1,0<x<1

0<x<lLO0<y<l1

22-01-2020
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Example-2 new

Suppose we select one point at random from within the circle with radius R. If we let the center of the
circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig ), then
(X, Y) is a uniform bivariate r.v. with joint pdf given by

k .rz-i-}:'EERE

fxr(-rr})=[n .J:E+y2}RE

/g (x, ¥)
‘/ i
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[o. 07 fwndxdi=k [ dvdy=kak? =1

-1'1+_}'15R1
Thus, k = /xR,
B) the marginal pdf of X is
I N 7_ 2 2 — p2
fx('r]_ﬂﬂlf—\llml-;z} df—ﬁ R X =R
2 [ 2
P R - 1 '—:R
Hence, felx)= P e | |
0 |.1'|}R
By symmetry, the marginal pdf of ¥ is

2
)= e VB Y DI=R
- (y) =
0 y| =R
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Example-3 new

Let (X, ¥) be a bivariate r.v. with the joint pdf

XAy e

—o < x i, —w ey
4z

fry(xy)=

Show that X and ¥ are not independent but are uncorrelated.
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Example-3 new

1 o 2, 2
f.l:{-x}=q:f_m{x1 + },E)E {x*+y ]md_‘,l?

—lﬂ.ll
S P S P A e ,E—fﬂd,]
el e - A e S

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second integral in
the above expression is the variance of A(0; 1), we have

fx'[szz,l—{xz‘f'ljﬂ_xlﬂ o< x <
WV adl
Since f, (x,y) is symmetric in x and y, we have
1 2 —_1,.'14‘2
ff{})=zm{} +”E _W"-":}"'-":W

Now f,.(x,y) # f,(x}) f,(3),and hence X and Y are not independent.
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/ Check Uncorrelated-ness

EX)= [ sfy(x)dx=0

EV)= [ v (dy=0
since for each integral the integrand is an odd function.
EXY)=[" [ xfyy(x,y)dxdy=0

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the first and
the third. Thus, E(X ¥') = E(X)E(Y), and so X and Y are uncorrelated.
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/Function of random variableﬁ

fy (y).

—_s g

£

Given fy (z) and g(X), where Y = g(X), there is an interest in finding

¥y =g(x)

g(X) is simple enough to allow

calculation of the inverse

X=g"(Y)
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/Function of random variableﬁ

ly<Y <y+dy} ={z1 < X <z +do1} + {z2 + dzs < X < 23}
+{z3 < X < 23+ dz3},

Priy <Y <y+dy) =Pr(z; < X <z +dzy) + Pr{zs + doee < X < a9)
+ Pr{zs < X < 23 + dz3),

dg dy
dX ~ dX’

7(X)=

g () dX|x=o, = dy,

fo(’ﬂa /




Example

1 (:E'_P‘X)z
X lly distributed, fx () = eXp{ ———5—— ¢, —00 < & < 00,
normally distributed, fx (z) oxV2r P{ QJ%:

V=aX2 a>0
What is pdf of y ?

Solution:

Since only the real roots are needed, and there

are no real solutions if ¥ < 0, then fy (y) = 0 for this domain

If ¥ > 0, there are two solutions,

Ty = +4{— Ty = —

Y y
a a

22-01-2020




Example

The functional relation is g(X) = aX?, with its derivative

¢ (X) =2aX = 2a,/Y/a = 2/aY

r-f B () s (D) e

2
f}’(y}lexp{( y/ﬂ—z,ux) ,  y=>0.

22-01-2020
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Exercise

Solve the following problem ?

The strain energy in a linearly elastic bar subjected to an axial force S is given by the equation
L

U=—¢§?
2AE

where:

L = length of the bar

A = cross-sectional area of the bar

E = modulus of elasticity of the material
Using ¢ = L/2AE, we can rewrite

Now, if S is a lognormal variate with parameters A and ¢, What is the pdfof U ?
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/ Function of two RVs \

For a general function of two RVS 7 = g(X,Y),one can write

FE.'I: )_Pl'(Z{ )
=Pr(g(X,Y) < z)

Fi shows the n on, ar
/f f}{}’ T y d'-fdy igure sthe region of integratio + by < z
"[:i

yJL

Consider the simple case of: g(x,y) = ax + by

SO\
\

>.> \\\

’ // ///////>\/




Fz(2) =Pr(Z <2)
= Pr(g(X.Y) < 2)

ff fxv (z,y)dvdy.
glz,y)<z

For g(x,y) = ax + by

/‘DCI /\I[z—f.l"

The goal is to derive an expression for f;(2)

fxv (%,7) dz dy,

c\l\ N

NN
\

”/V// / //////>\

Therefore, replace dt by its equivalent in (g, Z). The dummy
variables are also related by & = (2 — bj)/a. Therefore,

dx
dr = —dz
dz

BENEEL A
CE a ”

22-01-2020




The limits of integration on & are transformed to

(2=b3)/a z
/ dff:—:-/ dz.
0 0

Then,
R I | z—=by _\ .. ..
Fz (:) — / / ﬂf‘\’Y ( a ,y) dz dy,
and
dFz(z)
fz(2) = dz

~ 1 2 — by
=/ mf.\'y( - 1y) dy.

22-01-2020
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Function of two RVs

In general terms, following the above procedure, the relation is x =

hl ('y; 2:) ) and
'S z=h1(y,z)
= / / fxy (z,y) dx dy,
with 9k
dex = 18(% z)dz.

The density function i1s then found to be
dFZ (z)

dz
Ohy (y, 2
/ Fxy b (y,2) 9] | — y

o,

fz(2) =

dy.
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Example: Kinetic energy Density

A particle of mass m moving in the zy plane has a kinetic energy T
=mZ? /2 where Z is the resultant velocity that is related to the component

velocities (speed) in each coordinate direction by Z = vV X2+ Y2 Suppose
that X and Y are statistically independent (for convenience) and each is
distributed as a standard normal random variable, that is, zero mean and
unitary standard deviation. Derive the density of the kinetic energy.
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Apply parabolic transformation example for a single variable resulting in

1
fo (u) = exp (—E) , u > 0,
T m
1
fv (v) = exp (——) , v >0
T

fT(ﬂ::ué fu (w) fv (£ — ) du

/t 1 u 1 ( t — u)
= exp (——) exp | — du
0 VTmu m wm (t — u) m
1
= — exp(~t/m),

which was integrated directly using MAPLE, or could be integrated by
transforming according to r = u/t and du = tdr, resulting in a beta func-

tion.
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/Moments of functions of RV\

= Clle + a2X2

Var (Y) = aiVar(Xy) + asVar(X,)+2a,a,px, x,0x, 0x,

Y =::§:a@Xi
i=l

E(Y) = Za;-E(xf) =) apx,

im

Var(Y) = Ea2Var(X,)+ ZZa a;Cov(X;, X ;)

i,j=1 i#j

=3 odted, + 3 S wasmonar
i,j=1 i#j
in which py; is the correlation coefficient between X; and X;
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/Moments of functions of RVA

In many cases derived probability distributions may be very difficult
to evaluate for general nonlinear functions.

Either use Monte Carlo simulation to find the derived density

Or,

Estimate mean and variance using an approximate analysis which in
Most of the practical applications is sufficient, although the
Pdf may still be undermined.




Moments of general function of
a single RV

For a general function of a single random variable X,

Y =g(X)

E(Y)= f 8(X) fx(x)ax

oo

Var(Y) = f [g(x) = ux)* fx(x)dx

00

To find the approximate expressions of mean and variance,
we use Taylor’s series to expand a function about its mean uy

1

d
g(X) = g(ux) + (X — nx)=2 + =(X — ug)?

d’g
x 2 2t

dx?

22-01-2020




Moments of general function of

a single RV

2 2
Var(¥) < Var(X —#xl(g) — Var m(ﬁ')

First order approximation Second order approx
- dg d*g
8(X) = g(ux) + (X — px) = E(Y)~glux)+ = Vm-(x)_._
E(Y) ~ g(ux) Var (Y) =Do it yourself ?

22-01-2020
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Example

The maximum impact pressure (in psf) of ocean waves on coastal structures may be determined by

pKU?
D

Do oi 2]

where U is the random horizontal velocity of the advancing wave, with a mean of 4.5 fps and a c.o.v.
of 20%. The other parameters are all constants as follows:

p = 1.96 slugs/cu ft, the density of sea water
K = length of hypothetical piston
D = thickness of air cushion

Assume a ratio of K/D =35
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Example

The first-order mean and standard deviation of p,,, are

E(py) = 2.7(1.96)(35)(4.5)%= 3750.7 psf = 26.05 psi; and

2
Var(py) = Var(U)(2.7p—g-) Quy)? = (0.20 x 4.5%(2.7 x 1.96 x 35)* (2 x 4.5)*

Therefore, the standard deviation of p,, is
Tpn == (0.20 x 4.5)(2.7 x 1.96 x 35)(2 x 4.5) = 1500.3 psf = 10.42 psi

For an improved mean value, we evaluate the second-order mean with Eq. 4.48 as follows:
1 2 K
E(Y) =~ 3750.7 + -2-(0.20 x 4.5) 2.7pB (2)
= 3750.7 + %(0.20 X 4.5)% (2.7 x 1.96 x 35 x 2)

= 3750.7 + 150.0 = 3900.7 psf = 27.09 psi
T'his shows that for this case the first-order mean is about 4% less than the

| =second-order mean

>




Moments of general function of
a multiple RVs

If ¥ 1s a function of several random variables,

Y =g(X1, X2,...,X,)

To find the approximate expressions of mean and variance,
we use Taylor’s series to expand a function about its mean py,

Expand the function g(Xi, X,,... ,X,) in a Taylor series about the mean values
(ELx,» mxys - -« 5 Ix,), yielding

n d
Y = g{“xl, -I[‘I’Xii “auy ,u:an) + Z (XI = .lu'Xf)_g
H M a
+§ZZ“’“ — )X — )
i=l j=I1

aX;0X ;

+...

where the derivatives are all evaluated at wy,, wx,, ..., i X,-
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Moments of general function of
a multiple RVs

First order approx.

Var(Y) >~ Eﬂ'}{ ( ;') + Z Zpucrx ax; ;j": Eﬂ?

i j=1i#]

Second order approx.

ai
E(Y) = g(Ux,» ixy» - - hx,) + —ZZﬂqUx.ﬂ‘L( ¢ )
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Example

According to the Manning equation, the velocity of uniform flow, in fps, in an open channel is

1.4
V= --—91'?2'0'5'!/2
n

where:
S = slope of the energy line, in %
R = the hydraulic radius, in ft

n = the roughness coefficient of the channel

For a rectangular open channel with concrete surface, assume the following mean values and

corresponding €.0.v.s:

Variable Mean Value C.0.V.
S 1% 0.10
R 2 ft 0.05
n 0.013 0.30
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Exampie

Assuming that the above random variables are statistically independent, the first-order mean and
variance of the velocity V are, respectively,

1.49
~ — 2%V = ;  an
My 0'013() (1) 182 fps; d

1.49 aaNE 2 x 1.49 NS 2
(m uffus”’) +ff§( us uR"’) +0? (1490 ulu?)

28809
(o e
v S
3,

1.49
2 x 0.013

2 x 1.49
3 x 0.013

2 2
= (010 x 1)2( (2)2/3(1)-‘/2) + (0.05 x 2)2( (1)"2(2)—*/3)

+(0.30 x 0.013)*(—1.49(2)%*(1)%(0.013) )" = 82.79 + 36.80 + 0.21 = 119.80
yielding the standard deviation
oy = 10.94 fps
The corresponding second-order mean velocity would be, according to Eq.

A e RS 2 x 1.49 2 x'1.49
py =182+ > as’(— ui”us”) +6§(——-u's”u;"”) +03( p u’fui”)]

2 B 4[14,, 9“;! n
1 1.49 2 x 1.49
—(0.1)2 | ———— 23 (1)y? ) = (0. 2f = 1/2(9)=4/3
—182 4 1 2, (4 X 0.013§ ) (1; ) (0000 2) (9 X 0.013) (1))
2 2 (2% 199 oy
_+(0.30x 0.013) ( (0'013)3( 3(1)

=182'4 %(—0.46 —0.10 4 32.76) = 198.10 fps

The first-order approximate mean velocity is about 8% lower than the corresponding second-order
mean velocity. <4




