

Linux Shell Scripting
Cookbook
Second Edition

Over 110 practical recipes to solve real-world shell
problems, guaranteed to make you wonder how you
ever lived without them

Shantanu Tushar

Sarath Lakshman

BIRMINGHAM - MUMBAI

Linux Shell Scripting Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Second edition: May 2013

Production Reference: 1140513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-274-2

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Authors
Shantanu Tushar

Sarath Lakshman

Reviewers
Rajeshwari K.

John C. Kennedy

Anil Kumar

Sudhendu Kumar

Aravind SV

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Ankita Shashi

Technical Editors
Jalasha D'costa

Amit Ramadas

Lubna Shaikh

Project Coordinator
Shiksha Chaturvedi

Proofreader
Linda Morris

Indexer
Hemangini Bari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Shantanu Tushar is an advanced GNU/Linux user since his college days. He works as an
application developer and contributes to the software in the KDE projects.

Shantanu has been fascinated by computers since he was a child, and spent most of his high
school time writing C code to perform daily activities. Since he started using GNU/Linux, he
has been using shell scripts to make the computer do all the hard work for him. He also takes
time to visit students at various colleges to introduce them to the power of Free Software,
including its various tools. Shantanu is a well-known contributor in the KDE community and
works on Calligra, Gluon and the Plasma subprojects. He looks after maintaining Calligra
Active – KDE's office document viewer for tablets, Plasma Media Center, and the Gluon Player.
One day, he believes, programming will be so easy that everybody will love to write programs
for their computers.

Shantanu can be reached by e-mail on shantanu@kde.org, shantanutushar on identi.
ca/twitter, or his website http://www.shantanutushar.com.

I would like to thank my friends and family for the support and
encouragement they've given me, especially to my sweet sister for her
patience when I couldn't get time to talk to her. I am particularly thankful
to Sinny Kumari for patiently testing the scripts to make sure they function
properly and Sudhendu Kumar for helping me with the recipe on
GNU Screen.

I must also thank Krishna, Madhusudan, and Santosh who introduced me to
the wonderful world of GNU/Linux and Free Software. Also, a big thanks to
all the reviewers of the book for taking the time to painfully go through every
minute detail in the book and help me in improving it. I am also thankful to
the whole team at Packt Publishing, without whose efforts and experience,
this second edition wouldn't have happened.

Sarath Lakshman is a 23 year old who was bitten by the Linux bug during his teenage
years. He is a software engineer working in ZCloud engineering group at Zynga, India. He is
a life hacker who loves to explore innovations. He is a GNU/Linux enthusiast and hactivist
of free and open source software. He spends most of his time hacking with computers and
having fun with his great friends. Sarath is well known as the developer of SLYNUX (2005)—a
user friendly GNU/Linux distribution for Linux newbies. The free and open source software
projects he has contributed to are PiTiVi Video editor, SLYNUX GNU/Linux distro, Swathantra
Malayalam Computing, School-Admin, Istanbul, and the Pardus Project. He has authored
many articles for the Linux For You magazine on various domains of FOSS technologies.
He had made a contribution to several different open source projects during his multiple
Google Summer of Code projects. Currently, he is exploring his passion about scalable
distributed systems in his spare time. Sarath can be reached via his website
http://www.sarathlakshman.com.

About the Reviewers

Rajeshwari K. received her B.E degree (Information Science and Engineering) from VTU in
2004 and M. Tech degree (Computer Science and Engineering) from VTU in 2009. From 2004
to 2007 she handled a set of real-time projects and did some freelancing. Since 2010 she
has being working as Assistant Professor at BMS College of Engineering in the department of
Information Science and Engineering. She has a total of five years' experience in teaching in
Computer Science subjects.

BMS College of Engineering, Bangalore is one of the autonomous colleges running under VTU
with high acclamation nationwide.

Her research interests include operating systems and system-side programming.

John C. Kennedy has been administering Unix and Linux servers and workstations since
1997. He has experience with Red Hat, SUSE, Ubuntu, Debian, Solaris, and HP-UX. John is
also experienced in Bash shell scripting and is currently teaching himself Python and Ruby.
John has also been a Technical Editor for various publishers for over 10 years specializing in
books related to open source technologies.

When John is not geeking out in front of either a home or work computer, he helps out with
a German Shepherd Rescue in Virginia by fostering some great dogs or helping with their
IT needs.

I would like to thank my family (my wonderful wife, Michele, my intelligent
and caring daughter Denise, and my terrific and smart son, Kieran) for
supporting the (sometimes) silly things and not so silly things I do. I'd also
like to thank my current foster dogs for their occasional need to keep their
legs crossed a little longer while I test things out from the book and forget
they are there.

Anil Kumar is a software developer. He received his Computer Science undergraduate
degree from BITS Pilani. He has work experience of more than two years in the field of
Web Development and Systems. Besides working as a software developer, Anil is an open
source evangelist and a blogger. He currently resides in Bangalore. He can be contacted at
anil.18june@gmail.com.

Sudhendu Kumar has been a GNU/Linux user for more than five years. Presently being a
software developer for a networking giant, in free time, he also contributes to KDE.

I would like to thank the publishers for giving me this opportunity to review
the book. I hope readers find the book useful and they enjoy reading it.

Aravind SV has worked with various Unix-like systems and shells over many years. You can
contact him at aravind.sv+shellbook@gmail.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Dedicated to my parents who taught me how to think and reason, and to be
optimistic in every situation in life

—Shantanu Tushar

Table of Contents
Preface 1
Chapter 1: Shell Something Out 7

Introduction 8
Printing in the terminal 10
Playing with variables and environment variables 13
Function to prepend to environment variables 17
Math with the shell 19
Playing with file descriptors and redirection 21
Arrays and associative arrays 27
Visiting aliases 29
Grabbing information about the terminal 31
Getting and setting dates and delays 32
Debugging the script 36
Functions and arguments 37
Reading the output of a sequence of commands 40
Reading n characters without pressing the return key 43
Running a command until it succeeds 44
Field separators and iterators 45
Comparisons and tests 48

Chapter 2: Have a Good Command 53
Introduction 53
Concatenating with cat 54
Recording and playing back of terminal sessions 57
Finding files and file listing 58
Playing with xargs 68
Translating with tr 73
Checksum and verification 77
Cryptographic tools and hashes 80

ii

Table of Contents

Sorting unique and duplicates 83
Temporary file naming and random numbers 89
Splitting files and data 90
Slicing filenames based on extension 92
Renaming and moving files in bulk 95
Spell checking and dictionary manipulation 97
Automating interactive input 99
Making commands quicker by running parallel processes 102

Chapter 3: File In, File Out 105
Introduction 106
Generating files of any size 106
The intersection and set difference (A-B) on text files 107
Finding and deleting duplicate files 110
Working with file permissions, ownership, and the sticky bit 113
Making files immutable 118
Generating blank files in bulk 119
Finding symbolic links and their targets 120
Enumerating file type statistics 121
Using loopback files 124
Creating ISO files and hybrid ISO 127
Finding the difference between files, patching 130
Using head and tail for printing the last or first 10 lines 132
Listing only directories – alternative methods 135
Fast command-line navigation using pushd and popd 136
Counting the number of lines, words, and characters in a file 138
Printing the directory tree 139

Chapter 4: Texting and Driving 143
Introduction 143
Using regular expressions 144
Searching and mining a text inside a file with grep 147
Cutting a file column-wise with cut 154
Using sed to perform text replacement 158
Using awk for advanced text processing 162
Finding the frequency of words used in a given file 168
Compressing or decompressing JavaScript 170
Merging multiple files as columns 173
Printing the nth word or column in a file or line 174
Printing text between line numbers or patterns 175
Printing lines in the reverse order 176
Parsing e-mail addresses and URLs from a text 177

iii

Table of Contents

Removing a sentence in a file containing a word 178
Replacing a pattern with text in all the files in a directory 180
Text slicing and parameter operations 181

Chapter 5: Tangled Web? Not At All! 183
Introduction 184
Downloading from a web page 184
Downloading a web page as plain text 187
A primer on cURL 188
Accessing Gmail e-mails from the command line 192
Parsing data from a website 194
Image crawler and downloader 195
Web photo album generator 198
Twitter command-line client 201
Creating a "define" utility by using the Web backend 206
Finding broken links in a website 209
Tracking changes to a website 211
Posting to a web page and reading the response 214

Chapter 6: The Backup Plan 217
Introduction 217
Archiving with tar 218
Archiving with cpio 224
Compressing data with gzip 226
Archiving and compressing with zip 230
Faster archiving with pbzip2 231
Creating filesystems with compression 232
Backup snapshots with rsync 234
Version control based backup with Git 237
Creating entire disk images with fsarchiver 240

Chapter 7: The Old-boy Network 243
Introduction 243
Setting up the network 244
Let us ping! 250
Listing all the machines alive on a network 254
Running commands on a remote host with SSH 257
Transferring files through the network 261
Connecting to a wireless network 265
Password-less auto-login with SSH 267
Port forwarding using SSH 269
Mounting a remote drive at a local mount point 270
Network traffic and port analysis 271

iv

Table of Contents

Creating arbitrary sockets 274
Sharing an Internet connection 275
Basic firewall using iptables 276

Chapter 8: Put on the Monitor's Cap 279
Introduction 279
Monitoring disk usage 280
Calculating the execution time for a command 285
Collecting information about logged in users, boot logs, and boot failures 288
Listing the top 10 CPU consuming processes in an hour 291
Monitoring command outputs with watch 293
Logging access to files and directories 294
Logfile management with logrotate 296
Logging with syslog 297
Monitoring user logins to find intruders 299
Remote disk usage health monitor 303
Finding out active user hours on a system 305
Measuring and optimizing power usage 308
Monitoring disk activity 309
Checking disks and filesystems for errors 310

Chapter 9: Administration Calls 313
Introduction 313
Gathering information about processes 314
Killing processes and send or respond to signals 324
Sending messages to user terminals 327
Gathering system information 329
Using /proc for gathering information 330
Scheduling with cron 331
Writing and reading the MySQL database from Bash 335
User administration script 340
Bulk image resizing and format conversion 344
Taking screenshots from the terminal 347
Managing multiple terminals from one 348

Index 351

Preface
GNU/Linux is one of the most powerful and flexible operating systems in the world. In
modern computing, there is absolutely no space where it is not used—from servers, portable
computers, mobile phones, tablets to supercomputers, everything runs Linux. While there
are beautiful and modern graphical interfaces available for it, the shell still remains the most
flexible way of interacting with the system.

In addition to executing individual commands, a shell can follow commands from a script,
which makes it very easy to automate tasks. Examples of such tasks are preparing reports,
sending e-mails, performing maintenance, and so on. This book is a collection of chapters
which contain recipes to demonstrate real-life usages of commands and shell scripts. You can
use these as a reference, or an inspiration for writing your own scripts. The tasks will range
from text manipulation to performing network operations to administrative tasks.

As with everything, the shell is only as awesome as you make it. When you become an expert
at shell scripting, you can use the shell to the fullest and harness its true power. Linux Shell
Scripting Cookbook shows you how to do exactly that!

What this book covers
Chapter 1, Shell Something Out, is an introductory chapter for understanding the basic
concepts and features in Bash. We discuss printing text in the terminal, doing mathematical
calculations, and other simple functionalities provided by Bash.

Chapter 2, Have a Good Command, shows commonly used commands that are available
with GNU/Linux. This chapter travels through different practical usage examples that users
may come across and that they could make use of. In addition to essential commands, this
second edition talks about cryptographic hashing commands and a recipe to run commands
in parallel, wherever possible.

Chapter 3, File In, File Out, contains a collection of recipes related to files and filesystems.
This chapter explains how to generate large-size files, installing a filesystem on files, mounting
files, and creating ISO images. We also deal with operations such as finding and removing
duplicate files, counting lines in a file collecting details about files, and so on.

Preface

2

Chapter 4, Texting and Driving, has a collection of recipes that explains most of the command-
line text processing tools well under GNU/Linux with a number of task examples. It also has
supplementary recipes for giving a detailed overview of regular expressions and commands
such as sed and awk. This chapter goes through solutions to most of the frequently used text
processing tasks in a variety of recipes. It is an essential read for any serious task.

Chapter 5, Tangled Web? Not At All!, has a collection of shell-scripting recipes that talk to
services on the Internet. This chapter is intended to help readers understand how to interact
with the Web using shell scripts to automate tasks such as collecting and parsing data
from web pages. This is discussed using POST and GET to web pages, writing clients to web
services. The second edition uses new authorization mechanisms such as OAuth for services
such as Twitter.

Chapter 6, The Backup Plan, shows several commands used for performing data back up,
archiving, compression, and so on. In addition to faster compression techniques, this second
edition also talks about creating entire disk images.

Chapter 7, The Old-boy Network, has a collection of recipes that talks about networking on
Linux and several commands useful for writing network-based scripts. The chapter starts
with an introductory basic networking primer and goes on to cover usages of ssh – one of
the most powerful commands on any modern GNU/Linux system. We discuss advanced port
forwarding, setting up raw communication channels, configuring the firewall, and much more.

Chapter 8, Put on the Monitor's Cap, walks through several recipes related to monitoring
activities on the Linux system and tasks used for logging and reporting. The chapter explains
tasks such as calculating disk usage, monitoring user access, and CPU usage. In this second
edition, we also learn how to optimize power consumption, monitor disks, and check their
filesystems for errors.

Chapter 9, Administration Calls, has a collection of recipes for system administration.
This chapter explains different commands to collect details about the system and user
management using scripting. We also discuss bulk image resizing and accessing MySQL
databases from the shell. New in this edition is that we learn how to use the GNU Screen to
manage multiple terminals without needing a window manager.

What you need for this book
Basic user experience with any GNU/Linux platform will help you easily follow the book. We
have tried to keep all the recipes in the book precise and as simple to follow as possible. Your
curiosity for learning with the Linux platform is the only prerequisite for the book. Step-by-step
explanations are provided for solving the scripting problems explained in the book. In order to
run and test the examples in the book, a Ubuntu/Debian Linux installation is recommended,
however, any other Linux distribution is enough for most of the tasks. You will find the book to
be a straightforward reference to essential shell-scripting tasks, as well as a learning aid to
code real-world efficient scripts.

Preface

3

Who this book is for
If you are a beginner, or an intermediate user, who wants to master the skill of quickly
writing scripts to perform various tasks without reading entire man pages, this book is for
you. You can start writing scripts and one-liners by simply looking at a similar recipe and
its descriptions without any working knowledge of shell scripting or Linux. Intermediate or
advanced users, as well as system administrators or developers and programmers, can use
this book as a reference when they face problems while coding.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We create a function called repeat that has an
infinite while loop, which attempts to run the command passed as a parameter (accessed by
$@) to the function."

A block of code is set as follows:

if [$var -eq 0]; then echo "True"; fi
can be written as
if test $var -eq 0 ; then echo "True"; fi

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

while read line;
do something
done < filename

Any command-line input or output is written as follows:

mkdir /mnt/loopback

mount -o loop loopbackfile.img /mnt/loopback

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our
author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Shell Something Out

In this chapter, we will cover:

 f Printing in the terminal

 f Playing with variables and environment variables

 f Function to prepend to environment variables

 f Math with the shell

 f Playing with file descriptors and redirection

 f Arrays and associative array

 f Visiting aliases

 f Grabbing information about the terminal

 f Getting and setting dates and delays

 f Debugging the script

 f Functions and arguments

 f Reading output of a sequence of commands in a variable

 f Reading n characters without pressing the return key

 f Running a command until it succeeds

 f Field separators and iterators

 f Comparisons and tests

Shell Something Out

8

Introduction
Unix-like systems are amazing operating system designs. Even after many decades, Unix-style
architecture for operating systems serves as one of the best designs. One of the important
features of this architecture is the command-line interface, or the shell. The shell environment
helps users to interact with and access core functions of the operating system. The term
scripting is more relevant in this context. Scripting is usually supported by interpreter-based
programming languages. Shell scripts are files in which we write a sequence of commands
that we need to perform and are executed using the shell utility.

In this book we are dealing with Bash (Bourne Again Shell), which is the default shell
environment for most GNU/Linux systems. Since GNU/Linux is the most prominent operating
system on Unix-style architecture, most of the examples and discussions are written by
keeping Linux systems in mind.

The primary purpose of this chapter is to give readers an insight into the shell environment
and become familiar with the basic features that the shell offers. Commands are typed and
executed in a shell terminal. When a terminal is opened, a prompt is available which usually
has the following format:

username@hostname$

Or:

root@hostname #

or simply as $ or #.

$ represents regular users and # represents the administrative user root. Root is the most
privileged user in a Linux system.

It is usually a bad idea to directly use the shell as the root user (administrator)
to perform tasks. This is because typing errors in your commands have the
potential to do more damage when your shell has more privileges. So, it
is recommended to log in as a regular user (your shell will denote that as
$ in the prompt, and # when running as root), and then use tools such as
`sudo' to run privileged commands. Running a command such as sudo
<command> <arguments> will run it as root.

A shell script is a text file that typically begins with a shebang, as follows:

#!/bin/bash

Shebang is a line on which #! is prefixed to the interpreter path. /bin/bash is the
interpreter command path for Bash.

Chapter 1

9

Execution of a script can be done in two ways. Either we can run the script as a
command-line argument to bash or we can grant execution permission to the script
so it becomes executable.

The script can be run with the filename as a command-line argument as follows (the text that
starts with # is a comment, you don't have to type it out):

$ bash script.sh # Assuming script is in the current directory.

Or:

$ bash /home/path/script.sh # Using full path of script.sh.

If a script is run as a command-line argument for bash, the shebang in the script is
not required.

If required, we can utilize the shebang to facilitate running the script on its own. For this, we
have to set executable permissions for the script and it will run using the interpreter path that
is appended to #! to the shebang. This can be set as follows:

$ chmod a+x script.sh

This command gives the script.sh file the executable permission for all users. The script
can be executed as:

$./script.sh #./ represents the current directory

Or:

$ /home/path/script.sh # Full path of the script is used

The kernel will read the first line and see that the shebang is #!/bin/bash. It will identify
/bin/bash and execute the script internally as:

$ /bin/bash script.sh

When a shell is started, it initially executes a set of commands to define various settings such
as prompt text, colors, and much more. This set of commands are read from a shell script at
~/.bashrc (or ~/.bash_profile for login shells) located in the home directory of the user.
The Bash shell also maintains a history of commands run by the user. It is available in the
~/.bash_history file.

~ denotes your home directory, which is usually /home/user where user is
your username or /root for the root user.
A login shell is the shell which you get just after logging in to a machine.
However, if you open up a shell while logged in to a graphical environment
(such as GNOME, KDE, and so on), then it is not a login shell.

Shell Something Out

10

In Bash, each command or command sequence is delimited by using a semicolon or a new
line. For example:

$ cmd1 ; cmd2

This is equivalent to:

$ cmd1

$ cmd2

Finally, the # character is used to denote the beginning of unprocessed comments.
A comment section starts with # and proceeds up to the end of that line. The comment lines
are most often used to provide comments about the code in the file or to stop a line of code
from being executed.

Now let us move on to the basic recipes in this chapter.

Printing in the terminal
The terminal is an interactive utility by which a user interacts with the shell environment.
Printing text in the terminal is a basic task that most shell scripts and utilities need to
perform regularly. As we will see in this recipe, this can be performed via various
methods and in different formats.

How to do it...
echo is the basic command for printing in the terminal.

echo puts a newline at the end of every echo invocation by default:

$ echo "Welcome to Bash"

Welcome to Bash

Simply, using double-quoted text with the echo command prints the text in the terminal.
Similarly, text without double quotes also gives the same output:

$ echo Welcome to Bash

Welcome to Bash

Another way to do the same task is by using single quotes:

$ echo 'text in quotes'

These methods may look similar, but some of them have a specific purpose and side effects
too. Consider the following command:

$ echo "cannot include exclamation - ! within double quotes"

Chapter 1

11

This will return the following output:

bash: !: event not found error

Hence, if you want to print special characters such as !, either do not use them within double
quotes or escape them with a special escape character (\) prefixed with it, like so:

$ echo Hello world !

Or:

$ echo 'Hello world !'

Or:

$ echo "Hello world \!" #Escape character \ prefixed.

The side effects of each of the methods are as follows:

 f When using echo without quotes, we cannot use a semicolon, as it acts as a
delimiter between commands in the Bash shell

 f echo hello; hello takes echo hello as one command and the second hello
as the second command

 f Variable substitution, which is discussed in the next recipe, will not work within
single quotes

Another command for printing in the terminal is printf. It uses the same arguments as the
printf command in the C programming language. For example:

$ printf "Hello world"

printf takes quoted text or arguments delimited by spaces. We can use formatted strings
with printf. We can specify string width, left or right alignment, and so on. By default,
printf does not have newline as in the echo command. We have to specify a newline
when required, as shown in the following script:

#!/bin/bash
#Filename: printf.sh

printf "%-5s %-10s %-4s\n" No Name Mark
printf "%-5s %-10s %-4.2f\n" 1 Sarath 80.3456
printf "%-5s %-10s %-4.2f\n" 2 James 90.9989
printf "%-5s %-10s %-4.2f\n" 3 Jeff 77.564

Shell Something Out

12

We will receive the formatted output:

No Name Mark

1 Sarath 80.35

2 James 91.00

3 Jeff 77.56

How it works...
%s, %c, %d, and %f are format substitution characters for which an argument can be placed
after the quoted format string.

%-5s can be described as a string substitution with left alignment (- represents left
alignment) with width equal to 5. If - was not specified, the string would have been aligned to
the right. The width specifies the number of characters reserved for that variable. For Name,
the width reserved is 10. Hence, any name will reside within the 10-character width reserved
for it and the rest of the characters will be filled with space up to 10 characters in total.

For floating point numbers, we can pass additional parameters to round off the
decimal places.

For marks, we have formatted the string as %-4.2f, where .2 specifies rounding off to two
decimal places. Note that for every line of the format string a newline (\n) is issued.

There's more...
While using flags for echo and printf, always make sure that the flags appear before any
strings in the command, otherwise Bash will consider the flags as another string.

Escaping newline in echo
By default, echo has a newline appended at the end of its output text. This can be avoided
by using the -n flag. echo can also accept escape sequences in double-quoted strings as an
argument. When using escape sequences, use echo as echo -e "string containing
escape sequences". For example:

echo -e "1\t2\t3"

1 2 3

Printing a colored output
Producing a colored output on the terminal is very interesting and is achieved by using
escape sequences.

Colors are represented by color codes, some examples being, reset = 0, black = 30, red = 31,
green = 32, yellow = 33, blue = 34, magenta = 35, cyan = 36, and white = 37.

Chapter 1

13

To print a colored text, enter the following command:

echo -e "\e[1;31m This is red text \e[0m"

Here, \e[1;31m is the escape string that sets the color to red and \e[0m resets the color
back. Replace 31 with the required color code.

For a colored background, reset = 0, black = 40, red = 41, green = 42, yellow = 43, blue = 44,
magenta = 45, cyan = 46, and white=47, are the color codes that are commonly used.

To print a colored background, enter the following command:

echo -e "\e[1;42m Green Background \e[0m"

Playing with variables and environment
variables

Variables are essential components of every programming language and are used to hold
varying data. Scripting languages usually do not require variable type declaration before
its use as they can be assigned directly. In Bash, the value for every variable is string,
regardless of whether we assign variables with quotes or without quotes. Furthermore, there
are variables used by the shell environment and the operating environment to store special
values, which are called environment variables. Let us look at how to play with some of
these variables in this recipe.

Getting ready
Variables are named with the usual naming constructs. When an application is executing, it
will be passed a set of variables called environment variables. To view all the environment
variables related to a terminal, issue the env command. For every process, environment
variables in its runtime can be viewed by:

cat /proc/$PID/environ

Set PID with a process ID of the process (PID always takes an integer value).

For example, assume that an application called gedit is running. We can obtain the process ID
of gedit with the pgrep command as follows:

$ pgrep gedit

12501

Shell Something Out

14

You can obtain the environment variables associated with the process by executing the
following command:

$ cat /proc/12501/environ

GDM_KEYBOARD_LAYOUT=usGNOME_KEYRING_PID=1560USER=slynuxHOME=/home/slynux

Note that many environment variables are stripped off for convenience.
The actual output may contain numerous variables.

The aforementioned command returns a list of environment variables and their values. Each
variable is represented as a name=value pair and are separated by a null character (\0).
If you can substitute the \0 character with \n, you can reformat the output to show each
variable=value pair in each line. Substitution can be made using the tr command as follows:

$ cat /proc/12501/environ | tr '\0' '\n'

Now, let us see how to assign and manipulate variables and environment variables.

How to do it...
A variable can be assigned as follows:

var=value

var is the name of a variable and value is the value to be assigned. If value does not
contain any space character (such as space), it need not be enclosed in quotes, Otherwise
it is to be enclosed in single or double quotes.

Note that var = value and var=value are different. It is a usual mistake to write var
=value instead of var=value. The later one is the assignment operation, whereas the
earlier one is an equality operation.

Printing contents of a variable is done using by prefixing $ with the variable name as follows:

var="value" #Assignment of value to variable var.

echo $var

Or:

echo ${var}

We will receive an output as follows:

value

Chapter 1

15

We can use variable values inside printf or echo in double quotes:

#!/bin/bash

#Filename :variables.sh

fruit=apple

count=5

echo "We have $count ${fruit}(s)"

The output will be as follows:

We have 5 apple(s)

Environment variables are variables that are not defined in the current process, but are
received from the parent processes. For example, HTTP_PROXY is an environment variable.
This variable defines which proxy server should be used for an Internet connection.

Usually, it is set as:

HTTP_PROXY=192.168.1.23:3128

export HTTP_PROXY

The export command is used to set the env variable. Now any application, executed from
the current shell script, will receive this variable. We can export custom variables for our
own purposes in an application or shell script that is executed. There are many standard
environment variables that are available for the shell by default.

For example, PATH. A typical PATH variable will contain:

$ echo $PATH

/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games

When given a command for execution, the shell automatically searches for the executable
in the list of directories in the PATH environment variable (directory paths are delimited by
the ":" character). Usually, $PATH is defined in /etc/environment or /etc/profile or
~/.bashrc. When we need to add a new path to the PATH environment, we use:

export PATH="$PATH:/home/user/bin"

Or, alternately, we can use:

$ PATH="$PATH:/home/user/bin"

$ export PATH

$ echo $PATH

/home/slynux/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin:/usr/games:/home/user/bin

Shell Something Out

16

Here we have added /home/user/bin to PATH.

Some of the well-known environment variables are HOME, PWD, USER, UID, SHELL, and so on.

When using single quotes, variables will not be expanded and will be
displayed as is. This means:
$ echo '$var' will print $var

Whereas, $ echo "$var" will print the value of the $var variable if
defined or nothing at all if it is not defined.

There's more...
Let us see more tips associated with standard and environment variables.

Finding the length of a string
Get the length of a variable value using the following command:

length=${#var}

For example:

$ var=12345678901234567890$

echo ${#var}

20

The length parameter will bear the number of characters in the string.

Identifying the current shell
To identify the shell which is currently being used, we can use the SHELL variable, like so:

echo $SHELL

Or:

echo $0

For example:

$ echo $SHELL

/bin/bash

$ echo $0

/bin/bash

Chapter 1

17

Checking for super user
UID is an important environment variable that can be used to check whether the current
script has been run as a root user or regular user. For example:

If [$UID -ne 0]; then
 echo Non root user. Please run as root.
else
 echo Root user
fi

The UID value for the root user is 0.

Modifying the Bash prompt string (username@hostname:~$)
When we open a terminal or run a shell, we see a prompt string such as user@hostname:
/home/$. Different GNU/Linux distributions have slightly different prompts and different
colors. We can customize the prompt text using the PS1 environment variable. The default
prompt text for the shell is set using a line in the ~/.bashrc file.

 f We can list the line used to set the PS1 variable as follows:
$ cat ~/.bashrc | grep PS1

PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ '

 f To set a custom prompt string, enter the following command:
slynux@localhost: ~$ PS1="PROMPT>"

PROMPT> Type commands here # Prompt string changed.

 f We can use colored text using the special escape sequences such as \e[1;31
(refer to the Printing in the terminal recipe of this chapter).

There are also certain special characters that expand to system parameters. For example,
\u expands to username, \h expands to hostname, and \w expands to the current
working directory.

Function to prepend to environment
variables

Environment variables are often used to store a list of paths of where to search for
executables, libraries, and so on. Examples are $PATH, $LD_LIBRARY_PATH, which
will typically look like this:

PATH=/usr/bin;/bin

LD_LIBRARY_PATH=/usr/lib;/lib

Shell Something Out

18

This essentially means that whenever the shell has to execute binaries, it will first look into
/usr/bin followed by /bin.

A very common task that one has to do when building a program from source and installing
to a custom path is to add its bin directory to the PATH environment variable. Let's say in
this case we install myapp to /opt/myapp, which has binaries in a directory called bin and
libraries in lib.

How to do it...
A way to do this is to say it as follows:

export PATH=/opt/myapp/bin:$PATH

export LD_LIBRARY_PATH=/opt/myapp/lib;$LD_LIBRARY_PATH

PATH and LD_LIBRARY_PATH should now look something like this:

PATH=/opt/myapp/bin:/usr/bin:/bin

LD_LIBRARY_PATH=/opt/myapp/lib:/usr/lib;/lib

However, we can make this easier by adding this function in .bashrc-:

prepend() { [-d "$2"] && eval $1=\"$2':'\$$1\" && export $1; }

This can be used in the following way:

prepend PATH /opt/myapp/bin

prepend LD_LIBRARY_PATH /opt/myapp/lib

How it works...
We define a function called prepend(), which first checks if the directory specified by the
second parameter to the function exists. If it does, the eval expression sets the variable with
the name in the first parameter equal to the second parameter string followed by : (the path
separator) and then the original value for the variable.

However, there is one caveat, if the variable is empty when we try to prepend, there will be a
trailing : at the end. To fix this, we can modify the function to look like this:

prepend() { [-d "$2"] && eval $1=\"$2\$\{$1:+':'\$$1\}\" && export $1 ;
}

Chapter 1

19

In this form of the function, we introduce a shell parameter
expansion of the form:
${parameter:+expression}

This expands to expression if parameter is set and is not null.

With this change, we take care to try to append : and the old value if, and only if, the old
value existed when trying to prepend.

Math with the shell
Arithmetic operations are an essential requirement for every programming language. In this
recipe, we will explore various methods for performing arithmetic operations in shell.

Getting ready
The Bash shell environment can perform basic arithmetic operations using the commands
let, (()), and []. The two utilities expr and bc are also very helpful in performing
advanced operations.

How to do it...
1. A numeric value can be assigned as a regular variable assignment, which is stored as

a string. However, we use methods to manipulate as numbers:
#!/bin/bash

no1=4;

no2=5;

2. The let command can be used to perform basic operations directly. While using
let, we use variable names without the $ prefix, for example:
let result=no1+no2
echo $result

 � Increment operation:
 $ let no1++

 � Decrement operation:
 $ let no1--

 � Shorthands:

 let no+=6
 let no-=6

Shell Something Out

20

These are equal to let no=no+6 and let no=no-6 respectively.

 � Alternate methods:

The [] operator can be used in the same way as the let command
as follows:

 result=$[no1 + no2]

Using the $ prefix inside [] operators are legal, for example:
 result=$[$no1 + 5]

(()) can also be used. $ prefixed with a variable name is used when ((
)) operator is used, as follows:

 result=$((no1 + 50))

expr can also be used for basic operations:
 result=`expr 3 + 4`

 result=$(expr $no1 + 5)

All of the preceding methods do not support floating point numbers, and
operate on integers only.

3. bc, the precision calculator is an advanced utility for mathematical operations. It has
a wide range of options. We can perform floating point operations and use advanced
functions as follows:

echo "4 * 0.56" | bc

2.24

no=54;

result=`echo "$no * 1.5" | bc`

echo $result

81.0

Additional parameters can be passed to bc with prefixes to the operation with
semicolon as delimiters through stdin.

 � Decimal places scale with bc: In the following example the scale=2
parameter sets the number of decimal places to 2. Hence, the output
of bc will contain a number with two decimal places:

 echo "scale=2;3/8" | bc

 0.37

Chapter 1

21

 � Base conversion with bc: We can convert from one base number system to
another one. Let us convert from decimal to binary, and binary to octal:

 #!/bin/bash

 Desc: Number conversion

 no=100

 echo "obase=2;$no" | bc

 1100100

 no=1100100

 echo "obase=10;ibase=2;$no" | bc

 100

 � Calculating squares and square roots can be done as follows:

 echo "sqrt(100)" | bc #Square root

 echo "10^10" | bc #Square

Playing with file descriptors and redirection
File descriptors are integers that are associated with file input and output. They keep track of
opened files. The best-known file descriptors are stdin, stdout, and stderr. We even can
redirect the contents of one file descriptor to another. This recipe shows examples on how to
manipulate and redirect with file descriptors.

Getting ready
While writing scripts we use standard input (stdin), standard output (stdout), and standard
error (stderr) frequently. Redirection of an output to a file by filtering the contents is one of
the essential things we need to perform. While a command outputs some text, it can be either
an error or an output (nonerror) message. We cannot distinguish whether it is output text or
an error text by just looking at it. However, we can handle them with file descriptors. We can
extract text that is attached to a specific descriptor.

File descriptors are integers associated with an opened file or data stream. File descriptors 0,
1, and 2 are reserved as follows:

 f 0: stdin (standard input)

 f 1: stdout (standard output)

 f 2: stderr (standard error)

Shell Something Out

22

How to do it...
1. Redirecting or saving output text to a file can be done as follows:

$ echo "This is a sample text 1" > temp.txt

This would store the echoed text in temp.txt by truncating the file, the contents will
be emptied before writing.

2. To append text to a file, consider the following example:
$ echo "This is sample text 2" >> temp.txt

3. You can view the contents of the file as follows:
$ cat temp.txt

This is sample text 1

This is sample text 2

4. Let us see what a standard error is and how you can redirect it. stderr messages
are printed when commands output an error message. Consider the following
example:
$ ls +

ls: cannot access +: No such file or directory

Here + is an invalid argument and hence an error is returned.

Successful and unsuccessful commands
When a command returns after an error, it returns a nonzero
exit status. The command returns zero when it terminates
after successful completion. The return status can be read
from special variable $? (run echo $? immediately after
the command execution statement to print the exit status).

The following command prints the stderr text to the screen rather than to a file
(and because there is no stdout output, out.txt will be empty):
$ ls + > out.txt

ls: cannot access +: No such file or directory

In the following command, we redirect stderr to out.txt:
$ ls + 2> out.txt # works

You can redirect stderr exclusively to a file and stdout to another file as follows:
$ cmd 2>stderr.txt 1>stdout.txt

Chapter 1

23

It is also possible to redirect stderr and stdout to a single file by converting
stderr to stdout using this preferred method:
$ cmd 2>&1 output.txt

Or the alternate approach:

$ cmd &> output.txt

5. Sometimes, the output may contain unnecessary information (such as debug
messages). If you don't want the output terminal burdened with the stderr details
then you should redirect the stderr output to /dev/null, which removes it
completely. For example, consider that we have three files a1, a2, and a3. However,
a1 does not have the read-write-execute permission for the user. When you need to
print the contents of files starting with a, we use the cat command. Set up the test
files as follows:
$ echo a1 > a1

$ cp a1 a2 ; cp a2 a3;

$ chmod 000 a1 #Deny all permissions

While displaying contents of the files using wildcards (a*), it will show an error
message for file a1 as it does not have the proper read permission:
$ cat a*

cat: a1: Permission denied

a1

a1

Here, cat: a1: Permission denied belongs to the stderr data. We can
redirect the stderr data into a file, whereas stdout remains printed in the
terminal. Consider the following code:
$ cat a* 2> err.txt #stderr is redirected to err.txt

a1

a1

$ cat err.txt

cat: a1: Permission denied

Take a look at the following code:
$ cmd 2>/dev/null

When redirection is performed for stderr or stdout, the redirected text flows
into a file. As the text has already been redirected and has gone into the file, no text
remains to flow to the next command through pipe (|), and it appears to the next set
of command sequences through stdin.

Shell Something Out

24

6. However, there is a way to redirect data to a file, as well as provide a copy of
redirected data as stdin for the next set of commands. This can be done using
the tee command. For example, to print stdout in the terminal as well as redirect
stdout into a file, the syntax for tee is as follows:
command | tee FILE1 FILE2

In the following code, the stdin data is received by the tee command. It writes a
copy of stdout to the out.txt file and sends another copy as stdin for the next
command. The cat -n command puts a line number for each line received from
stdin and writes it into stdout:
$ cat a* | tee out.txt | cat -n

cat: a1: Permission denied

 1a1

 2a1

Examine the contents of out.txt as follows:
$ cat out.txt

a1

a1

Note that cat: a1: Permission denied does not appear because it belongs to
stderr. The tee command can read from stdin only.

By default, the tee command overwrites the file, but it can be used with appended
options by providing the -a option, for example, $ cat a* | tee -a out.txt |
cat -n.

Commands appear with arguments in the format: command FILE1 FILE2 … or
simply command FILE.

7. We can use stdin as a command argument. It can be done by using - as the
filename argument for the command as follows:

$ cmd1 | cmd2 | cmd -

For example:
$ echo who is this | tee -

who is this

who is this

Alternately, we can use /dev/stdin as the output filename to use stdin.

Similarly, use /dev/stderr for standard error and /dev/stdout for standard
output. These are special device files that correspond to stdin, stderr,
and stdout.

Chapter 1

25

How it works...
For output redirection, > and >> operators are different. Both of them redirect text to a file,
but the first one empties the file and then writes to it, whereas the later one adds the output
to the end of the existing file.

When we use a redirection operator, the output won't print in the terminal but it is directed to
a file. When redirection operators are used, by default, they operate on standard output. To
explicitly take a specific file descriptor, you must prefix the descriptor number to the operator.

> is equivalent to 1> and similarly it applies for >> (equivalent to 1>>).

When working with errors, the stderr output is dumped to the /dev/null file. ./dev/null
is a special device file where any data received by the file is discarded. The null device is often
known as a black hole as all the data that goes into it is lost forever.

There's more...
A command that reads stdin for input can receive data in multiple ways. Also, it is possible
to specify file descriptors of our own using cat and pipes, for example:

$ cat file | cmd

$ cmd1 | cmd

Redirection from a file to a command
By using redirection, we can read data from a file as stdin as follows:

$ cmd < file

Redirecting from a text block enclosed within a script
Sometimes we need to redirect a block of text (multiple lines of text) as standard
input. Consider a particular case where the source text is placed within the shell script.
A practical usage example is writing a logfile header data. It can be performed as follows:

#!/bin/bash
cat<<EOF>log.txt
LOG FILE HEADER
This is a test log file
Function: System statistics
EOF

Shell Something Out

26

The lines that appear between cat <<EOF >log.txt and the next EOF line will appear as
the stdin data. Print the contents of log.txt as follows:

$ cat log.txt

LOG FILE HEADER

This is a test log file

Function: System statistics

Custom file descriptors
A file descriptor is an abstract indicator for accessing a file. Each file access is associated
with a special number called a file descriptor. 0, 1, and 2 are reserved descriptor numbers
for stdin, stdout, and stderr.

We can create our own custom file descriptors using the exec command. If you are already
familiar with file programming with any other programming language, you might have noticed
modes for opening files. Usually, the following three modes are used:

 f Read mode

 f Write with truncate mode

 f Write with append mode

< is an operator used to read from the file to stdin. > is the operator used to write to a
file with truncation (data is written to the target file after truncating the contents). >> is an
operator used to write to a file by appending (data is appended to the existing file contents
and the contents of the target file will not be lost). File descriptors can be created with one of
the three modes.

Create a file descriptor for reading a file, as follows:

$ exec 3<input.txt # open for reading with descriptor number 3

We could use it in the following way:

$ echo this is a test line > input.txt

$ exec 3<input.txt

Now you can use file descriptor 3 with commands. For example, we will use cat <&3
as follows:

$ cat<&3

this is a test line

If a second read is required, we cannot re-use the file descriptor 3. It is required that we
reassign the file descriptor 3 for read using exec for making a second read.

Chapter 1

27

Create a file descriptor for writing (truncate mode) as follows:

$ exec 4>output.txt # open for writing

For example:

$ exec 4>output.txt

$ echo newline >&4

$ cat output.txt

newline

Create a file descriptor for writing (append mode) as follows:

$ exec 5>>input.txt

For example:

$ exec 5>>input.txt

$ echo appended line >&5

$ cat input.txt

newline

appended line

Arrays and associative arrays
Arrays are a very important component for storing a collection of data as separate entities
using indexes. Regular arrays can use only integers as their array index. On the other hand,
Bash also supports associative arrays that can take a string as their array index. Associative
arrays are very useful in many types of manipulations where having a string index makes more
sense. In this recipe, we will see how to use both of these.

Getting ready
To use associate arrays, you must have Bash Version 4 or higher.

How to do it...
1. An array can be defined in many ways. Define an array using a list of values in a line

as follows:
array_var=(1 2 3 4 5 6)

#Values will be stored in consecutive locations starting from
index 0.

Shell Something Out

28

Alternately, define an array as a set of index-value pairs as follows:

array_var[0]="test1"

array_var[1]="test2"

array_var[2]="test3"

array_var[3]="test4"

array_var[4]="test5"

array_var[5]="test6"

2. Print the contents of an array at a given index using the following commands:
echo ${array_var[0]}

test1

index=5

echo ${array_var[$index]}

test6

3. Print all of the values in an array as a list using the following commands:
$ echo ${array_var[*]}

test1 test2 test3 test4 test5 test6

Alternately, you could use:

$ echo ${array_var[@]}

test1 test2 test3 test4 test5 test6

4. Print the length of an array (the number of elements in an array) as follows:

$ echo ${#array_var[*]}

6

There's more...
Associative arrays have been introduced to Bash from Version 4.0 and they are useful entities
to solve many problems using the hashing technique. Let us go into more detail.

Defining associative arrays
In an associative array, we can use any text data as an array index. Initially, a declaration
statement is required to declare a variable name as an associative array. This can be done
as follows:

$ declare -A ass_array

Chapter 1

29

After the declaration, elements can be added to the associative array using two methods
as follows:

 f By using inline index-value list method, we can provide a list of index-value pairs:
$ ass_array=([index1]=val1 [index2]=val2)

 f Alternately, you could use separate index-value assignments:

$ ass_array[index1]=val1

$ ass_array'index2]=val2

For example, consider the assignment of price for fruits using an associative array:

$ declare -A fruits_value

$ fruits_value=([apple]='100dollars' [orange]='150 dollars')

Display the content of an array as follows:

$ echo "Apple costs ${fruits_value[apple]}"

Apple costs 100 dollars

Listing of array indexes
Arrays have indexes for indexing each of the elements. Ordinary and associative arrays differ
in terms of index type. We can obtain the list of indexes in an array as follows:

$ echo ${!array_var[*]}

Or, we can also use:

$ echo ${!array_var[@]

In the previous fruits_value array example, consider the following command:

$ echo ${!fruits_value[*]}

orange apple

This will work for ordinary arrays too.

Visiting aliases
An alias is basically a shortcut that takes the place of typing a long-command sequence.
In this recipe, we will see how to create aliases using the alias command.

Shell Something Out

30

How to do it...
There are various operations you can perform on aliases, these are as follows:

1. An alias can be created as follows:
$ alias new_command='command sequence'

Giving a shortcut to the install command, apt-get install, can be done
as follows:
$ alias install='sudo apt-get install'

Therefore, we can use install pidgin instead of sudo apt-get install
pidgin.

2. The alias command is temporary; aliasing exists until we close the current terminal
only. To keep these shortcuts permanent, add this statement to the ~/.bashrc
file. Commands in ~/.bashrc are always executed when a new shell process
is spawned:
$ echo 'alias cmd="command seq"' >> ~/.bashrc

3. To remove an alias, remove its entry from ~/.bashrc (if any) or use the unalias
command. Alternatively, alias example= should unset the alias named example.

4. As an example, we can create an alias for rm so that it will delete the original and
keep a copy in a backup directory:

alias rm='cp $@ ~/backup && rm $@'

When you create an alias, if the item being aliased already exists, it will
be replaced by this newly aliased command for that user.

There's more...
There are situations when aliasing can also be a security breach. See how to identify them.

Escaping aliases
The alias command can be used to alias any important command, and you may not always
want to run the command using the alias. We can ignore any aliases currently defined by
escaping the command we want to run. For example:

$ \command

Chapter 1

31

The \ character escapes the command, running it without any aliased changes. While running
privileged commands on an untrusted environment, it is always good security practice to
ignore aliases by prefixing the command with \. The attacker might have aliased the privileged
command with his/her own custom command to steal the critical information that is provided
by the user to the command.

Grabbing information about the terminal
While writing command-line shell scripts, we will often need to heavily manipulate information
about the current terminal, such as the number of columns, rows, cursor positions, masked
password fields, and so on. This recipe helps in collecting and manipulating terminal settings.

Getting ready
tput and stty are utilities that can be used for terminal manipulations. Let us see how to
use them to perform different tasks.

How to do it...
There are specific information you can gather about the terminal as shown in the following list:

 f Get the number of columns and rows in a terminal by using the following commands:
tput cols

tput lines

 f To print the current terminal name, use the following command:
tput longname

 f To move the cursor to a 100,100 position, you can enter:
tput cup 100 100

 f Set the background color for the terminal using the following command:
tputsetb n

n can be a value in the range of 0 to 7.

 f Set the foreground color for text by using the following command:
tputsetf n

n can be a value in the range of 0 to 7.

 f To make text bold use this:
tput bold

Shell Something Out

32

 f To start and end underlining use this:
tput smul

tput rmul

 f To delete from the cursor to the end of the line use the following command:
tputed

 f While typing a password, we should not display the characters typed. In the following
example, we will see how to do it using stty:

#!/bin/sh

#Filename: password.sh

echo -e "Enter password: "

stty -echo

read password

stty echo

echo

echo Password read.

The -echo option in the preceding command disables the output
to the terminal, whereas echo enables output.

Getting and setting dates and delays
Many applications require printing dates in different formats, setting date and time, and
performing manipulations based on date and time. Delays are commonly used to provide
a wait time (such as 1 second) during the program execution. Scripting contexts, such
as monitoring a task every 5 seconds, demands the understanding of writing delays in
a program. This recipe will show you how to work with dates and time delays.

Getting ready
Dates can be printed in variety of formats. We can also set dates from the command line. In
Unix-like systems, dates are stored as an integer, which denotes the number of seconds since
1970-01-01 00:00:00 UTC. This is called epoch or Unix time. Let us see how to read dates
and set them.

Chapter 1

33

How to do it...
It is possible to read the dates in different formats and also to set the date. This can be
accomplished with these steps:

1. You can read the date as follows:
$ date

Thu May 20 23:09:04 IST 2010

2. The epoch time can be printed as follows:
$ date +%s

1290047248

We can find out epoch from a given formatted date string. You can use dates in
multiple date formats as input. Usually, you don't need to bother about the date string
format that you use if you are collecting the date from a system log or any standard
application generated output. Convert the date string into epoch as follows:
$ date --date "Thu Nov 18 08:07:21 IST 2010" +%s

1290047841

The --date option is used to provide a date string as input. However, we can use any
date formatting options to print the output. Feeding the input date from a string can
be used to find out the weekday, given the date.

For example:
$ date --date "Jan 20 2001" +%A

Saturday

The date format strings are listed in the table mentioned in the How it works… section:

3. Use a combination of format strings prefixed with + as an argument for the date
command to print the date in the format of your choice. For example:
$ date "+%d %B %Y"

20 May 2010

4. We can set the date and time as follows:
date -s "Formatted date string"

For example:

date -s "21 June 2009 11:01:22"

Shell Something Out

34

5. Sometimes we need to check the time taken by a set of commands. We can display it
using the following code:

#!/bin/bash
#Filename: time_take.sh
start=$(date +%s)
commands;
statements;

end=$(date +%s)
difference=$((end - start))
echo Time taken to execute commands is $difference seconds.

An alternate method would be to use time <scriptpath> to
get the time that it took to execute the script.

How it works...
While considering dates and time, epoch is defined as the number of seconds that have
elapsed since midnight proleptic Coordinated Universal Time (UTC) of January 1, 1970, not
counting leap seconds. Epoch time is very useful when you need to calculate the difference
between two dates or time. You may find out the epoch times for two given timestamps and
take the difference between the epoch values. Therefore, you can find out the total number of
seconds between two dates.

To write a date format to get the output as required, use the following table:

Date component Format

Weekday %a (for example, Sat)

%A (for example, Saturday)
Month %b (for example, Nov)

%B (for example, November)
Day %d (for example, 31)
Date in format (mm/dd/yy) %D (for example, 10/18/10)
Year %y (for example, 10)

%Y (for example, 2010)
Hour %I or %H (For example, 08)
Minute %M (for example, 33)
Second %S (for example, 10)

Chapter 1

35

Date component Format

Nano second %N (for example, 695208515)

Epoch Unix time in seconds %s (for example, 1290049486)

There's more...
Producing time intervals is very essential when writing monitoring scripts that execute in a
loop. Let us see how to generate time delays.

Producing delays in a script
To delay execution in a script for a particular period of time, use sleep:$ sleepno_of_
seconds. For example, the following script counts from 0 to 40 by using tput and sleep:

#!/bin/bash
#Filename: sleep.sh
echo -n Count:
tput sc

count=0;
while true;
do
 if [$count -lt 40];
 then
 let count++;
 sleep 1;
 tput rc
 tput ed
 echo -n $count;
 else exit 0;
 fi
done

In the preceding example, a variable count is initialized to 0 and is incremented on every
loop execution. The echo statement prints the text. We use tput sc to store the cursor
position. On every loop execution we write the new count in the terminal by restoring the
cursor position for the number. The cursor position is restored using tput rc. This clears
text from the current cursor position to the end of the line, so that the older number can be
cleared and the count can be written. A delay of 1 second is provided in the loop by using the
sleep command.

Shell Something Out

36

Debugging the script
Debugging is one of the critical features that every programming language should implement
to produce race-back information when something unexpected happens. Debugging
information can be used to read and understand what caused the program to crash or to
act in an unexpected fashion. Bash provides certain debugging options that every sysadmin
should know. This recipe shows how to use these.

How to do it...
We can either use Bash's inbuilt debugging tools or write our scripts in such a manner that
they become easy to debug, here's how:

1. Add the -x option to enable debug tracing of a shell script as follows:
$ bash -x script.sh

Running the script with the -x flag will print each source line with the current status.
Note that you can also use sh -x script.

2. Debug only portions of the script using set -x and set +x. For example:
#!/bin/bash
#Filename: debug.sh
for i in {1..6};
do
 set -x
 echo $i
 set +x
done
echo "Script executed"

In the preceding script, the debug information for echo $i will only be printed, as
debugging is restricted to that section using -x and +x.

3. The aforementioned debugging methods are provided by Bash built-ins. But they
always produce debugging information in a fixed format. In many cases, we need
debugging information in our own format. We can set up such a debugging style by
passing the _DEBUG environment variable.

Look at the following example code:
#!/bin/bash
function DEBUG()
{
 ["$_DEBUG" == "on"] && $@ || :
}

Chapter 1

37

for i in {1..10}
do
 DEBUG echo $i
done

We can run the above script with debugging set to "on" as follows:
$ _DEBUG=on ./script.sh

We prefix DEBUG before every statement where debug information is to be printed.
If _DEBUG=on is not passed to the script, debug information will not be printed. In
Bash, the command : tells the shell to do nothing.

How it works...
The -x flag outputs every line of script as it is executed to stdout. However, we may require
only some portions of the source lines to be observed such that commands and arguments
are to be printed at certain portions. In such conditions we can use set builtin to enable
and disable debug printing within the script.

 f set -x: This displays arguments and commands upon their execution

 f set +x: This disables debugging

 f set -v: This displays input when they are read

 f set +v: This disables printing input

There's more...
We can also use other convenient ways to debug scripts. We can make use of shebang in a
trickier way to debug scripts.

Shebang hack
The shebang can be changed from #!/bin/bash to #!/bin/bash -xv to enable
debugging without any additional flags (-xv flags themselves).

Functions and arguments
Like any other scripting languages, Bash also supports functions. Let us see how to define
and use functions.

Shell Something Out

38

How to do it...
We can create functions to perform tasks and we can also create functions that take
parameters (also called arguments) as you can see in the following steps:

1. A function can be defined as follows:
function fname()
{
 statements;
}
Or alternately,
fname()
{
 statements;
}

2. A function can be invoked just by using its name:
$ fname ; # executes function

3. Arguments can be passed to functions and can be accessed by our script:

fname arg1 arg2 ; # passing args

Following is the definition of the function fname. In the fname function, we have
included various ways of accessing the function arguments.
fname()
{
 echo $1, $2; #Accessing arg1 and arg2
 echo "$@"; # Printing all arguments as list at once
 echo "$*"; # Similar to $@, but arguments taken as single entity
 return 0; # Return value
}

Similarly, arguments can be passed to scripts and can be accessed by script:$0
(the name of the script):

 � $1 is the first argument

 � $2 is the second argument

 � $n is the nth argument

 � "$@"expands as "$1" "$2" "$3" and so on

 � "$*" expands as "$1c$2c$3", where c is the first character of IFS

 � "$@" is used more often than "$*"since the former provides all arguments
as a single string

Chapter 1

39

There's more...
Let us explore through more tips on Bash functions.

The recursive function
Functions in Bash also support recursion (the function that can call itself). For example, F()
{ echo $1; F hello; sleep 1; }.

Fork bomb
We can write a recursive function, which is basically a function that calls itself:

:(){ :|:& };:

It infinitely spawns processes and ends up in a denial-of-service attack. & is
postfixed with the function call to bring the subprocess into the background.
This is a dangerous code as it forks processes and, therefore, it is called a
fork bomb.
You may find it difficult to interpret the preceding code. See the Wikipedia
page http://en.wikipedia.org/wiki/Fork_bomb for more details
and interpretation of the fork bomb.
It can be prevented by restricting the maximum number of processes that can
be spawned from the config file at /etc/security/limits.conf.

Exporting functions
A function can be exported—like environment variables—using export, such that the scope of
the function can be extended to subprocesses, as follows:

export -f fname

Reading the return value (status) of a command
We can get the return value of a command or function in the following way:

cmd;

echo $?;

$? will give the return value of the command cmd.

The return value is called exit status. It can be used to analyze whether a command
completed its execution successfully or unsuccessfully. If the command exits successfully,
the exit status will be zero, otherwise it will be a nonzero value.

Shell Something Out

40

We can check whether a command terminated successfully or not by using the
following script:

#!/bin/bash
#Filename: success_test.sh
CMD="command" #Substitute with command for which you need to test the
exit status
$CMD
if [$? -eq 0];
then
 echo "$CMD executed successfully"
else
 echo "$CMD terminated unsuccessfully"
fi

Passing arguments to commands
Arguments to commands can be passed in different formats. Suppose -p and-v are the
options available and -k N is another option that takes a number. Also, the command
takes a filename as argument. It can be executed in multiple ways as shown:

 f $ command -p -v -k 1 file

 f $ command -pv -k 1 file

 f $ command -vpk 1 file

 f $ command file -pvk 1

Reading the output of a sequence of
commands in a variable

One of the best-designed features of shell scripting is the ease of combining many commands
or utilities to produce output. The output of one command can appear as the input of another,
which passes its output to another command, and so on. The output of this combination can
be read in a variable. This recipe illustrates how to combine multiple commands and how its
output can be read.

Getting ready
Input is usually fed into a command through stdin or arguments. Output appears as stderr
or stdout. While we combine multiple commands, we usually use stdin to give input and
stdout to provide an output.

Chapter 1

41

In this context, the commands are called filters. We connect each filter using pipes, the piping
operator being |. An example is as follows:

$ cmd1 | cmd2 | cmd3

Here we combine three commands. The output of cmd1 goes to cmd2 and output of cmd2
goes to cmd3 and the final output (which comes out of cmd3) will be printed, or it can be
directed to a file.

How to do it...
We typically use pipes and use them with the subshell method for combining outputs of
multiple files. Here's how:

1. Let us start with combining two commands:
$ ls | cat -n > out.txt

Here the output of ls (the listing of the current directory) is passed to cat –n, which
in turn puts line numbers to the input received through stdin. Therefore, its output
is redirected to the out.txt file.

2. We can read the output of a sequence of commands combined by pipes as follows:

cmd_output=$(COMMANDS)

This is called subshell method. For example:
cmd_output=$(ls | cat -n)

echo $cmd_output

Another method, called back quotes (some people also refer to it as back tick) can
also be used to store the command output as follows:

cmd_output=`COMMANDS`

For example:
cmd_output=`ls | cat -n`

echo $cmd_output

Back quote is different from the single-quote character. It is the character on the ~
button in the keyboard.

Shell Something Out

42

There's more...
There are multiple ways of grouping commands. Let us go through a few of them.

Spawning a separate process with subshell
Subshells are separate processes. A subshell can be defined using the ()operators
as follows:

pwd;
(cd /bin; ls);
pwd;

When some commands are executed in a subshell, none of the changes occur in the current
shell; changes are restricted to the subshell. For example, when the current directory in a
subshell is changed using the cd command, the directory change is not reflected in the main
shell environment.

The pwd command prints the path of the working directory.

The cd command changes the current directory to the given directory path.

Subshell quoting to preserve spacing and the newline character
Suppose we are reading the output of a command to a variable using a subshell or the back
quotes method. We always quote them in double quotes to preserve the spacing and newline
character (\n). For example:

$ cat text.txt

1

2

3

$ out=$(cat text.txt)

$ echo $out

1 2 3 # Lost \n spacing in 1,2,3

$ out="$(cat tex.txt)"

$ echo$out

1

2

3

Chapter 1

43

Reading n characters without pressing the
return key
read is an important Bash command to read text from the keyboard or standard input. We
can use read to interactively read an input from the user, but read is capable of much more.
Most of the input libraries in any programming language read the input from the keyboard; but
string input termination is done when return is pressed. There are certain critical situations
when return cannot be pressed, but the termination is done based on a number of characters
or a single character. For example, in a game, a ball is moved upward when + is pressed.
Pressing + and then pressing return every time to acknowledge the + press is not efficient. In
this recipe we will use the read command that provides a way to accomplish this task without
having to press return.

How to do it...
You can use various options of the read command to obtain different results as shown in the
following steps:

1. The following statement will read n characters from input into the
variable_name variable:
read -n number_of_chars variable_name

For example:

$ read -n 2 var

$ echo $var

2. Read a password in the nonechoed mode as follows:
read -s var

3. Display a message with read using:
read -p "Enter input:" var

4. Read the input after a timeout as follows:
read -t timeout var

For example:

$ read -t 2 var

#Read the string that is typed within 2 seconds into variable var.

Shell Something Out

44

5. Use a delimiter character to end the input line as follows:

read -d delim_char var

For example:

$ read -d ":" var

hello:#var is set to hello

Running a command until it succeeds
When using your shell for everyday tasks, there will be cases where a command might
succeed only after some conditions are met, or the operation depends on an external event
(such as a file being available to download). In such cases, one might want to run a command
repeatedly until it succeeds.

How to do it...
Define a function in the following way:

repeat()
{
 while true
 do
 $@ && return
 done
}

Or, add this to your shell's rc file for ease of use:

repeat() { while true; do $@ && return; done }

How it works...
We create a function called repeat that has an infinite while loop, which attempts to run
the command passed as a parameter (accessed by $@) to the function. It then returns if the
command was successful, thereby exiting the loop.

There's more...
We saw a basic way to run commands until they succeed. Let us see what we can do to make
things more efficient.

Chapter 1

45

A faster approach
On most modern systems, true is implemented as a binary in /bin. This means that each
time the aforementioned while loop runs, the shell has to spawn a process. To avoid this,
we can use the : shell built-in, which always returns an exit code 0:

repeat() { while :; do $@ && return; done }

Though not as readable, this is certainly faster than the first approach.

Adding a delay
Let's say you are using repeat() to download a file from the Internet which is not available
right now, but will be after some time. An example would be:

repeat wget -c http://www.example.com/software-0.1.tar.gz

In the current form, we will be sending too much traffic to the web server at www.example.
com, which causes problems to the server (and maybe even to you, if say the server blacklists
your IP for spam). To solve this, we can modify the function and add a small delay as follows:

repeat() { while :; do $@ && return; sleep 30; done }

This will cause the command to run every 30 seconds.

Field separators and iterators
The internal field separator (IFS) is an important concept in shell scripting. It is very useful
while manipulating text data. We will now discuss delimiters that separate different data
elements from single data stream. An internal field separator is a delimiter for a special
purpose. An internal field separator is an environment variable that stores delimiting
characters. It is the default delimiter string used by a running shell environment.

Consider the case where we need to iterate through words in a string or comma separated
values (CSV). In the first case we will use IFS=" " and in the second, IFS=",". Let us see
how to do it.

Getting ready
Consider the case of CSV data:

data="name,sex,rollno,location"
To read each of the item in a variable, we can use IFS.
oldIFS=$IFS
IFS=, now,
for item in $data;
do

Shell Something Out

46

 echo Item: $item
done

IFS=$oldIFS

The output is as follows:

Item: name

Item: sex

Item: rollno

Item: location

The default value of IFS is a space component (newline, tab, or a space character).

When IFS is set as , the shell interprets the comma as a delimiter character, therefore, the
$item variable takes substrings separated by a comma as its value during the iteration.

If IFS is not set as , then it would print the entire data as a single string.

How to do it...
Let us go through another example usage of IFS by taking the /etc/passwd file into
consideration. In the /etc/passwd file, every line contains items delimited by ":".
Each line in the file corresponds to an attribute related to a user.

Consider the input: root:x:0:0:root:/root:/bin/bash. The last entry on each line
specifies the default shell for the user. To print users and their default shells, we can use the
IFS hack as follows:

#!/bin/bash
#Desc: Illustration of IFS
line="root:x:0:0:root:/root:/bin/bash"
oldIFS=$IFS;
IFS=":"
count=0
for item in $line;
do

 [$count -eq 0] && user=$item;
 [$count -eq 6] && shell=$item;
 let count++
done;
IFS=$oldIFS
echo $user\'s shell is $shell;

Chapter 1

47

The output will be:

root's shell is /bin/bash

Loops are very useful in iterating through a sequence of values. Bash provides many types of
loops. Let us see how to use them:

 f Using a for loop:
for var in list;
do
 commands; # use $var
done
list can be a string, or a sequence.

We can generate different sequences easily.

echo {1..50}can generate a list of numbers from 1 to 50. echo {a..z}
or{A..Z} or {a..h} can generate lists of alphabets. Also, by combining these we
can concatenate data.

In the following code, in each iteration, the variable i will hold a character in the
range a to z:
for i in {a..z}; do actions; done;

The for loop can also take the format of the for loop in C. For example:

for((i=0;i<10;i++))
{
 commands; # Use $i
}

 f Using a while loop:
while condition
do
 commands;
done

For an infinite loop, use true as the condition.

 f Using a until loop:

A special loop called until is available with Bash. This executes the loop until the
given condition becomes true. For example:

x=0;
until [$x -eq 9]; # [$x -eq 9] is the condition
do
 let x++; echo $x;
done

Shell Something Out

48

Comparisons and tests
Flow control in a program is handled by comparison and test statements. Bash also comes
with several options to perform tests that are compatible with the Unix system-level features.
We can use if, if else, and logical operators to perform tests and certain comparison
operators to compare data items. There is also a command called test available to perform
tests. Let us see how to use these.

How to do it...
We will have a look at all the different methods used for comparisons and performing tests:

 f Using an if condition:
if condition;
then
 commands;
fi

 f Using else if and else:
if condition;
then
 commands;
else if condition; then
 commands;
else
 commands;
fi

Nesting is also possible with if and else. The if conditions
can be lengthy, to make them shorter we can use logical
operators as follows:

 f [condition] && action; # action executes
if the condition is true

 f [condition] || action; # action executes
if the condition is false

&& is the logical AND operation and || is the logical OR
operation. This is a very helpful trick while writing Bash scripts.

Chapter 1

49

 f Performing mathematical comparisons: Usually conditions are enclosed in square
brackets []. Note that there is a space between [or] and operands. It will show an
error if no space is provided. An example is as follows:
[$var -eq 0] or [$var -eq 0]

Performing mathematical conditions over variables or values can be done as follows:
[$var -eq 0] # It returns true when $var equal to 0.
[$var -ne 0] # It returns true when $var is not equal to 0

Other important operators are as follows:

 � -gt: Greater than

 � -lt: Less than

 � -ge: Greater than or equal to

 � -le: Less than or equal to

Multiple test conditions can be combined as follows:

[$var1 -ne 0 -a $var2 -gt 2] # using and -a
[$var1 -ne 0 -o var2 -gt 2] # OR -o

 f Filesystem related tests: We can test different filesystem-related attributes using
different condition flags as follows:

 � [-f $file_var]: This returns true if the given variable holds a regular
file path or filename

 � [-x $var]: This returns true if the given variable holds a file path or
filename that is executable

 � [-d $var]: This returns true if the given variable holds a directory path
or directory name

 � [-e $var]: This returns true if the given variable holds an existing file

 � [-c $var]: This returns true if the given variable holds the path of a
character device file

 � [-b $var]: This returns true if the given variable holds the path of a
block device file

 � [-w $var]: This returns true if the given variable holds the path of a file
that is writable

 � [-r $var]: This returns true if the given variable holds the path of a file
that is readable

 � [-L $var]: This returns true if the given variable holds the path of
a symlink

Shell Something Out

50

An example of the usage is as follows:

fpath="/etc/passwd"
if [-e $fpath]; then
 echo File exists;
else
 echo Does not exist;
fi

 f String comparisons: While using string comparison, it is best to use double square
brackets, since the use of single brackets can sometimes lead to errors.

Two strings can be compared to check whether they are the same in the
following manner:

 � [[$str1 = $str2]]: This returns true when str1 equals str2, that is,
the text contents of str1 and str2 are the same

 � [[$str1 == $str2]]: It is an alternative method for string
equality check

We can check whether two strings are not the same as follows:

 � [[$str1 != $str2]]: This returns true when str1 and
str2 mismatch

We can find out the alphabetically smaller or larger string as follows:

 � [[$str1 > $str2]]: This returns true when str1 is alphabetically
greater than str2

 � [[$str1 < $str2]]: This returns true when str1 is alphabetically
lesser than str2

Note that a space is provided after and before =, if it is
not provided, it is not a comparison, but it becomes an
assignment statement.

 � [[-z $str1]]: This returns true if str1 holds an empty string

 � [[-n $str1]]: This returns true if str1 holds a nonempty string

It is easier to combine multiple conditions using logical operators such as && and ||
in the following code:
if [[-n $str1]] && [[-z $str2]] ;
then
 commands;
fi

Chapter 1

51

For example:
str1="Not empty "
str2=""
if [[-n $str1]] && [[-z $str2]];
then
 echo str1 is nonempty and str2 is empty string.
fi

Output:

str1 is nonempty and str2 is empty string.

The test command can be used for performing condition checks. It helps to avoid usage
of many braces. The same set of test conditions enclosed within [] can be used for the
test command.

For example:

if [$var -eq 0]; then echo "True"; fi
can be written as
if test $var -eq 0 ; then echo "True"; fi

2
Have a Good Command

In this chapter, we will cover:

 f Concatenating with cat

 f Recording and playingback of terminal sessions

 f Finding files and file listing

 f Playing with xargs

 f Translating with tr

 f Checksum and verification

 f Cryptographic tools and hashes

 f Sorting unique and duplicates

 f Temporary file naming and random numbers

 f Splitting files and data

 f Slicing filenames based on extension

 f Renaming and moving files in bulk

 f Spell checking and dictionary manipulation

 f Automating interactive input

 f Making commands quicker by running parallel processes

Introduction
Unix-like systems have the privilege of having the best command-line tools. They help us
achieve many tasks making our work easier. While each command has a specific focus, with
practice you'll be able to solve complex problems by combining two or more commands. Some
frequently used commands are grep, awk, sed, and find.

Have a Good Command

54

Mastering the Unix/Linux command line is an art; you will get better at using it as you practice
and gain experience. This chapter will introduce you to some of the most interesting and
useful commands.

Concatenating with cat
cat is one of the first commands that a command-line warrior must learn. It is usually used to
read, display, or concatenate the contents of a file, but cat is capable of more than just that.
We even scratch our heads when we need to combine standard input data, as well as data
from a file using a single-line command. The regular way of combining the stdin data, as well
as file data, is to redirect stdin to a file and then append two files. But we can use the cat
command to do it easily in a single invocation. In this recipe we will see basic and advanced
usages of cat.

How to do it...
The cat command is a very simple and frequently used command and it stands
for concatenate.

The general syntax of cat for reading contents is:

$ cat file1 file2 file3 ...

This command concatenates data from the files specified as command-line arguments.

 f To print contents of a single file:
$ cat file.txt

This is a line inside file.txt

This is the second line inside file.txt

 f To print contents of more than one file:

$ cat one.txt two.txt

This is line from one.txt

This is line from two.txt

How it works…
cat can be used in a variety of ways, let's walk through some of these now.

The cat command can not only read from files and concatenate the data, but can also read
the input from the standard input.

Chapter 2

55

To read from the standard input, use a pipe operator as follows:

OUTPUT_FROM_SOME COMMANDS | cat

Similarly, we can concatenate content from input files along with standard input using cat.
Combine stdin and data from another file, as follows:

$ echo 'Text through stdin' | cat - file.txt

In this example, - acts as the filename for the stdin text.

There's more...
The cat command has a few other options for viewing files. Let's go through them.

Getting rid of extra blank lines
Sometimes text files may contain two or more blank lines together. If you need to remove the
extra blank lines, use the following syntax:

$ cat -s file

For example:

$ cat multi_blanks.txt

line 1

line2

line3

line4

$ cat -s multi_blanks.txt # Squeeze adjacent blank lines

line 1

line2

line3

line4

Have a Good Command

56

Alternately, we can remove all blank lines using tr, as discussed in the Translating with tr
recipe in this chapter.

Displaying tabs as ^I
It is hard to distinguish tabs and repeated space characters. While writing programs in
languages such as Python, tabs and spaces have different meanings for indentation
purposes. Therefore, the use of tab instead of spaces causes problems in indentation.
It may become difficult to track where the misplacement of the tab or space occurred by
looking through a text editor. cat has a feature that can highlight tabs. This is very helpful in
debugging indentation errors. Use the -T option with cat to highlight tab characters as ^I.
An example is as follows:

$ cat file.py

def function():

 var = 5

 next = 6

 third = 7

$ cat -T file.py

def function():

^Ivar = 5

 next = 6

^Ithird = 7^I

Line numbers
By using the -n flag for the cat command will output each line with a line number prefixed. It
is to be noted that the cat command never changes a file; instead it produces an output on
stdout with modifications to input according to the options provided. For example:

$ cat lines.txt

line

line

line

$ cat -n lines.txt

 1 line

 2 line

 3 line

Chapter 2

57

-n will make the cat command output line numbers even for blank lines. If
you want to skip numbering blank lines, use the -b option.

Recording and playing back of terminal
sessions

When you need to show somebody how to do something in the terminal, or you need to
prepare a tutorial on how to do something through the command line, you would normally
type the commands manually and show them. Or, you could record a screencast and playback
the video to them. There are other options for doing this. Using the commands script and
scriptreplay, we can record the order and timing of the commands and save the data
to text files. Using these files, others can replay and see the output of the commands on the
terminal until the playback is complete.

Getting ready
The script and scriptreplay commands are available in most of the GNU/Linux
distributions. Recording the terminal sessions to a file will be interesting. You can create
tutorials of command-line hacks and tricks to achieve a task by recording the terminal
sessions. You can also share the recorded files for others to playback and see how to
perform a particular task using the command line.

How to do it...
We can start recording the terminal session using the following commands:

$ script -t 2> timing.log -a output.session

type commands;

…

..

exit

Note that this recipe will not work with shells that do not support redirecting
only stderr to a file, such as the csh shell.

Have a Good Command

58

Two configuration files are passed to the script command as arguments. One file is for storing
timing information (timing.log) at which each of the commands is run, whereas the other file
(output.session) is used for storing the command output. The -t flag is used to dump timing
data to stderr. Here, you will see, 2> is used to redirect stderr to timing.log.

By using the two files, timing.log (stores timing information) and output.session (stores
command output information), we can replay the sequence of command execution as follows:

$ scriptreplay timing.log output.session

Plays the sequence of commands and output

How it works...
Usually, we record desktop videos to prepare tutorials. However, videos require considerable
amount of storage. On the other hand, a terminal script file is just a text file, usually only in the
order of kilobytes.

You can share the timing.log and output.session files to anyone who wants to replay a
terminal session in their terminal.

Finding files and file listing
find is one of the great utilities in the Unix/Linux command-line toolbox. It is a very useful
command for shell scripts; however, many people do not use it to its fullest effectiveness.
This recipe deals with most of the common ways to utilize find to locate files.

Getting ready
The find command uses the following strategy: find descends through a hierarchy of files,
matches the files that meet specified criteria, and performs some actions. Let's go through
different use cases of find and its basic usages.

How to do it...
To list all the files and folders from the current directory to the descending child directories,
use the following syntax:

$ find base_path

base_path can be any location from which find should start descending (for example, /
home/slynux/).

Chapter 2

59

An example of this command is as follows:

$ find . -print

Print lists of files and folders

. specifies current directory and .. specifies the parent directory. This convention is followed
throughout the Unix filesystem.

The -print argument specifies to print the names (path) of the matching files. When -print
is used, '\n' will be the delimiting character for separating each file. Also, note that even if
you omit -print, the find command will print the filenames by default.

The -print0 argument specifies each matching filename printed with the delimiting
character '\0'. This is useful when a filename contains a space character.

There's more...
In this recipe we have learned the usage of the most commonly-used find command with an
example. The find command is a powerful command-line tool and it is armed with a variety
of interesting options. Let us take a look at them.

Search based on filename or regular expression match
The -name argument specifies a matching string for the filename. We can pass wildcards
as its argument text. The *.txt command matches all the filenames ending with .txt and
prints them. The -print option prints the filenames or file paths in the terminal that matches
the conditions (for example, -name) given as options to the find command.

$ find /home/slynux -name "*.txt" -print

The find command has an option -iname (ignore case), which is similar to -name but it
matches filenames while ignoring the case.

For example:

$ ls

example.txt EXAMPLE.txt file.txt

$ find . -iname "example*" -print

./example.txt

./EXAMPLE.txt

Have a Good Command

60

If we want to match either of the multiple criteria, we can use OR conditions as shown in
the following:

$ ls

new.txt some.jpg text.pdf

$ find . \(-name "*.txt" -o -name "*.pdf" \) -print

./text.pdf

./new.txt

The previous command will print all of the .txt and .pdf files, since the find command
matches both .txt and .pdf files. \(and \) are used to treat -name "*.txt" -o
-name "*.pdf" as a single unit.

The -path argument can be used to match the file path for files that match the wildcards.
-name always matches using the given filename. However, -path matches the file path as
a whole. For example:

$ find /home/users -path "*/slynux/*" -print

This will match files as following paths.

/home/users/list/slynux.txt

/home/users/slynux/eg.css

The -regex argument is similar to -path, but -regex matches the file
paths based on regular expressions.

Regular expressions are an advanced form of wildcard matching, which enables us to specify
text with patterns. By using patterns, we can make matches to the text and print them. A
typical example of text matching using regular expressions is: parsing all e-mail addresses
from a given pool of text. An e-mail address takes the form name@host.root. So, it can be
generalized as [a-z0-9]+@[a-z0-9]+.[a-z0-9]+. The + sign signifies that the previous
class of characters can occur one or more times, repeatedly, in the characters that follow.

The following command matches the .py or .sh files:

$ ls

new.PY next.jpg test.py

$ find . -regex ".*\(\.py\|\.sh\)$"

./test.py

mailto:name@host.root
mailto:+@[a-z0-9]+.[a-z0-9
mailto:+@[a-z0-9]+.[a-z0-9

Chapter 2

61

Similarly, using -iregex ignores the case for the regular expressions that are available.
For example:

$ find . -iregex ".*\(\.py\|\.sh\)$"

./test.py

./new.PY

We will learn more about regular expressions in Chapter 4,
Texting and Driving.

Negating arguments
find can also exclude things that match a pattern using !:

$ find . ! -name "*.txt" -print

This will match all the files whose names do not end in .txt. The following example shows
the result of the command:

$ ls

list.txt new.PY new.txt next.jpg test.py

$ find . ! -name "*.txt" -print

.

./next.jpg

./test.py

./new.PY

Search based on the directory depth
When the find command is used, it recursively walks through all the subdirectories as
much as possible, until it reaches the leaf of the subdirectory tree. We can restrict the
depth to which the find command traverses using some depth parameters given to
find. -maxdepth and -mindepth are the parameters.

In most of the cases, we need to search only in the current directory. It should not further
descend into the subdirectories from the current directory. In such cases, we can restrict the
depth to which the find command should descend using depth parameters. To restrict find
from descending into the subdirectories from the current directory, the depth can be set as 1.
When we need to descend to two levels, the depth is set as 2, and so on for the rest of
the levels.

Have a Good Command

62

For specifying the maximum depth we use the -maxdepth level parameter. Similarly, we
can also specify the minimum level at which the descending should start. If we want to
start searching from the second level onwards, we can set the minimum depth using the
-mindepth level parameter. To restrict the find command to descend to a maximum
depth of 1, use the following command:

$ find . -maxdepth 1 -name "f*" -print

This command lists all the files whose names begin with "f", but only from the current
directory. If there are subdirectories they are not printed or traversed. Similarly, -maxdepth 2
traverses up to at most two descending levels of subdirectories.

-mindepth is similar to -maxdepth, but it sets the least depth level for the find traversal. It
can be used to find and print the files that are located with a minimum level of depth from the
base path. For example, to print all the files whose names begin with "f", and are at least two
subdirectories distant from the current directory, use the following command:

$ find . -mindepth 2 -name "f*" -print

./dir1/dir2/file1

./dir3/dir4/f2

Even if there are files in the current directory or dir1 and dir3, it will not be printed.

-maxdepth and -mindepth should be specified as the third
argument to the find command. If they are specified as the fourth or
further arguments, it may affect the efficiency of find as it has to do
unnecessary checks (for example, if -maxdepth is specified as the
fourth argument and -type as the third argument, the find command
first finds out all the files having the specified -type and then finds all of
the matched files having the specified depth. However, if the depth were
specified as the third argument and -type as the fourth, find could
collect all the files having at most the specified depth and then check for
the file type, which is the most efficient way to search.

Search based on file type
Unix-like operating systems treat every object as a file. There are different kinds of files, such
as regular file, directory, character devices, block devices, symlinks, hardlinks, sockets, FIFO,
and so on.

The file search can be filtered out using the -type option. By using -type, we can specify to
the find command that it should only match files having a specified type.

Chapter 2

63

List only directories including descendants as follows:

$ find . -type d -print

It is hard to list directories and files separately. But find helps to do it. List only regular files
as follows:

$ find . -type f -print

List only symbolic links as follows:

$ find . -type l -print

You can use the type arguments from the following table to properly match the required
file type:

File type Type argument
Regular file f

Symbolic link l

Directory d

Character special device c

Block device b

Socket s

FIFO p

Search on file times
Unix/Linux filesystems have three types of timestamps on each file. They are as follows:

 f Access time (-atime): It is the last timestamp of when the file was accessed
by a user

 f Modification time (-mtime): It is the last timestamp of when the file content
was modified

 f Change time (-ctime): It is the last timestamp of when the metadata for a file
(such as permissions or ownership) was modified

There is no such thing as creation time in Unix.

Have a Good Command

64

-atime, -mtime, and -ctime are the time parameter options available with find. They
can be specified with integer values in "number of days". These integer values are often
attached with - or + signs. The - sign implies less than, whereas the + sign implies greater
than. For example:

 f Print all the files that were accessed within the last seven days as follows:
$ find . -type f -atime -7 -print

 f Print all the files that are having access time exactly seven-days old as follows:
$ find . -type f -atime 7 -print

 f Print all the files that have an access time older than seven days as follows:

$ find . -type f -atime +7 -print

Similarly, we can use the -mtime parameter for search files based on the modification time
and -ctime for search based on the change time.

-atime, -mtime, and -ctime are time-based parameters that use the time metric in days.
There are some other time-based parameters that use the time metric in minutes. These are
as follows:

 f -amin (access time)

 f -mmin (modification time)

 f -cmin (change time)

For example:

To print all the files that have an access time older than seven minutes, use the
following command:

$ find . -type f -amin +7 -print

Another good feature available with find is the -newer parameter. By using -newer, we can
specify a reference file to compare with the timestamp. We can find all the files that are newer
(older modification time) than the specified file with the -newer parameter.

For example, find all the files that have a modification time greater than that of the
modification time of a given file.txt file as follows:

$ find . -type f -newer file.txt -print

Timestamp manipulation flags for the find command are very useful for writing the system
backup and maintenance scripts.

Chapter 2

65

Search based on file size
Based on the file sizes of the files, a search can be performed as follows:

$ find . -type f -size +2k

Files having size greater than 2 kilobytes

$ find . -type f -size -2k

Files having size less than 2 kilobytes

$ find . -type f -size 2k

Files having size 2 kilobytes

Instead of k we can use different size units such as the following:

 f b: 512 byte blocks

 f c: Bytes

 f w: Two-byte words

 f k: Kilobyte (1024 bytes)

 f M: Megabyte (1024 kilobytes)

 f G: Gigabyte (1024 megabytes)

Deleting based on the file matches
The -delete flag can be used to remove files that are matched by find.

Remove all the .swp files from the current directory as follows:

$ find . -type f -name "*.swp" -delete

Match based on the file permissions and ownership
It is possible to match files based on the file permissions. We can list out the files having
specified file permissions as follows:

$ find . -type f -perm 644 -print

Print files having permission 644

-perm specifies that find should only match files with their permission set to a particular
value. Permissions are explained in more detail in the File permissions, ownership, and the
sticky bit in Chapter 3, File In, File Out.

Have a Good Command

66

As an example usage case, we can consider the case of the Apache web server. The PHP files
in the web server require proper permissions to execute. We can find out the PHP files that
don't have proper execute permissions as follows:

$ find . -type f -name "*.php" ! -perm 644 -print

We can also search files based on ownership of the files. The files owned by a specific user
can be found out using the -user USER option.

The USER argument can be a username or UID.

For example, to print the list of all files owned by the user slynux, you can use the
following command:

$ find . -type f -user slynux -print

Executing commands or actions with find
The find command can be coupled with many of the other commands using the -exec
option. It is one of the most powerful features that comes with find.

Consider the example in the previous section. We used -perm to find out the files that do not
have proper permissions. Similarly, in the case where we need to change the ownership of all
files owned by a certain user (for example, root) to another user (for example, www-data,
the default Apache user in the web server), we can find all the files owned by root by using the
-user option and using -exec to perform the ownership change operation.

You must run the find command as root if you want to change
ownership of files or directories.

Let's have a look at the following example:

find . -type f -user root -exec chown slynux {} \;

In this command, {} is a special string used with the -exec option. For each file match, {}
will be replaced with the filename for -exec. For example, if the find command finds two
files test1.txt and test2.txt with owner slynux, the find command will perform:

chown slynux {}

This gets resolved to chown slynux test1.txt and chown slynux test2.txt.

Sometimes we don't want to run the command for each file. Instead, we might
want to run it a fewer times with a list of files as parameters. For this, we use
+ instead of ; in the exec syntax.

Chapter 2

67

Another usage example is to concatenate all the C program files in a given directory and
write it to a single file, say, all_c_files.txt. We can use find to match all the C files
recursively and use the cat command with the -exec flag as follows:

$ find . -type f -name "*.c" -exec cat {} \;>all_c_files.txt

-exec is followed by any command. {} is a match. For every matched filename, {} is
replaced with the filename.

To redirect the data from find to the all_c_files.txt file, we have used the > operator
instead of >> (append) because the entire output from the find command is a single data
stream (stdin). >> is necessary only when multiple data streams are to be appended to a
single file.

For example, to copy all the .txt files that are older than 10 days to a directory OLD, use the
following command:

$ find . -type f -mtime +10 -name "*.txt" -exec cp {} OLD \;

Similarly, the find command can be coupled with many other commands.

-exec with multiple commands
We cannot use multiple commands along with the -exec
parameter. It accepts only a single command, but we can use
a trick. Write multiple commands in a shell script (for example,
commands.sh) and use it with -exec as follows:
-exec ./commands.sh {} \;

-exec can be coupled with printf to produce a very useful output. For example:

$ find . -type f -name "*.txt" -exec printf "Text file: %s\n" {} \;

Skipping specified directories when using the find command
Skipping certain subdirectories for performance improvement is sometimes required while
doing a directory search and performing an action. For example, when programmers look
for particular files on a development source tree, which is under the version control system
such as Git, the source hierarchy will always contain the .git directory in each of the
subdirectories (.git stores version-control-related information for every directory). Since
version-control-related directories do not produce useful output, they should be excluded
from the search. The technique of excluding files and directories from the search is known
as pruning. It can be performed as follows:

$ find devel/source_path \(-name ".git" -prune \) -o \(-type f -print
\)

Instead of \(-type -print \), use required filter.

Have a Good Command

68

The preceding command prints the name (path) of all the files that are not from the
.git directories.

Here, \(-name ".git" -prune \) is the exclude portion, which specifies that the
.git directory should be excluded and \(-type f -print \) specifies the action to be
performed. The actions to be performed are placed in the second block -type f -print
(the action specified here is to print the names and path of all the files).

Playing with xargs
We use pipes to redirect stdout (standard output) of a command to stdin (standard input)
of another command. For example:

cat foo.txt | grep "test"

Some of the commands accept data as command-line arguments rather than a data stream
through stdin (standard input). In that case, we cannot use pipes to supply data through
command-line arguments.

We should try alternate methods. xargs is a command that is very helpful in handling
standard input data to the command-line argument conversions. It can manipulate stdin
and convert to command-line arguments for the specified command. Also, xargs can convert
any one-line or multiple-line text inputs into other formats, such as multiple lines (specified
number of columns) or a single line and vice versa.

All Bash users love one-liner commands, which are command sequences that are joined by
using the pipe operator, but do not use the semicolon terminator (;) between the commands
used. Crafting one-line commands makes tasks more efficient and simpler to solve. It
requires proper understanding and practice to formulate one-liners for solving text processing
problems. xargs is one of the important components for building one-liner commands.

Getting ready
When using the pipe operator, the xargs command should always be the first thing to
appear after the operator. xargs uses standard input as the primary data stream source. It
uses stdin and executes another command by providing command-line arguments for that
executing command using the stdin data source. For example:

command | xargs

How to do it...
The xargs command can supply arguments to a command by reformatting the data received
through stdin.

Chapter 2

69

xargs can act as a substitute that can perform similar actions as the -exec argument in
the case of the find command. Let's see a variety of hacks that can be performed using the
xargs command.

 f Converting multiple lines of input to a single-line output: Multiple-line input can
be converted simply by removing the newline character and replacing with the " "
(space) character. '\n' is interpreted as a newline character, which is the delimiter for
the lines. By using xargs, we can ignore all the newlines with space so that multiple
lines can be converted into a single-line text as follows:
$ cat example.txt # Example file

1 2 3 4 5 6

7 8 9 10

11 12

$ cat example.txt | xargs

1 2 3 4 5 6 7 8 9 10 11 12

 f Converting single-line into multiple-line output: Given a maximum number of
arguments in a line = n, we can split any stdin (standard input) text into lines of n
arguments each. An argument is a piece of a string delimited by " " (space). Space is
the default delimiter. A single line can be split into multiple lines as follows:

$ cat example.txt | xargs -n 3

1 2 3

4 5 6

7 8 9

10 11 12

How it works…
The xargs command is appropriate to be applied to many problem scenarios with its many
options. Let's see how these options can be used wisely to solve problems.

We can also use our own delimiter towards separating arguments. To specify a custom
delimiter for input, use the -d option as follows:

$ echo "splitXsplitXsplitXsplit" | xargs -d X

split split split split

In the preceding code, stdin contains a string consisting of multiple X characters. We can
use X as the input delimiter by using it with -d. Here, we have explicitly specified X as the
input delimiter, whereas in the default case xargs takes the internal field separator (space)
as the input delimiter.

Have a Good Command

70

By using -n along with the previous command, we can split the input into multiple lines having
two words each as follows:

$ echo "splitXsplitXsplitXsplit" | xargs -d X -n 2

split split

split split

There's more...
We have learned how to format stdin to different output as arguments from the previous
examples. Now, let's learn how to supply this formatted output as arguments to commands.

Passing formatted arguments to a command by reading stdin
Write a small custom echo script for better understanding of example usages with xargs to
provide command arguments:

#!/bin/bash
#Filename: cecho.sh

echo $*'#'

When arguments are passed to the cecho.sh shell, it will print the arguments terminated by
the # character. For example:

$./cecho.sh arg1 arg2

arg1 arg2 #

Let's have a look at a problem:

 f I have a list of arguments in a file (one argument in each line) to be provided to a
command (say, cecho.sh). I need to provide arguments in two methods. In the first
method, I need to provide one argument each for the command as follows:
./cecho.sh arg1
./cecho.sh arg2
./cecho.sh arg3

Or, alternately, I need to provide two or three arguments each for each execution of
the command. For two arguments each, it would be similar to the following:

./cecho.sh arg1 arg2

./cecho.sh arg3

 f In the second method, I need to provide all arguments at once to the command
as follows:

./cecho.sh arg1 arg2 arg3

Chapter 2

71

Run the preceding commands and note the output before going through the following section.

These problems can be solved using xargs. We have the list of arguments in a file called
args.txt. The contents are as follows:

$ cat args.txt

arg1

arg2

arg3

For the first problem, we can execute the command multiple times with one argument per
execution, therefore, use:

$ cat args.txt | xargs -n 1 ./cecho.sh

arg1 #

arg2 #

arg3 #

For executing a command with X arguments per each execution, use:

INPUT | xargs -n X

For example:

$ cat args.txt | xargs -n 2 ./cecho.sh

arg1 arg2 #

arg3 #

For the second problem, in order to execute the command at once with all the
arguments, use:

$ cat args.txt | xargs ./ccat.sh

arg1 arg2 arg3 #

In the preceding examples, we have supplied command-line arguments directly to a specific
command (for example, cecho.sh). We could only supply the arguments from the args.txt
file. However, in real time, we may also need to add a constant parameter with the command
(for example, cecho.sh), along with the arguments taken from args.txt. Consider the
following example with the format:

./cecho.sh -p arg1 -l

In the preceding command execution arg1 is the only variable text. All others should remain
constant. We should read arguments from a file (args.txt) and supply it as:

./cecho.sh -p arg1 -l

./cecho.sh -p arg2 -l

./cecho.sh -p arg3 -l

Have a Good Command

72

To provide a command execution sequence as shown, xargs has an option -I. By using –I,
we can specify a replacement string that will be replaced while xargs expands. When -I is
used with xargs, it will execute as one command execution per argument.

Let's do it as follows:

$ cat args.txt | xargs -I {} ./cecho.sh -p {} -l

-p arg1 -l #

-p arg2 -l #

-p arg3 -l #

-I {} specifies the replacement string. For each of the arguments supplied for the
command, the {} string will be replaced with arguments read through stdin.

When used with -I, the command is executed in a loop. When there are three
arguments the command is executed three times along with the command
{}. Each time {} is replaced with arguments one by one.

Using xargs with find
xargs and find are best friends. They can be combined to perform tasks easily. Usually,
people combine them in the wrong way. For example:

$ find . -type f -name "*.txt" -print | xargs rm -f

This is dangerous. It may sometimes cause removal of unnecessary files. Here, we cannot
predict the delimiting character (whether it is '\n' or ' ') for the output of the find
command. Many of the filenames may contain a space character (' ') and hence, xargs may
misinterpret it as a delimiter (for example, "hell text.txt" is misinterpreted by xargs as
"hell" and "text.txt").

Hence, we must use -print0 along with find to produce an output with a delimited
character null ('\0') whenever we use the find output as the xargs input.

Let's use find to match and list of all the .txt files and remove them using xargs:

$ find . -type f -name "*.txt" -print0 | xargs -0 rm -f

This removes all .txt files. xargs -0 interprets that the delimiting character is \0.

Counting the number of lines of C code in a source code directory
This is a task most programmers do, that is, counting all C program files for Lines of Code
(LOC). The code for this task is as follows:

$ find source_code_dir_path -type f -name "*.c" -print0 | xargs -0 wc -l

Chapter 2

73

If you want more statistics about your source code, there is a utility called
SLOCCount, which is very useful. Modern GNU/Linux distributions usually
have packages or you can get it from http://www.dwheeler.com/
sloccount/.

While and subshell trick with stdin
xargs is restricted to providing arguments in limited ways to supply arguments. Also, xargs
cannot supply arguments to multiple sets of commands. For executing commands with
collected arguments from the standard input, we have a very flexible method. A subshell
with a while loop can be used to read arguments and execute commands in a trickier
way as follows:

$ cat files.txt | (while read arg; do cat $arg; done)

Equivalent to cat files.txt | xargs -I {} cat {}

Here, by replacing cat $arg with any number of commands using a while loop, we can
perform many command actions with the same arguments. We can also pass the output
to other commands without using pipes. Subshell () tricks can be used in a variety of
problematic environments. When enclosed within subshell operators, it acts as a single
unit with multiple commands inside, like so:

$ cmd0 | (cmd1;cmd2;cmd3) | cmd4

If cmd1 is cd /, within the subshell, the path of the working directory changes. However,
this change resides inside the subshell only. cmd4 will not see the directory change.

Translating with tr
tr is a small and beautiful command in the Unix command-warrior toolkit. It is one of the
important commands frequently used to craft beautiful one-liner commands. It can be used
to perform substitution of characters, deletion of the characters, and squeezing of repeated
characters from the standard input. It is often called translate, since it can translate a set of
characters to another set. In this recipe we will see how to use tr to perform basic translation
between sets.

Getting ready
tr accepts input only through stdin (standard input) and cannot accept input through
command-line arguments. It has the following invocation format:

tr [options] set1 set2

Have a Good Command

74

Input characters from stdin are mapped from set1 to set2 and the output is written to
stdout (standard output). set1 and set2 are character classes or a set of characters.
If the length of sets is unequal, set2 is extended to the length of set1 by repeating the
last character, or else, if the length of set2 is greater than that of set1, all the characters
exceeding the length of set1 are ignored from set2.

How to do it...
To perform translation of characters in the input from uppercase to lowercase, use the
following command:

$ echo "HELLO WHO IS THIS" | tr 'A-Z' 'a-z'

'A-Z' and 'a-z' are the sets. We can specify custom sets as needed by appending
characters or character classes.

'ABD-}', 'aA.,', 'a-ce-x', 'a-c0-9', and so on are valid sets. We can define sets
easily. Instead of writing continuous character sequences, we can use the 'startchar-
endchar' format. It can also be combined with any other characters or character classes. If
startchar-endchar is not a valid continuous character sequence, they are then taken as a
set of three characters (for example, startchar, -, and endchar). You can also use special
characters such as '\t', '\n', or any ASCII characters.

How it works…
By using tr with the concept of sets, we can map characters from one set to another
set easily. Let's go through an example on how to use tr for encrypting and decrypting
numeric characters:

$ echo 12345 | tr '0-9' '9876543210'

87654 #Encrypted

$ echo 87654 | tr '9876543210' '0-9'

12345 #Decrypted

Let's look at another interesting example.

ROT13 is a well-known encryption algorithm. In the ROT13 scheme, the same function is used
to encrypt and decrypt text. The ROT13 scheme performs alphabetic rotation of characters for
13 characters. Let's perform ROT13 using tr as follows:

$ echo "tr came, tr saw, tr conquered." | tr 'a-zA-Z' 'n-za-mN-ZA-M'

The output will be:

ge pnzr, ge fnj, ge pbadhrerq.

Chapter 2

75

By sending the encrypted text again to the same ROT13 function, we get:

$ echo ge pnzr, ge fnj, ge pbadhrerq. | tr 'a-zA-Z' 'n-za-mN-ZA-M'

The output will be:

tr came, tr saw, tr conquered.

tr can be used to convert tab characters into space as follows:

$ tr '\t' ' ' < file.txt

There's more...
We saw some basic translations using the tr command. Let's see what else can tr help
us achieve.

Deleting characters using tr
tr has an option -d to delete a set of characters that appear on stdin by using the specified
set of characters to be deleted as follows:

$ cat file.txt | tr -d '[set1]'
#Only set1 is used, not set2

For example:

$ echo "Hello 123 world 456" | tr -d '0-9'

Hello world

Removes the numbers from stdin and print

Complementing character set
We can use a set to complement set1 by using the -c flag. set2 is optional in the
following command:

tr -c [set1] [set2]

The complement of set1 means that it is the set having all the characters except characters
in set1.

The best usage example is to delete all the characters from the input text except the ones
specified in the complement set. For example:

$ echo hello 1 char 2 next 4 | tr -d -c '0-9 \n'

 1 2 4

Here, the complement set is the set containing all numerals, space characters, and newline
characters. All other characters are removed since -d is used with tr.

Have a Good Command

76

Squeezing characters with tr
The tr command is very helpful in many text-processing contexts. Repeated continuous
characters should be squeezed to a single character in many circumstances. Squeezing of
whitespace is a frequently occurring task.

tr provides the -s option to squeeze repeating characters from the input. It can be
performed as follows:

$ echo "GNU is not UNIX. Recursive right ?" | tr -s ' '

GNU is not UNIX. Recursive right ?

tr -s '[set]'

Let's use tr in a tricky way to add a given list of numbers from a file as follows:

$ cat sum.txt

1

2

3

4

5

$ cat sum.txt | echo $[$(tr '\n' '+') 0]

15

How does this hack work?

Here, the tr command is used to replace '\n' with the '+' character, hence we form the
string "1+2+3+..5+", but at the end of the string we have an extra + operator. In order to
nullify the effect of the + operator, 0 is appended.

$[operation] performs a numeric operation. Hence, it forms the string as follows:

echo $[1+2+3+4+5+0]

If we use a loop to perform the addition by reading numbers from a file, it would take a few
lines of code. Here a one-liner does the trick.

tr can also be used in this way to get rid of extra newlines as follows:

$ cat multi_blanks.txt | tr -s '\n'

line 1

line2

line3

line4

Chapter 2

77

In the preceding usage of tr, it removes the extra '\n' characters into a single '\n'
(newline character).

Character classes
tr can use different character classes as sets. The different classes are as follows:

 f alnum: Alphanumeric characters

 f alpha: Alphabetic characters

 f cntrl: Control (nonprinting) characters

 f digit: Numeric characters

 f graph: Graphic characters

 f lower: Lowercase alphabetic characters

 f print: Printable characters

 f punct: Punctuation characters

 f space: Whitespace characters

 f upper: Uppercase characters

 f xdigit: Hexadecimal characters

We can select the required classes and use them as follows:

tr [:class:] [:class:]

For example:

tr '[:lower:]' '[:upper:]'

Checksum and verification
Checksum programs are used to generate checksum key strings from the files and verify
the integrity of the files later by using that checksum string. A file might be distributed over
the network or any storage media to different destinations. Due to many reasons, there
are chances of the file being corrupted due to a few bits missing during the data transfer
by different reasons. These errors happen most often while downloading the files from the
Internet, transferring through a network, CD-ROM damage, and so on.

Hence, we need to know whether the received file is the correct one or not by applying
some kind of test. The special key string that is used for this file integrity test is known
as a checksum.

Have a Good Command

78

We calculate the checksum for the original file as well as the received file. By comparing both
of the checksums, we can verify whether the received file is the correct one or not. If the
checksums (calculated from the original file at the source location and the one calculated
from the destination) are equal, it means that we have received the correct file without
causing any erroneous data loss during the data transfer. Otherwise, the user has to repeat
the data transfer and try the checksum comparison again.

Checksums are crucial while writing backup scripts or maintenance scripts that transfer files
through the network. By using checksum verification, files corrupted during the data transfer
over the network can be identified and those files can be resent again from the source to
the destination.

In this recipe we will see how to compute checksums to verify integrity of data.

Getting ready
The most famous and widely used checksum techniques are md5sum and SHA-1. They
generate checksum strings by applying the corresponding algorithm to the file content.
Let's see how we can generate a checksum from a file and verify the integrity of that file.

How to do it...
To compute the md5sum, use the following command:

$ md5sum filename

68b329da9893e34099c7d8ad5cb9c940 filename

md5sum is a 32-character hexadecimal string as given.

We redirect the checksum output into a file and use that MD5 file for verification as follows:

$ md5sum filename > file_sum.md5

How it works...
The syntax for the md5sum checksum calculation is as follows:

$ md5sum file1 file2 file3 ..

When multiple files are used, the output will contain a checksum for each of the files having
one checksum string per line, as follows:

[checksum1] file1

[checksum1] file2

[checksum1] file3

Chapter 2

79

The integrity of a file can be verified by using the generated file as follows:

$ md5sum -c file_sum.md5

It will output a message whether checksum matches or not

Or, alternately, if we need to check all the files using all .md5 information available, use:

$ md5sum -c *.md5

SHA-1 is another commonly used checksum algorithm like md5sum. It generates a
40-character hex code from a given input file. The command used for calculating an SHA-1
string is sha1sum. Its usage is very similar to that of md5sum. Simply replace md5sum with
sha1sum in all the commands previously mentioned. Instead of file_sum.md5, change the
output filename to file_sum.sha1.

Checksum verification is very useful to verify the integrity of files that we download from the
Internet. For example, ISO images are very susceptible to erroneous bits. A few wrong bits in
the wrong location and the ISO may not be useable. Therefore, to check whether we received
the file correctly, checksums are widely used. For the same file data the checksum program
will always produce the same checksum string:

Have a Good Command

80

This is the md5sum checksum that is created:

There's more...
Checksums are also useful when used with a number of files. Let us see how to apply
checksums to a collection of files and verify correctness.

Checksum for directories
Checksums are calculated for files. Calculating the checksum for a directory would mean that
we would need to calculate the checksums for all the files in the directory, recursively.

It can be achieved by the md5deep or sha1deep command. Install the md5deep package to
make these commands available. An example of this command is as follows:

$ md5deep -rl directory_path > directory.md5
-r to enable recursive traversal
-l for using relative path. By default it writes absolute file path in
output

Alternately, use a combination of find to calculate checksums recursively:

$ find directory_path -type f -print0 | xargs -0 md5sum >> directory.md5

To verify, use the following command:

$ md5sum -c directory.md5

Cryptographic tools and hashes
Encryption techniques are used mainly to protect data from unauthorized access. There are
many algorithms available and we have discussed the most commonly used ones. There
are a few tools available in a Linux environment for performing encryption and decryption.
Sometimes we use encryption algorithm hashes for verifying data integrity. This section will
introduce a few commonly used cryptographic tools and a general set of algorithms that these
tools can handle.

Chapter 2

81

How to do it...
Let us see how to use tools such as crypt, gpg, base64, md5sum, sha1sum, and openssl:

 f The crypt command is a simple and relatively insecure cryptographic utility that
takes a file from stdin and a passphrase as input and output encrypted data into
stdout (and, hence, we use redirection for the input and output files):
$ crypt <input_file >output_file

Enter passphrase:

It will interactively ask for a passphrase. We can also provide a passphrase through
command-line arguments:
$ crypt PASSPHRASE <input_file >encrypted_file

In order to decrypt the file, use:

$ crypt PASSPHRASE -d <encrypted_file >output_file

 f gpg (GNU privacy guard) is a widely used tool for protecting files with encryption
that ensures that data is not read until it reaches its intended destination. Here we
discuss how to encrypt and decrypt a file.

gpg signatures are also widely used in e-mail communications
to "sign" e-mail messages, proving the authenticity of the sender.

In order to encrypt a file with gpg use:
$ gpg -c filename

This command reads the passphrase interactively and generates filename.gpg. In
order to decrypt a gpg file use:
$ gpg filename.gpg

This command reads a passphrase and decrypts the file.

We don't cover gpg in much detail in this book. If you're
interested in more information, please see http://
en.wikipedia.org/wiki/GNU_Privacy_Guard.

Have a Good Command

82

 f Base64 is a group of similar encoding schemes that represents binary data in an
ASCII string format by translating it into a radix-64 representation. The base64
command can be used to encode and decode the Base64 string. In order to
encode a binary file into the Base64 format, use:
$ base64 filename > outputfile

Or:
$ cat file | base64 > outputfile

It can read from stdin.

Decode Base64 data as follows:
$ base64 -d file > outputfile

Or:

$ cat base64_file | base64 -d > outputfile

 f md5sum and SHA-1 are unidirectional hash algorithms, which cannot be reversed
to form the original data. These are usually used to verify the integrity of data or for
generating a unique key from a given data:
$ md5sum file

8503063d5488c3080d4800ff50850dc9 file

$ sha1sum file

1ba02b66e2e557fede8f61b7df282cd0a27b816b file

These types of hashes are commonly used for storing passwords. Passwords are
stored as their hashes and when a user wants to authenticate, the password is read
and converted to the hash. Then, this hash is compared to the one that is stored
already. If they are the same, the password is authenticated and access is provided,
otherwise it is denied. Storing plain text password strings is risky and poses a
security risk.

Although commonly used, md5sum and SHA-1 are no longer considered
secure. This is because of the rise of computing power in recent times
that makes it easier to crack them. It is recommended to use tools such
as bcrypt or sha512sum instead. Read more about this at http://
codahale.com/how-to-safely-store-a-password/.

Chapter 2

83

 f Shadow-like hash (salted hash)

Let us see how to generate a shadow-like salted hash for passwords. The user
passwords in Linux are stored as their hashes in the /etc/shadow file. A typical
line in /etc/shadow will look like this:
test:6fG4eWdUi$ohTKOlEUzNk77.4S8MrYe07NTRV4M3LrJnZP9p.qc1bR5c.
EcOruzPXfEu1uloBFUa18ENRH7F70zhodas3cR.:14790:0:99999:7:::

6fG4eWdUi$ohTKOlEUzNk77.4S8MrYe07NTRV4M3LrJnZP9p.qc1bR5c.
EcOruzPXfEu1uloBFUa18ENRH7F70zhodas3cR is the shadow hash
corresponding to its password.

In some situations, we may need to write critical administration scripts that may need
to edit passwords or add users manually using a shell script. In that case we have to
generate a shadow password string and write a similar line as the preceding one to
the shadow file. Let's see how to generate a shadow password using openssl.

Shadow passwords are usually salted passwords. SALT is an extra string used to
obfuscate and make the encryption stronger. The salt consists of random bits that
are used as one of the inputs to a key derivation function that generates the salted
hash for the password.

For more details on salt, see the Wikipedia page
http://en.wikipedia.org/wiki/Salt_(cryptography).

$ opensslpasswd -1 -salt SALT_STRING PASSWORD

1SALT_STRING$323VkWkSLHuhbt1zkSsUG.

Replace SALT_STRING with a random string and PASSWORD with the password you want
to use.

Sorting unique and duplicates
Sorting is a common task that we can encounter with text files. The sort command helps us
to perform sort operations over text files and stdin. Most often, it can also be coupled with
many other commands to produce the required output. uniq is another command that is
often used along with a sort command. It helps to extract unique (or duplicate) lines from a
text or stdin. This recipe illustrates most of the use cases with sort and uniq commands.

Have a Good Command

84

Getting ready
The sort command accepts input as filenames, as well as from stdin (standard input) and
outputs the result by writing into stdout. The same applies to the uniq command.

How to do it...
1. We can easily sort a given set of files (for example, file1.txt and file2.txt)

as follows:
$ sort file1.txt file2.txt > sorted.txt

Or:

$ sort file1.txt file2.txt -o sorted.txt

2. For a numerical sort, we can use:
$ sort -n file.txt

3. To sort in the reverse order, we can use:
$ sort -r file.txt

4. For sorting by months (in the order Jan, Feb, March,…), use:
$ sort -M months.txt

5. To merge two already sorted files, use:
$ sort -m sorted1 sorted2

6. To find the unique lines from a sorted file, use:
$ sort file1.txt file2.txt | uniq

7. To check if a file has already been sorted, use:

#!/bin/bash
#Desc: Sort
sort -C filename ;
if [$? -eq 0]; then
 echo Sorted;
else
 echo Unsorted;
fi

Replace filename with the file you want to check and run the script.

Chapter 2

85

How it works…
As shown in the examples, sort takes numerous parameters that can be used to sort the
data in files in different ways. Furthermore, it is useful when using the uniq command,
which expects its input to be sorted.

There are numerous scenarios where the sort and uniq commands can be used. Let's go
through the various options and usage techniques.

For checking if a file is already sorted or not, we exploit the fact that sort returns an exit code
($?) of 0 if the file is sorted and nonzero otherwise.

There's more...
These were some basic usages of the sort command. Let us see some ways of using it to
accomplish complex tasks:

Sorting according to the keys or columns
We can use a column with sort if we need to sort a text as follows:

$ cat data.txt

1 mac 2000

2 winxp 4000

3 bsd 1000

4 linux 1000

We can sort this in many ways; currently it is numeric, sorted by the serial number (the first
column). We can also sort by the second column and the third column.

-k specifies the key by which the sort is to be performed. Key is the column number by which
sort is to be done. -r specifies the sort command to sort in the reverse order. For example:

Sort reverse by column1

$ sort -nrk 1 data.txt

4 linux 1000

3 bsd 1000

2 winxp 4000

1 mac 2000

-nr means numeric and reverse

Sort by column 2

$ sort -k 2 data.txt

Have a Good Command

86

3 bsd 1000

4 linux 1000

1 mac 2000

2 winxp 4000

Always be careful about the -n option for numeric sort. The sort command
treats alphabetical sort and numeric sort differently. Hence, in order to
specify numeric sort the -n option should be provided.

Usually, by default, keys are columns in the text file. Columns are separated by space
characters. But, in certain circumstances, we may need to specify keys as a group of
characters in the given character number range (for example, key1 = character4-
character8). In such cases where keys are to be specified explicitly as a range of
characters, we can specify the key as ranges with the character position at key starts
and key ends as follows:

$ cat data.txt

1010hellothis

2189ababbba

7464dfddfdfd

$ sort -nk 2,3 data.txt

The highlighted characters are to be used as numeric keys. To extract, use their positions in
the lines as the key format (in the previous example, they're 2 and 3).

To use the first character as the key, use:

$ sort -nk 1,1 data.txt

To make the sort's output xargs compatible with the \0 terminator, use the
following command:

$ sort -z data.txt | xargs -0

#Zero terminator is used to make safe use with xargs

Sometimes, the text may contain unnecessary extraneous characters such as spaces. To sort
them in dictionary order, by ignoring punctuations and folds, use:

$ sort -bd unsorted.txt

The -b option is used to ignore leading blank lines from the file and the -d option is used to
specify sort in the dictionary order.

Chapter 2

87

uniq
uniq is a command used to find out the unique lines from the given input (stdin or from a
filename as command argument) by eliminating the duplicates. It can also be used to find out
the duplicate lines from the input.

uniq can be applied only for sorted data input. Hence, uniq is to be used always along with
the sort command using pipe or using a sorted file as input.

Produce the unique lines (all lines in the input are printed and even the duplicate lines are
printed only once) from the given input data as follows:

$ cat sorted.txt

bash

foss

hack

hack

$ uniq sorted.txt

bash

foss

hack

Or:

$ sort unsorted.txt | uniq

Display only unique lines (the lines which are not repeated or duplicated in the input file)
as follows:

$ uniq -u sorted.txt

bash

foss

Or:

$ sort unsorted.txt | uniq -u

To count how many times each of the lines appears in the file, use the following command:

$ sort unsorted.txt | uniq -c

 1 bash

 1 foss

 2 hack

Have a Good Command

88

To find duplicate lines in the file:

$ sort unsorted.txt | uniq -d

hack

To specify keys, we can use the combination of the -s and -w arguments.

 f -s specifies the number for the first N characters to be skipped

 f -w specifies the maximum number of characters to be compared

This comparison key is used as the index for the uniq operation as follows:

$ cat data.txt

u:01:gnu

d:04:linux

u:01:bash

u:01:hack

We need to use the highlighted characters as the unique key. This is used to ignore the first
two characters (-s 2) and the maximum number of comparison characters is specified using
the -w option (-w 2):

$ sort data.txt | uniq -s 2 -w 2

d:04:linux

u:01:bash

While we use output from one command as input to the xargs command, it is always
preferable to use a zero-byte terminator for each of the lines of the output, which act as the
source for xargs. While using the uniq commands output as the source for xargs, we
should use a zero terminated output. If a zero-byte terminator is not used, by default the
space characters are used as the delimiter to split the arguments in the xargs command. For
example, a line with text "this is a line" from stdin will be taken as four separate arguments
by the xargs command. Actually, it is a single line. When a zero-byte terminator is used, \0 is
used as the delimiter character and, hence, a single line including a space is interpreted as a
single argument.

Zero-byte-terminated output can be generated from the uniq command as follows:

$ uniq -z file.txt

The following command removes all the files, with filenames read from files.txt:

$ uniq -z file.txt | xargs -0 rm

If multiple-line entries of filenames exist in the file, the uniq command writes the filename
only once to stdout.

Chapter 2

89

Temporary file naming and random numbers
While writing shell scripts, we often need to store temporary data. The most suitable location
to store temporary data is /tmp (which will be cleaned out by the system on reboot). We can
use two methods to generate standard filenames for temporary data.

How to do it...
Perform the following steps to create a temporary file and perform different naming
operations on it:

1. Create a temporary file as follows:
$ filename=`mktemp`

$ echo $filename

/tmp/tmp.8xvhkjF5fH

This will create a temporary file and print its filename which we store in $filename
in this example.

2. To create a temporary directory, use the following commands:
$ dirname=`mktemp -d`

$ echo $dirname

tmp.NI8xzW7VRX

This will create a temporary directory and print its filename which we store in
$dirname in this example.

3. To just generate a filename without actually creating a file or directory, use this:
$ tmpfile=`mktemp -u`

$ echo $tmpfile

/tmp/tmp.RsGmilRpcT

Here, the filename will be stored in $tmpfile, but the file won't be created.

4. To create the temporary filename according to a template, use:

$mktemp test.XXX

test.2tc

Have a Good Command

90

How it works…
The mktemp command is very straightforward. It generates a random file and returns its
filename (or directory names, in case of directories).

When providing custom templates, X will be replaced by a random alphanumeric character.
Also note that there must be at least three X characters in the template for mktemp to work.

Splitting files and data
Splitting of files into many smaller pieces becomes essential in certain situations. Earlier,
when memory was limited with devices such as floppy disks, it was crucial to split files into
smaller file sizes to split files across many disks. However, nowadays we split files for other
purposes, such as readability, for generating logs, sending files over e-mail, and so on. In this
recipe we will see various ways of splitting files in different chunks.

How to do it...
Let's say we have a test file called data.file, which has a size of 100 KB. You can split this
file into smaller files of 10k each by specifying the split size as follows:

$ split -b 10k data.file

$ ls

data.file xaa xab xac xad xae xaf xag xah xai xaj

It will split data.file into many files, each of a 10k chunk. The chunks will be named the
manner xab, xac, xad, and so on. This means it will have alphabetic suffixes. To use the
numeric suffixes, use an additional -d argument. It is also possible to specify a suffix length
using -a length:

$ split -b 10k data.file -d -a 4

Instead of the k (kilobyte) suffix we can use M for MB, G for GB, c for byte, w for word,
and so on.

$ ls

data.file x0009 x0019 x0029 x0039 x0049 x0059 x0069 x0079

There's more…
The split command has more options. Let's go through them.

Chapter 2

91

Specifying a filename prefix for the split files
The previous split files have a filename prefix x. We can also use our own filename prefix by
providing a prefix filename. The last command argument for the split command is PREFIX.
It is in the format:

$ split [COMMAND_ARGS] PREFIX

Let's run the previous command with the prefix filename for split files:

$ split -b 10k data.file -d -a 4 split_file

$ ls

data.file split_file0002 split_file0005 split_file0008 strtok.c

split_file0000 split_file0003 split_file0006 split_file0009

split_file0001 split_file0004 split_file0007

To split files based on the number of lines in each split rather than chunk size, use
-l no_of_lines as follows:

$ split -l 10 data.file

Splits into files of 10 lines each.

There is another interesting utility called csplit. It can be used to split logfile-based
specified conditions and string match options. Let's see how to work with it.

csplit is a variant of the split utility. The split utility can only split files based on chunk
size or based on the number of lines. csplit makes the split based on context based split. It
can be used to split files based on the existence of a certain word or text content.

Look at the following example log:

$ cat server.log

SERVER-1

[connection] 192.168.0.1 success

[connection] 192.168.0.2 failed

[disconnect] 192.168.0.3 pending

[connection] 192.168.0.4 success

SERVER-2

[connection] 192.168.0.1 failed

[connection] 192.168.0.2 failed

[disconnect] 192.168.0.3 success

[connection] 192.168.0.4 failed

SERVER-3

[connection] 192.168.0.1 pending

Have a Good Command

92

[connection] 192.168.0.2 pending

[disconnect] 192.168.0.3 pending

[connection] 192.168.0.4 failed

We may need to split the files into server1.log, server2.log, and server3.log from
the contents for each SERVER in each file. This can be done as follows:

 $ csplit server.log /SERVER/ -n 2 -s {*} -f server -b "%02d.log" ; rm
server00.log

$ ls

server01.log server02.log server03.log server.log

The details of the command are as follows:

 f /SERVER/ is the line used to match a line by which a split is to be carried out.

 f /[REGEX]/ is the format. It copies from the current line (first line) up to the matching
line that contains "SERVER" excluding the match line.

 f {*} is used to specify to repeat a split based on the match up to the end of the file.
By using {integer}, we can specify the number of times it is to be continued.

 f -s is the flag to make the command silent rather than printing other messages.

 f -n is used to specify the number of digits to be used as suffix. 01, 02, 03, and so on.

 f -f is used for specifying the filename prefix for split files (server is the prefix in the
previous example).

 f -b is used to specify the suffix format. "%02d.log" is similar to the printf
argument format in C. Here, the filename = prefix + suffix, that is, "server" +
"%02d.log".

We remove server00.log since the first split file is an empty file (the match word is the first
line of the file).

Slicing filenames based on extension
Several shell scripts perform manipulations based on filenames. We may need to perform
actions such as renaming the files by preserving the extension, converting files from one
format to another (change the extension by preserving the name), extracting a portion of
the filename, and so on. The shell comes with inbuilt features for slicing filenames based on
different conditions. Let us see how to do it.

Chapter 2

93

How to do it…
The name from name.extension can be easily extracted using the % operator. You can
extract the name from "sample.jpg" as follows:

file_jpg="sample.jpg"
name=${file_jpg%.*}
echo File name is: $name

The output is:

File name is: sample

The next task is to extract the extension of a file from its filename. The extension can be
extracted using the # operator as follows:

Extract .jpg from the filename stored in the variable file_jpg as follows:

extension=${file_jpg#*.}
echo Extension is: jpg

The output is:

Extension is: jpg

How it works…
In the first task, in order to extract the name from the filename in the format name.
extension we have used the % operator.

${VAR%.*} can be interpreted as:

 f Remove the string match from the $VAR for the wildcard pattern that appears to the
right-hand side of % (.* in the previous example). Evaluating from the right to left
direction should make the wildcard match.

 f Let's store the filename as VAR=sample.jpg. Therefore, the wildcard match for .*
from right to left is .jpg. Thus, it is removed from the $VAR string and the output will
be sample.

% is a nongreedy operation. It finds the minimal match for the wildcard from right to left. There
is an operator %%, which is similar to %. But it is greedy in nature. This means, it finds the
maximal match of the string for the wildcard. For example, we have:

VAR=hack.fun.book.txt

Have a Good Command

94

Using the % operator, we have:

$ echo ${VAR%.*}

The output will be: hack.fun.book.

The % operator performs a nongreedy match for .* from right to left (.txt).

Using the %% operator, we have:

$ echo ${VAR%%.*}

The output will be: hack

The %% operator performs a greedy match for .* going right to left (.fun.book.txt).

In the second task, we have used the # operator to extract the extension from the filename.
It is similar to %. But it evaluates from left to right.

${VAR#*.} can be interpreted as:

 f Remove the string match from $VARIABLE for the wildcard pattern match appears to
the right-hand side of the # (*. in the previous example). Evaluating from the left to
right direction should make the wildcard match.

Similarly, as in the case of %%, we have another greedy operator for #, which is ##.

It makes greedy matches by evaluating from left to right and removes the match string from
the specified variable.

Let's use this example:

VAR=hack.fun.book.txt

By using the # operator, we have:

$ echo ${VAR#*.}

The output will be: fun.book.txt.

The # operator performs a nongreedy match for *. from left to right (hack.).

By using the ## operator, we have:

$ echo ${VAR##*.}

The output will be: txt.

The ## operator matches a greedy match for *. from left to right (txt).

Chapter 2

95

The ## operator is preferred over the # operator to extract the extension from
a filename since the filename may contain multiple "." characters. Since ##
makes a greedy match, it always extracts extensions only.

Here is practical example that can be used to extract different portions of a domain name,
given a URL="www.google.com":

$ echo ${URL%.*} # Remove rightmost .*

www.google

$ echo ${URL%%.*} # Remove right to leftmost .* (Greedy operator)

www

$ echo ${URL#*.} # Remove leftmost part before *.

google.com

$ echo ${URL##*.} # Remove left to rightmost part before *. (Greedy
operator)

com

Renaming and moving files in bulk
Renaming a number of files is one of the tasks we frequently come across. A simple example
is when you download photos from your digital camera to your computer you may delete
unnecessary files and it causes discontinuous numbering of image files. Sometimes, you
may need to rename them with a custom prefix and continuous numbering for filenames.
We sometimes use third-party tools for performing rename operations. We can use Bash
commands to perform a rename operation in a couple of seconds.

Moving all the files having a particular substring in their filenames (for example, the same
prefix for filenames) or with a specific file type to a given directory is another use case we
frequently perform. Let's see how to write scripts to perform these kinds of operations.

http://www.googl.com/
http://www.googl.com/

Have a Good Command

96

Getting ready
The rename command helps to change filenames using Perl regular expressions.
By combining the commands find, rename, and mv, we can perform a lot of things.

How to do it...
The easiest way of renaming image files in the current directory to our own filename, with a
specific format, is by using the following script:

#!/bin/bash
#Filename: rename.sh
#Desc: Rename jpg and png files

count=1;
for img in `find . -iname '*.png' -o -iname '*.jpg' -type f -maxdepth
1`
do
 new=image-$count.${img##*.}

 echo "Renaming $img to $new"
 mv "$img" "$new"
 let count++

done

The output is as follows:

$./rename.sh

Renaming hack.jpg to image-1.jpg

Renaming new.jpg to image-2.jpg

Renaming next.png to image-3.png

The script renames all the .jpg and .png files in the current directory and its subdirectories
to new filenames in the format image-1.jpg, image-2.jpg, image-3.png, image-4.
png, and so on.

How it works…
In the previous script, we have used a for loop to iterate through the names of all files ending
with a .jpg or .png extension. We use the find command to perform this search, where
the -o option is used to specify multiple -iname options, which perform a case-insensitive
match. By using -maxdepth 1, we make sure that $img will contain a filename only from the
current directories, not its subdirectories.

Chapter 2

97

We have initialized a variable count=1 in order to keep track of the image number. The
next step is to rename the file using the mv command. The new name of the file should be
formulated for renaming. ${img##*.} in the script parses the extension of the filename
currently in the loop (see the Slicing filenames based on extension recipe for interpretation
of ${img##*.}).

let count++ is used to increment the file number for each execution of the loop.

There are a variety of other ways to perform rename operations. Let us walk through a few
of them:

 f Renaming *.JPG to *.jpg:
$ rename *.JPG *.jpg

 f To replace space in the filenames with the "_" character:
$ rename 's/ /_/g' *

's/ /_/g' is the replacement part in the filename and * is the wildcard for the
target files. It can be *.txt or any other wildcard pattern.

 f To convert any filename of files from uppercase to lowercase and vice versa:
$ rename 'y/A-Z/a-z/' *
$ rename 'y/a-z/A-Z/' *

 f To recursively move all the .mp3 files to a given directory:
$ find path -type f -name "*.mp3" -exec mv {} target_dir \;

 f To recursively rename all the files by replacing space with the "_" character:

$ find path -type f -exec rename 's/ /_/g' {} \;

Spell checking and dictionary manipulation
Most of the Linux distributions come with a dictionary file along with them. However, I find
very few people to be aware of the dictionary file and hence, few make use of them. There is
a command-line utility called aspell that functions as a spell checker. Let's go through a few
scripts that make use of the dictionary file and the spell checker.

How to do it...
The /usr/share/dict/ directory contains some of the dictionary files. Dictionary files are
text files that contain a list of dictionary words. We can use this list to check whether a word is
a dictionary word or not.

$ ls /usr/share/dict/
american-english british-english

Have a Good Command

98

To check whether the given word is a dictionary word, use the following script:

#!/bin/bash
#Filename: checkword.sh
word=$1
grep "^1" /usr/share/dict/british-english -q
if [$? -eq 0]; then
 echo $word is a dictionary word;
else
 echo $word is not a dictionary word;
fi

The usage is as follows:

$./checkword.sh ful

ful is not a dictionary word

$./checkword.sh fool

fool is a dictionary word

How it works...
In grep, ^ is the word-start-marker character and the $ character is the word-end marker.

-q is used to suppress any output and to be silent.

Or, alternatively, we can use the spell check, aspell, to check whether a word is in a
dictionary or not, as follows:

#!/bin/bash
#Filename: aspellcheck.sh
word=$1

output=`echo \"$word\" | aspell list`

if [-z $output]; then
 echo $word is a dictionary word;
else
 echo $word is not a dictionary word;
fi

The aspell list command returns output text when the given input is not a dictionary
word, and does not output anything when the input is a dictionary word. A -z command
checks whether $output is an empty string or not.

Chapter 2

99

List all words in a file starting with a given word as follows:

$ look word filepath

Or alternately, use:

$ grep "^word" filepath

By default, if the filename argument is not given to the look command, it looks up into the
default dictionary (/usr/share/dict/words) and returns an output:

$look word

When used like this it takes default dictionary as file

For example:

$ look android

android

android's

androids

Automating interactive input
Automating interactive input for command-line utilities are extremely useful for writing
automation tools or testing tools. There will be many situations when we deal with commands
that read input interactively. An example of executing a command and supplying the
interactive input is as follows:

$ command

Enter a number: 1

Enter name : hello

You have entered 1,hello

Getting ready
Creating utilities that can automate the acceptance of input are useful to supply input to local
commands, as well as for remote applications. Let us see how to automate them.

How to do it...
Think about the sequence of an interactive input. From the previous code, we can formulate
the steps of the sequence as follows:

1[Return]hello[Return]

Have a Good Command

100

Converting the preceding steps 1, Return, hello, and Return by observing the characters
that are actually typed in the keyboard, we can formulate the following string:

"1\nhello\n"

The \n character is sent when we press return. By appending the return (\n) characters,
we get the actual string that is passed to stdin (standard input).

Hence, by sending the equivalent string for the characters typed by the user, we can automate
the passing of input in the interactive processes.

How it works…
Let's write a script that reads input interactively and uses this script for automation examples:

#!/bin/bash
#Filename: interactive.sh
read -p "Enter number:" no ;
read -p "Enter name:" name
echo You have entered $no, $name;

Let's automate the sending of input to the command as follows:

$ echo -e "1\nhello\n" | ./interactive.sh

You have entered 1, hello

Thus crafting input with \n works.

We have used echo -e to produce the input sequence where -e signals to echo to interpret
escape sequences. If the input is large we can use an input file and redirection operator to
supply input:

$ echo -e "1\nhello\n" > input.data

$ cat input.data

1

hello

You can also manually craft the input file without the echo commands by hand typing.
For example:

$./interactive.sh < input.data

This redirects interactive input data from a file.

Chapter 2

101

If you are a reverse engineer, you may have played with buffer overflow exploits. To exploit
them we need to redirect a shellcode such as "\xeb\x1a\x5e\x31\xc0\x88\x46", which
is written in hex. These characters cannot be typed directly through the keyboard as keys for
these characters are not present in the keyboard. Therefore, we should use:

echo -e \xeb\x1a\x5e\x31\xc0\x88\x46"

This will redirect the shellcode to a vulnerable executable.

We have described a method to automate interactive input programs by redirecting expected
input text through stdin (standard input). We are sending the input without checking the
input the program asks for. We are also expecting the program to ask for input in a specific
(static) order. If the program asks for input randomly or in a changing order, or sometimes
certain inputs are never asked for, the aforementioned method fails. It will send the wrong
inputs to different input prompts by the program. In order to handle a dynamic input supply
and provide input by checking the input requirements by the program on runtime, we have a
great utility called expect. The expect command supplies the correct input for the correct
input prompt by the program.

There's more...
Trailing from the previous section, let's see how to use expect. Automation of interactive
input can also be done using other methods. Expect scripting is another method for
automation. Let's go through it.

Automating with expect
expect does not come by default with most of the common Linux distributions. You have to
install the expect package manually using your package manager.

expect expects for a particular input prompt and sends data by checking messages in the
input prompt:

#!/usr/bin/expect
#Filename: automate_expect.sh
spawn ./interactive .sh
expect "Enter number:"
send "1\n"
expect "Enter name:"
send "hello\n"
expect eof

Run it as follows:

$./automate_expect.sh

Have a Good Command

102

The #spawn parameter specifies which commands are to be automated.

The #expect parameter provides the expected message.

#send is the message to be sent. # expect eof defines the end of the command interaction.

Making commands quicker by running
parallel processes

Computing power has increased a lot over the last couple of years. However, this is not
just because of having processors with higher clock cycles; the thing that makes modern
processors faster is multiple cores. What this means to the user is in a single hardware
processor there are multiple logical processors.

However, the multiple cores are useless unless the software makes use of them. For example,
if you have a program that does huge calculations, it will only run on one of the cores, the
others will sit idle. The software has to be aware and take advantage of the multiple cores if
we want it to be faster.

In this recipe we will see how we can make our commands run faster.

How to do it...
Let us take an example of the md5sum command that we discussed in the previous recipes.
This command is CPU-intensive as it has to perform the calculation. Now, if we have more
than one file that we want to generate a checksum of, we can run multiple instances of
md5sum using a script like this:

#/bin/bash
#filename: generate_checksums.sh
PIDARRAY=()
for file in File1.iso File2.iso
do
 md5sum $file &
 PIDARRAY+=("$!")
done
wait ${PIDARRAY[@]}

When we run this, we get the following output:

$./generate_checksums.sh

330dcb53f253acdf76431cecca0fefe7 File1.iso

bd1694a6fe6df12c3b8141dcffaf06e6 File2.iso

Chapter 2

103

The output will be the same as running the following command:

md5sum File1.iso File2.iso

However, as the md5sum commands ran simultaneously, you'll get the results quicker if you
have a multi-core processor (you can verify this using the time command).

How it works...
We exploit the Bash operand &, which instructs the shell to send the command to the
background and continue with the script. However, this means that our script will exit as soon
as the loop completes while the md5sum processes are still running in the background. To
prevent this, we get the PIDs of the processes using $!, which in Bash holds the PID of the
last background process. We append these PIDs to an array and then use the wait command
to wait for these processes to finish.

3
File In, File Out

In this chapter, we will cover:

 f Generating files of any size

 f The intersection and set difference (A-B) on text files

 f Finding and deleting duplicate files

 f Working with file permissions, ownership, and the sticky bit

 f Making files immutable

 f Generating blank files in bulk

 f Finding symbolic links and their targets

 f Enumerating file type statistics

 f Using loopback files

 f Creating ISO files and hybrid ISO

 f Finding the difference between files, patching

 f Using head and tail for printing the last or first 10 lines

 f Listing only directories – alternative methods

 f Fast command-line navigation using pushd and popd

 f Counting the number of lines, words, and characters in a file

 f Printing the directory tree

File In, File Out

106

Introduction
Unix treats every object in the operating system as a file. We can find the files associated with
every action performed and can make use of them for different system or process-related
manipulations. For example, the command terminal that we use is associated with a device
file. We can write to the terminal by writing to the corresponding device file for that specific
terminal. Files take different forms such as directories, regular files, block devices, character-
special devices, symbolic links, sockets, named pipes, and so on. Filename, size, file type,
modification time, access time, change time, inode, links associated, and the filesystem the
file is on are all attributes and properties that files can have. This chapter deals with recipes
that handle operations or properties related to files.

Generating files of any size
For various reasons, you may need to generate a file filled with random data. It may be for
creating a test file to perform tests, such as an application efficiency test that uses a large
file as input, or to test the splitting of files into many parts, or to create loopback filesystems
(loopback files are files that can contain a filesystem itself and these files can be mounted
similarly to a physical device using the mount command). It takes effort to create such files
by writing specific programs. So we use general utilities.

How to do it...
The easiest way to create a large-size file with the given size is to use the dd command.
The dd command clones the given input and writes an exact copy to the output. Input can be
stdin, a device file, a regular file, or so on. Output can be stdout, a device file, a regular file,
or so on. An example of the dd command is as follows:

$ dd if=/dev/zero of=junk.data bs=1M count=1

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.00767266 s, 137 MB/s

The preceding command will create a file called junk.data that is exactly 1 MB in size. Let's
go through the parameters: if stands for the - input file, of stands for the - output file,
bs stands for bytes for a block, and count stands for the number of blocks of bs specified to
be copied.

Be careful while using the dd command, it operates on a very low level with
the devices. If you make a mistake, you might end up wiping your disk or
corrupting data otherwise. So, always double check your dd command syntax,
especially your of= parameter for correctness.

Chapter 3

107

In the previous example, we are only creating a file, which is 1 MB in size, by specifying bs as
1 MB with a count of 1. If bs was set to 2M and count to 2, the total file size would be 4 MB.

We can use various units for block size (BS) as follows. Append any of the following
characters to the number to specify the size in bytes:

Unit size Code
Byte (1 B) c

Word (2 B) w

Block (512 B) b

Kilobyte (1024 B) k

Megabyte (1024 KB) M

Gigabyte (1024 MB) G

We can generate a file of any size using this. Instead of MB we can use any other unit
notations, such as the ones mentioned in the previous table.

/dev/zero is a character special device, which infinitely returns the zero byte (\0).

If the input parameter (if) is not specified, it will read the input from stdin by default.
Similarly, if the output parameter (of) is not specified, it will use stdout as the default
output sink.

The dd command can also be used to measure the speed of memory operations by
transferring a large quantity of data and checking the command output (for example,
1048576 bytes (1.0 MB) copied, 0.00767266 s, 137 MB/s as seen in the
previous example).

The intersection and set difference (A-B) on
text files

Intersection and set difference operations are commonly used in mathematical classes on set
theory. However, similar operations on strings are also very helpful in some scenarios.

Getting ready
The comm command is a utility to perform a comparison between the two files. It has many
good options to arrange the output in such a way that we can perform intersection, difference,
and set difference operations.

 f Intersection: The intersection operation will print the lines that the specified files
have in common with one another

File In, File Out

108

 f Difference: The difference operation will print the lines that the specified files contain
and that are not the same in all of those files

 f Set difference: The set difference operation will print the lines in file "A" that do not
match those in all of the set of files specified ("B" plus "C" for example)

How to do it...
Note that comm takes only sorted files as input. Take a look at the following example:

$ cat A.txt

apple

orange

gold

silver

steel

iron

$ cat B.txt

orange

gold

cookies

carrot

$ sort A.txt -o A.txt ; sort B.txt -o B.txt

1. First, execute comm without any options:
$ comm A.txt B.txt

apple

 carrot

 cookies

 gold

iron

 orange

silver

steel

The first column of the output contains lines that are only in A.txt. The second
column contains lines that are only in B.txt. The third column contains the
common lines from A.txt and B.txt. Each of the columns are delimited
using the tab (\t) character.

Chapter 3

109

2. In order to print the intersection of two files, we need to remove the first and second
columns and print the third column only as follows:
$ comm A.txt B.txt -1 -2

gold

orange

3. Print lines that are uncommon in two files as follows:
$ comm A.txt B.txt -3

apple

 carrot

 cookies

iron

silver

steel

In this output, columns have their fields blank for each of the unique lines. Hence,
both columns will not have the content on the same line. In order to make it more
usable, we need to remove the blank fields and make two columns into a single-
column output as follows:

apple

carrot

cookies

iron

silver

steel

4. In order to produce a unified output, use the following command line:
$ comm A.txt B.txt -3 | sed 's/^\t//'

apple

carrot

cookies

iron

silver

steel

File In, File Out

110

5. By removing the unnecessary columns, we can produce the set difference for A.txt
and B.txt as follows:

 � Set difference for A.txt:
 $ comm A.txt B.txt -2 -3

-2 -3 removes the second and third columns.

 � Set difference for B.txt:

 $ comm A.txt B.txt -1 -3

-2 -3 removes the second and third columns.

How it works...
The command-line options for comm format the output as per our requirement. These are:

 f -1 – removes the first column from the output

 f -2 – removes the second column

 f -3 – removes the third column

While creating a unified output, the sed command is piped to the comm output. The sed
removes the \t character at the beginning of the lines. s in the sed script stands for
substitute. /^\t/ matches the \t character at the beginning of the lines (^ is the start of
the line marker). // (no character) is the replacement string for every \t character at the
beginning of the line. Hence, every \t at the start of the line gets removed.

The set difference operation enables you to compare two files and print all the lines that are
in the file A.txt or B.txt excluding the common lines in A.txt and B.txt. When A.txt
and B.txt are given as arguments to the comm command, the output will contain column-1
with the set difference for A.txt with regard to B.txt and column-2 will contain the set
difference for B.txt with regard to A.txt.

Finding and deleting duplicate files
Duplicate files are copies of the same files. In some circumstances, we may need to remove
duplicate files and keep a single copy of them. Identification of duplicate files by looking at the
file content is an interesting task. It can be done using a combination of shell utilities. This
recipe deals with finding duplicate files and performing operations based on the result.

Chapter 3

111

Getting ready
We can identify the duplicate files by comparing file content. Checksums are ideal for this
task, since files with exactly the same content will produce the same checksum values.
We can use this fact to remove duplicate files.

How to do it...
1. Generate some test files as follows:

$ echo "hello" > test ; cp test test_copy1 ; cp test test_copy2;

$ echo "next" > other;

test_copy1 and test_copy2 are copy of test

2. The code for the script to remove the duplicate files is as follows:
#!/bin/bash
#Filename: remove_duplicates.sh
#Description: Find and remove duplicate files and keep one sample
of each file.

ls -lS --time-style=long-iso | awk 'BEGIN {
 getline; getline;
 name1=$8; size=$5
}
{
 name2=$8;
 if (size==$5)
 {
 "md5sum "name1 | getline; csum1=$1;
 "md5sum "name2 | getline; csum2=$1;
 if (csum1==csum2)
 {
 print name1; print name2
 }
 };

 size=$5; name1=name2;
}' | sort -u > duplicate_files

cat duplicate_files | xargs -I {} md5sum {} | sort | uniq -w 32 |
awk '{ print "^"$2"$" }' | sort -u > duplicate_sample

echo Removing..

File In, File Out

112

comm duplicate_files duplicate_sample -2 -3 | tee /dev/stderr |
xargs rm
echo Removed duplicates files successfully.

3. Run it as:
$./remove_duplicates.sh

How it works...
The preceding commands will find the copies of the same file in a directory and remove all
except one copy of the file. Let us go through the code and see how it works.

ls -lS will list the details of the files sorted by file size in the current directory. --time-
style=long-iso tells ls to print dates in the ISO format. awk will read the output of
ls -lS and perform comparisons on columns and rows of the input text to find out the
duplicate files.

The logic behind the code is as follows:

 f We list the files sorted by size so that the similarly sized files will be grouped together.
The files having the same file size are identified as a first step to finding files that are
the same. Next, we calculate the checksum of the files. If the checksums match, the
files are duplicates and one set of the duplicates are removed.

 f The BEGIN{} block of awk is executed first before the lines are read from the file.
Reading lines takes place in the {} block and after the end of reading and processing
all lines, the END{} block statements are executed. The output of ls -lS is:
total 16

-rw-r--r-- 1 slynux slynux 5 2010-06-29 11:50 other

-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test

-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy1

-rw-r--r-- 1 slynux slynux 6 2010-06-29 11:50 test_copy2

 f The output of the first line tells us the total number of files, which in this case is not
useful. We use getline to read the first line and then dump it. We need to compare
each of the lines and the next line for sizes. For that, we read the first line explicitly
using getline and store the name and size (which are the eighth and fifth columns).
Hence, a line is read ahead using getline. Now, when awk enters the {} block (in
which the rest of the lines are read), that block is executed for every read of a line.
It compares the size obtained from the current line and the previously stored size
kept in the size variable. If they are equal, it means two files are duplicates by size.
Hence, they are to be further checked by md5sum.

Chapter 3

113

We have played some tricks on the way to the solution.

The external command output can be read inside awk as:

"cmd"| getline

Then, we receive the output in line $0 and each column output can be received in $1, $2,
... ,$n, and so on. Here, we read the md5sum checksum of files in the csum1 and csum2
variables. Variables name1 and name2 are used to store consecutive filenames. If the
checksums of two files are the same, they are confirmed to be duplicates and are printed.

We need to find a file from each group of duplicates so that we can remove all other
duplicates. We calculate the md5sum value of the duplicates and print one file from each
group of duplicates by finding unique lines, comparing md5sum only from each line using
-w 32 (the first 32 characters in the md5sum output; usually, the md5sum output consists
of a 32-character hash followed by the filename). Therefore, one sample from each group of
duplicates is written in duplicate_sample.

Now, we need to remove all the files listed in duplicate_files, excluding the files listed
in duplicate_sample. The comm command prints files in duplicate_files but not in
duplicate_sample.

For that, we use a set difference operation (refer to the recipes on intersection, difference,
and set difference).

comm always accepts files that are sorted. Therefore, sort -u is used as a filter before
redirecting to duplicate_files and duplicate_sample.

Here the tee command is used to perform a trick so that it can pass filenames to the rm
command as well as print. The tee command writes lines that appear as stdin to a file
and sends them to stdout. We can also print text to the terminal by redirecting to stderr.
/dev/stderr is the device corresponding to stderr (standard error). By redirecting to
a stderr device file, text that appears through stdin will be printed in the terminal as
standard error.

Working with file permissions, ownership,
and the sticky bit

File permissions and ownership are one of the distinguishing features of the Unix/Linux
filesystems such as extfs (extended FS). In many circumstances while working on Unix/Linux
platforms, we come across issues related to permissions and ownership. This recipe is a walk
through the different use cases of these.

In Linux systems, each file is associated with many types of permissions. Out of these
permissions, three sets of permissions (user, group, and others) are commonly manipulated.

File In, File Out

114

The user is the owner of the file. The group is the collection of users (as defined by the system
administrator) that are permitted some access to the file. Others are any entities other than
the user or group owner of the file.

Permissions of a file can be listed by using the ls -l command:

-rw-r--r-- 1 slynux slynux 2497 2010-02-28 11:22 bot.py

drwxr-xr-x 2 slynux slynux 4096 2010-05-27 14:31 a.py

-rw-r--r-- 1 slynux slynux 539 2010-02-10 09:11 cl.pl

The first column of the output specifies the following, with the first letter corresponding to:

 f - – if it is a regular file

 f d – if it is a directory

 f c – for a character device

 f b – for a block device

 f l – if it is a symbolic link

 f s – for a socket

 f p – for a pipe

The rest can be divided into three groups of three letters each (--- --- ---). The first --- three
characters correspond to the permissions of the user (owner), the second set of three
characters correspond to the permissions of the group, and the third set of three characters
correspond to the permissions of others. Each character in the nine-character sequence (nine
permissions) specifies whether permission is set or unset. If the permission is set, a character
appears in the corresponding position, otherwise a - character appears in that position, which
means that the corresponding permission is unset (unavailable).

Let's take a look at what each of these three character sets mean for the user, group,
and others:

 f User (permission string: rwx------): The first letter in the three letters specifies
whether the user has read permission for the file. If the read permission is set for
the user, the character r will appear as the first character. Similarly, the second
character specifies write (modify) permission (w) and the third character specifies
whether the user has execute (x) permission (the permission to run the file). The
execute permission is usually set for executable files. The user has one more special
permission called setuid (S), which appears in the position of execute (x). The setuid
permission enables an executable file to be executed effectively as its owner, even
when the executable is run by another user.

An example for a file with setuid permission set is -rwS------.

Chapter 3

115

The read, write, and execute permissions are also applied to the directories. However,
the meanings of read, write, and execute permissions are slightly different in the
context of directories as follows:

 � The read permission (r) for the directories enables reading the list of files
and subdirectories in the directory

 � The write permission (w) for a directory enables creating or removing files
and directories from a directory

 � The execute permission (x) specifies whether the access to the files and
directories in a directory is possible or not

 f Group (permission string: ---rwx---): The second set of three characters specifies
the group permissions. The interpretation of permissions rwx is the same as the
permissions for the user. Instead of setuid, the group has a setgid (S) bit. This
enables the item to run an executable file with an effective group as the owner
group. But the group, which initiates the command, may be different.

An example of group permission is ----rwS---.

 f Others (permission string: ------rwx): Other permissions appear as the last three
character set in the permission string. Others have the same read, write, and execute
permissions as the user and group. But it does not have permission S (such as setuid
or setgid).

Directories have a special permission called a sticky bit. When a sticky bit is set for a
directory, only the user who created the directory can delete the files in the directory, even
if the group and others have write permissions. The sticky bit appears in the position of
execute character (x) in the others permission set. It is represented as character t or T. The
t character appears in the position of x if the execute permission is unset and the sticky bit
is set. If the sticky bit and the execute permission are set, the character T appears in the
position of x. For example:

------rwt , ------rwT

A typical example of a directory with sticky bit turned on is /tmp.

In each of the ls -l output lines, the string slynux slynux corresponds to the owned
user and owned group. Here, the first slynux is the user and the second slynux is the
group owner.

How to do it...
In order to set permissions for files, we use the chmod command.

Assume that we need to set permission: rwx rw- r—.

File In, File Out

116

This could be set using chmod as follows:

$ chmod u=rwx g=rw o=r filename

Here:

 f u – specifies user permissions

 f g – specifies group permissions

 f o – specifies others permissions

Use + to add permission to a user, group, or others and use - to remove the permissions.

Add the executable permission to a file, which is already having the permission rwx rw- r—
as follows:

$ chmod o+x filename

This command adds the x permission for others.

Add the executable permission to all permission categories, that is, for user, group, and others
as follows:

$ chmod a+x filename

Here a means all.

In order to remove a permission, use -. For example:

$ chmod a-x filename

Alternatively, permissions can also be denoted by three-digit octal numbers in which each of
the digits corresponds to user, group, and other in that order.

Read, write, and execute permissions have unique octal numbers as follows:

 f r-- = 4

 f -w- = 2

 f --x = 1

We can get the required combination of permissions by adding the octal values for the
required permission sets. For example:

 f rw- = 4 + 2 = 6

 f r-x = 4 + 1 = 5

Chapter 3

117

The permission rwx rw- r-- in the numeric method is as follows:

 f rwx = 4 + 2 + 1 = 7

 f rw- = 4 + 2 = 6

 f r-- = 4

Therefore, rwx rw- r-- is equal to 764, and the command for setting the permissions using
octal values is:

$ chmod 764 filename

There's more...
Let's go through some additional tasks that can be performed for files and directories.

Changing ownership
In order to change ownership of files, use the chown command as follows:

$ chown user.group filename

For example:

$ chown slynux.slynux test.sh

Here, slynux is the user, as well as the group.

Setting sticky bit
The sticky bit is an interesting type of permission applied to directories. By setting the sticky
bit, it restricts only the user owning it to delete the files even though group and others may
have sufficient permissions.

In order to set the sticky bit, +t is applied on a directory with chmod as follows:

$ chmod a+t directory_name

Applying permissions recursively to files
Sometimes it may be required to recursively change the permissions of all the files and
directories inside the current directory. This can be done as follows:

$ chmod 777 . -R

The -R option specifies to apply change to a permission recursively.

File In, File Out

118

We have used . to specify the path as the current working directory. It is equivalent to:

$ chmod 777 "$(pwd)" –R.

Applying ownership recursively
We can apply the ownership recursively by using the -R flag with the chown command
as follows:

$ chown user.group . -R

Running an executable as a different user (setuid)
Some executables need to be executed as a different user (other than the current user
that initiates the execution of the file), effectively, whenever they are executed, by using the
file path, such as ./executable_name. A special permission attribute for files called the
setuid permission enables effective execution as the file owner when any other user
runs the program.

First, change the ownership to the user that needs to execute it and then log in as the user.
Then, run the following command:

$ chmod +s executable_file

chown root.root executable_file

chmod +s executable_file

$./executable_file

Now it executes effectively as the root user every time.

setuid is restricted such that setuid won't work for scripts, but only for Linux ELF binaries.
This is a fix for ensuring security.

Making files immutable
Files on extended type filesystems, which are common in Linux (for example, ext2, ext3, ext4,
and so on) can be made immutable using a certain type of file attributes. When a file is made
immutable, any user or super user cannot remove the file until the immutable attribute is
removed from the file. We can easily find out the filesystem type of any mounted partition
by looking at the /etc/mtab file. The first column of the file specifies the partition device
path (for example, /dev/sda5) and the third column specifies the file system type
(for example, ext3).

Chapter 3

119

Making a file immutable is one of the methods for securing files from modification. An
example would be to use it for the /etc/resolv.conf file which stores a list of DNS servers.
A DNS server is used to convert domain names (such as packtpub.com) to IP addresses.
Usually, the DNS server will be set to your ISP's DNS server. However, some people prefer
to use a third-party server and they can modify /etc/resolv.conf to point to that DNS.
However, the next time you get connected to your ISP, /etc/resolv.conf will revert back
to point to ISP's DNS. To prevent this, we can make it immutable.

In this recipe we will see how to make files immutable and make then mutable when required.

Getting ready
The chattr command can be used to make files immutable. In addition to this, chattr has
other useful options as well.

How to do it...
1. A file can be made immutable using the following command:

chattr +i file

2. The file is, therefore, made immutable. Now try the following command:
rm file

rm: cannot remove `file': Operation not permitted

3. In order to make it writable, remove the immutable attribute as follows:

chattr -i file

Generating blank files in bulk
Sometimes we may need to generate test cases to test programs that operate on thousands
of files. Let's discuss how to generate such files in this recipe.

Getting ready
touch is a command that can create blank files or modify the timestamp of files if they
already exist. Let's take a look at how to use them.

How to do it...
1. A blank file with the name filename will be created using the following command:

$ touch filename

File In, File Out

120

2. Generate bulk files with a different name pattern as follows:
for name in {1..100}.txt
do
 touch $name
done

In the preceding code {1..100} will be expanded as a string "1, 2, 3, 4, 5, 6,
7...100". Instead of {1..100}.txt, we can use various shorthand patterns such as
test{1..200}.c, test{a..z}.txt, and so on.

If a file already exists, the touch command changes all timestamps associated with
the file to the current time. However, if we want to specify that only certain stamps
are to be modified, we use the following options:

 � touch -a modifies only the access time

 � touch -m modifies only the modification time

3. Instead of using the current time for the timestamp, we can specify the time and date
with which to stamp the file as follows:

$ touch -d "Fri Jun 25 20:50:14 IST 1999" filename

The date string that is used with -d need not always be in the same format. It will
accept any simple date formats. We can omit time from the string and provide handy
date formats such as "Jan 20 2010".

Finding symbolic links and their targets
Symbolic links are very common in Unix-like systems. There are various reasons you want
to use them, ranging from convenient access to maintaining different versions of the same
library or program. This recipe will discuss the basic techniques of handling symbolic links.

Symbolic links are just pointers to other files, they are similar in function to aliases in Mac OS
X or shortcuts in Windows. When symbolic links are removed, they will not cause any harm to
the original file.

How to do it...
The following steps will help you handle symbolic links:

1. We can create a symbolic link as follows:
$ ln -s target symbolic_link_name

For example:

$ ln -l -s /var/www/ ~/web

Chapter 3

121

This creates a symbolic link (called web) in the current user's home directory, which
points to /var/www/.

2. To verify that the link was created, run the following command:
$ ls -l web

lrwxrwxrwx 1 slynux slynux 8 2010-06-25 21:34 web -> /var/www

web -> /var/www specifies that web points to /var/www.

3. In order to print symbolic links in the current directory, use the following command:
$ ls -l | grep "^l"

4. Use find to print all symbolic links from the current directory and subdirectories:
$ find . -type l -print

5. To read the target path for a given symbolic link, use the readlink command:

$ readlink web

/var/www

How it works...
When looking for symbolic links in the current directory, grep will filter the lines from the ls
-l output such that it displays only lines starting with l using ^, which is the start marker
for the string. This utilizes the fact that for every symbolic link, the permission notation block
(lrwxrwxrwx) starts with letter l.

While using find, we use the argument type with l, which will instruct the command to
search only for symbolic link files. The -print option is used to print the list of symbolic links
to the standard output (stdout). The path from which the file search should begin is given as
. which means it is the current directory.

Enumerating file type statistics
There are many file types. It will be an interesting exercise to write a script that can enumerate
through all the files inside a directory, its descendants, print a report that provides details
on types of files (files with different file types), and the count of each file type present. This
recipe is an exercise on how to write scripts that can enumerate through many files and
collect details.

File In, File Out

122

Getting ready
The file command can be used to find out the type of the file by looking at the contents of the
file. In Unix/Linux systems, file types are not determined based on the extension of the file
(like the Microsoft Windows platform does). This recipe aims at collecting file type statistics
of a number of files. For storing the count of files of the same type, we can use an associative
array and the file command can be used to fetch the file type details from each of the files.

How to do it...
1. To print the type of a file use the following command:

$ file filename

$ file /etc/passwd

/etc/passwd: ASCII text

2. Print the file type only by excluding the filename as follows:
$ file -b filename

ASCII text

3. The script for file statistics is as follows:
#!/bin/bash
Filename: filestat.sh

if [$# -ne 1];
then
 echo "Usage is $0 basepath";
 exit
fi
path=$1

declare -A statarray;

while read line;
do
 ftype=`file -b "$line" | cut -d, -f1`
 let statarray["$ftype"]++;

done < <(find $path -type f -print)

echo ============ File types and counts =============
for ftype in "${!statarray[@]}";
do
 echo $ftype : ${statarray["$ftype"]}
done

Chapter 3

123

4. The usage is as follows:

$./filestat.sh /home/slynux/temp

A sample output is shown as follows:

$./filetype.sh /home/slynux/programs

============ File types and counts =============

Vim swap file : 1

ELF 32-bit LSB executable : 6

ASCII text : 2

ASCII C program text : 10

How it works...
Here, an associative array named statarray is declared so that it can take the file type as
file indices and store the count of each file type in the array. let is used to increment the
count each time a file type is encountered. The find command is used to get the list of file
paths recursively. A while loop is used to iterate line by line through the find command's
output. The input line ftype=`file -b "$line" in the previous script is used to find out
the file type using the file command. The -b option specifies the file command to print only
the file type (without the filename in the output). The file type output consists of more details,
such as image encoding used and resolution (in the case of an image file). But, we are
not interested in all of the details; we need only the basic information. Details are
comma-separated, as in the following example:

$ file a.out -b

ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.15, not stripped

We need to extract only ELF 32-bit LSB executable from the previous details. Hence,
we use cut -d, -f1, which specifies to use , as the delimiter and print only the first field.

done < <(find $path -type f -print); is an important bit of code. The logic is
as follows:

while read line;
do something
done < filename

Instead of the filename we used the output of find.

<(find $path -type f -print) is equivalent to a filename. But it substitutes filename
with a subprocess output. Note that the first < is for input redirection and the second < is for
converting the subprocess output to a filename. Also, there is a space between these two so
that the shell won't interpret it as the << operator.

File In, File Out

124

In Bash 3.x and higher we have a new operator <<< that lets us use a
string output as an input file. Using this we can write the done line of
the loop as follows:

done <<< "`find $path -type f -print`"

${!statarray[@]} is used to return the list of array indexes.

Using loopback files
Loopback filesystems are very interesting components of Linux-like systems. We usually
create filesystems on devices (for example, disk drive partitions). These storage devices are
available as device files such as /dev/device_name. In order to use the storage device
filesystem, we mount it at a directory called a mount point. On the other hand, loopback
filesystems are those that we create in files rather than a physical device. We can then mount
those files as filesystems at a mount point. This essentially lets you create logical "disks"
inside a file on your physical disk!

How to do it...
Let us see how to create an ext4 filesystem on a file of size 1 GB:

1. The following command will create a file that is 1 GB in size:
$ dd if=/dev/zero of=loobackfile.img bs=1G count=1

1024+0 records in

1024+0 records out

1073741824 bytes (1.1 GB) copied, 37.3155 s, 28.8 MB/s

You can see that the size of the created file exceeds 1 GB. This is because the hard
disk is a block device and, hence, storage must be allocated by integral multiples of
blocks size.

2. Now format the 1 GB file to ext4 using the mkfs command as follows:
$ mkfs.ext4 loopbackfile.img

3. Check the file type using the following command:
$ file loobackfile.img

loobackfile.img: Linux rev 1.0 ext4 filesystem data,
UUID=c9d56c42-f8e6-4cbd-aeab-369d5056660a (extents) (large files)
(huge files)

Chapter 3

125

4. Now you can mount the loopback file as follows:
mkdir /mnt/loopback

mount -o loop loopbackfile.img /mnt/loopback

The -o loop additional option is used to mount loopback filesystems.

This is actually a short method where we don't have to manually attach it to any
devices. But, internally it attaches to a device called /dev/loop1 or loop2.

5. We can do it manually as follows:
losetup /dev/loop1 loopbackfile.img

mount /dev/loop1 /mnt/loopback

6. To umount (unmount), use the following syntax:
umount mount_point

For example:

umount /mnt/loopback

7. Or, alternately, we can use the device file path as an argument to the umount
command as:

umount /dev/loop1

Note that the mount and umount commands should be executed as
a root user since it is a privileged command.

How it works...
First we had to create a file that will act as a loopback file. For this we used dd, which is a
generic command for copying raw data. It starts copying data from the file specified in its if
parameter to the file specified in its of parameter. Additionally, we instruct dd to copy data in
blocks of size 1 GB and copy one such block, hence creating a file of size 1 GB. The /dev/
zero file is a special file, which will always contain 0 if you read from it.

We then used the mkfts.ext4 command to create an ext4 filesystem in the file. A filesystem
is needed because it provides a way of storing files on a disk/loopback file.

Finally, we used the mount command to mount the loopback file to a mountpoint (/mnt/
loopback in this case). A mountpoint makes it possible for users to access the files stored
on a filesystem. Before executing the mount command, the mountpoint should be created
using the mkdir command. We pass the option -o loop to mount to tell it that what we are
passing to it is a loopback file.

File In, File Out

126

When mount knows that it is operating on a loopback file, it automatically sets up a device in
/dev corresponding to the loopback file and then mounts it. If we wish to do it manually, we
use the losetup command to set up the device and then the mount command to mount it.

There's more...
Let's explore some more possibilities with loopback files and mounting.

Creating partitions inside loopback images
Suppose we want to create a loopback file, want to partition it, and finally mount a
subpartition. In this case, we cannot use mount -o loop. We have to manually set up the
device and mount the partitions in it. Partition a file with zeros dumped in it as follows:

losetup /dev/loop1 loopback.img

fdisk /dev/loop1

fdisk is a standard partitioning tool on Linux systems, a very
concise tutorial on creating partitions using fdisk is available
at http://www.tldp.org/HOWTO/Partition/fdisk_
partitioning.html (make sure to use /dev/loop1 instead
of /dev/hdb in the aforementioned tutorial).

Create partitions in loopback.img and mount the first partition as follows:

losetup -o 32256 /dev/loop2 loopback.img

Here, /dev/loop2 will represent the first partition,-o is the offset flag, 32256 bytes are for a
DOS partition scheme. The first partition starts after an offset of 32256 bytes from the start
of the hard disk.

We can set up the second partition by specifying the required offset. After mounting, we can
perform all regular operations as we can on physical devices.

Quicker way to mount loopback disk images with partitions
As we saw, we can manually pass partition offsets to losetup when we want to mount
partitions inside a loopback disk image. However, there is a quicker way to mount all the
partitions inside such an image using kpartx. This utility is usually not installed by default,
so you will have to install it using your package manager:

kpartx -v -a diskimage.img

add map loop0p1 (252:0): 0 114688 linear /dev/loop0 8192

add map loop0p2 (252:1): 0 15628288 linear /dev/loop0 122880

Chapter 3

127

This creates mappings from the partitions in the disk image to devices in /dev/mapper which
you can then mount. For example, to mount the first partition, use the following command:

mount /dev/mapper/loop0p1 /mnt/disk1

When you're done with the devices (and unmounting any mounted partitions using umount),
remove the mappings by:

kpartx -d diskimage.img

loop deleted : /dev/loop0

Mounting ISO files as loopback
An ISO file is an archive of an optical media. We can mount ISO files in the same way that we
mount physical disks by using loopback mounting.

We can even use a nonempty directory as the mount path. Then, the mount path will
contain data from the devices rather than the original contents until the device is
unmounted. For example:

mkdir /mnt/iso

mount -o loop linux.iso /mnt/iso

Now perform operations using files from /mnt/iso. ISO is a read-only filesystem.

Flush changing immediately with sync
While making changes on a mounted device, they are not immediately written to the physical
devices. They are only written when the buffer is full. But, we can force writing of changes
immediately by using the sync command as follows:

$ sync

Creating ISO files and hybrid ISO
An ISO image is an archive format that stores the exact storage images of optical disks such
as CD-ROM, DVD-ROM, and so on. ISO files are commonly used to store content to be burned
to optical media. We will now see how to create an ISO image from an optical disk. Many
people rely on third-party utilities to do this, but using the command line, it's even simpler.

We also need to distinguish between bootable and non-bootable optical disks. Bootable disks
are capable of booting from themselves and also running an operating system or another
product. Non-bootable ISOs cannot do that. The important thing to note here is that just
copying files from a bootable CD-ROM to another one is not sufficient to make the new one
bootable. To preserve the bootable nature of a CD-ROM, it should be copied as a disk image
using an ISO file.

File In, File Out

128

Nowadays, most people use devices such as flash drives or hard disks as a replacement
for optical disks. When we write a bootable ISO to a flash drive, it will no longer be bootable
unless we use a special hybrid ISO image designed specifically for the purpose.

This recipe will give you an insight on ISO images and manipulations.

Getting ready
As we described many times in this book, Unix handles everything as files. Every device is a
file. Hence, what if we want to copy an exact image of a device? We need to read all data from
it and write to another file, right?

As we know, the cat command can be used to read any data and redirection can be used to
write to a file.

How to do it...
In order to create an ISO image from /dev/cdrom, use the following command:

cat /dev/cdrom > image.iso

Though this will work, the preferred way to create an ISO image is to use dd:

dd if=/dev/cdrom of=image.iso

mkisofs is a command used to create an ISO system. The output file of mkisofs can be
written to CD-ROM or DVD-ROM using utilities such as cdrecord. We can use mkisofs to
create an ISO file using a directory containing all the required files that should appear as
contents of an ISO file as follows:

$ mkisofs -V "Label" -o image.iso source_dir/

The -o option in the mkisofs command specifies the ISO file path. The source_dir
command is the path of the directory that should be used as source content for the ISO
and the -V option specifies the label that should be used for the ISO file.

There's more...
Let's learn more commands and techniques related to ISO files.

Hybrid ISO that boots off a flash drive or hard disk
Usually, bootable ISO files cannot be transferred or written to a USB storage device and
booted the OS from the USB key. But, special type of ISO files called hybrid ISOs can be
flashed and they are capable of booting from such devices.

Chapter 3

129

We can convert standard ISO files into hybrid ISOs with the isohybrid command.
The isohybrid command is a new utility and most Linux distros don't include this by
default. If this is a case for your distro, you can download the syslinux package from
http://www.syslinux.org.

Have a look at the following command:

isohybrid image.iso

Using this command, we will have a hybrid ISO with the filename image.iso and it can be
written to USB storage devices.

To write the ISO to a USB storage device, use the following command:

dd if=image.iso of=/dev/sdb1

Use the appropriate device instead of /dev/sdb1, or, you can use cat as follows:

cat image.iso >> /dev/sdb1

Burning an ISO from the command line
The cdrecord command is used to burn an ISO file into a CD-ROM or DVD-ROM. It can be
used to burn the image to the CD-ROM as follows:

cdrecord -v dev=/dev/cdrom image.iso

Some extra options are as follows:

 f We can specify the burning speed with the -speed option as follows:
-speed SPEED

For example:
cdrecord -v dev=/dev/cdrom image.iso -speed 8

Here, 8 is the speed specified as 8x.

 f A CD-ROM can be burned in multisessions such that we can burn data multiple
times on a disk. Multisession burning can be performed using the -multi option
as follows:

cdrecord -v dev=/dev/cdrom image.iso -multi

Playing with the CD-ROM tray
If you are on a desktop computer, try the following commands and have fun:

$ eject

http://syslinux.zytor.com/

File In, File Out

130

This command is used to eject the tray.

$ eject -t

This command is used to close the tray.

For extra points, write a loop that opens and closes the tray a number of times.

Finding the difference between files,
patching

When multiple versions of a file are available, it is very useful when we can find the
differences between files being highlighted rather than comparing two files manually. If the
files are large, it is very difficult and time consuming to compare them by hand. This recipe
illustrates how to generate differences between files highlighted with line numbers. When
working on large files by multiple developers, when one of them has made changes and these
changes need to be shown to the other, sending the entire source code to other developers
manually is time consuming. Sending a difference file instead is very helpful as it consists of
only lines which are changed, or added or removed and line numbers are attached with it.
This difference file is called a patch file. We can add the changes specified in the patch file
to the original source code by using the patch command. We can also revert the changes by
patching again. Let us see how to do this.

How to do it...
The diff command utility is used to generate difference files.

1. To generate difference information, create the following files:

 � File 1: version1.txt
 this is the original text
 line2
 line3
 line4
 happy hacking !

 � File 2: version2.txt

 this is the original text
 line2
 line4
 happy hacking !
 GNU is not UNIX

Chapter 3

131

2. Nonunified diff output (without the -u flag) will be as follows:
$ diff version1.txt version2.txt

3d2

<line3

6c5

> GNU is not UNIX

3. The unified diff output will be as follows:
$ diff -u version1.txt version2.txt

--- version1.txt 2010-06-27 10:26:54.384884455 +0530

+++ version2.txt 2010-06-27 10:27:28.782140889 +0530

@@ -1,5 +1,5 @@

this is the original text

line2

-line3

line4

happy hacking !

-

+GNU is not UNIX

The -u option is used to produce a unified output. Everyone prefers unified output,
as the unified output is more readable and because it is easier to interpret the
difference that is being made between two files.

In unified diff, the lines starting with + are the newly-added lines and the lines
starting with - are the removed lines.

4. A patch file can be generated by redirecting the diff output to a file, as follows:
$ diff -u version1.txt version2.txt > version.patch

Now, using the patch command we can apply changes to any of the two files.
When applied to version1.txt, we get the version2.txt file. When applied
to version2.txt, we receive version1.txt.

5. To apply the patch, use the following command:
$ patch -p1 version1.txt < version.patch

patching file version1.txt

We now have version1.txt with the same contents as that of version2.txt.

File In, File Out

132

6. To revert the changes back, use the following command:

$ patch -p1 version1.txt < version.patch

patching file version1.txt

Reversed (or previously applied) patch detected! Assume -R? [n] y

#Changes are reverted.

As shown, patching an already patched file reverts back the changes.
To avoid prompting the user with y/n, we can use the -R option along
with the patch command.

There's more...
Let's go through additional features available with diff.

Generating difference against directories
The diff command can also act recursively against directories. It will generate a difference
output for all the descendant files in the directories. Use the following command:

$ diff -Naur directory1 directory2

The interpretation of each of the previous options is as follows:

 f -N is for treating absent files as empty

 f -a is to consider all files as text files

 f -u is to produce unified output

 f -r is to recursively traverse through the files in the directories

Using head and tail for printing the last or
first 10 lines

When looking into a large file, which consists of thousands of lines, we will not use a
command such as cat to print the entire file contents. Instead we look for a sample (for
example, the first 10 lines of the file or the last 10 lines of the file). We may need to print the
first n lines or last n lines and even print all the lines except the last n lines or all lines except
first n lines.

Another use case is to print lines from mth to nth lines.

The commands head and tail can help us do this.

Chapter 3

133

How to do it...
The head command always reads the header portion of the input file.

1. Print the first 10 lines as follows:
$ head file

2. Read the data from stdin as follows:
$ cat text | head

3. Specify the number of first lines to be printed as follows:
$ head -n 4 file

This command prints four lines.

4. Print all lines excluding the last M lines as follows:
$ head -n -M file

Note that it is negative M.

For example, to print all the lines except the last five lines, use the following
command line:
$ seq 11 | head -n -5

1

2

3

4

5

6

The following command will, however, print from 1 to 5:

$ seq 100 | head -n 5

5. Printing by excluding the last lines is a very important usage of head. Now, let us see
how to print, last few lines. Print the last 10 lines of a file as follows:
$ tail file

6. In order to read from stdin, you can use the following command line:
$ cat text | tail

File In, File Out

134

7. Print the last five lines as follows:
$ tail -n 5 file

8. In order to print all lines excluding the first M lines, use the following code:

$ tail -n +(M+1)

For example, to print all lines except the first five lines, M + 1 = 6, therefore the command will
be as follows:

$ seq 100 | tail -n +6

This will print from 6 to 100.

One of the important usages of tail is to read a constantly growing file. Since new lines are
constantly appended to the end of the file, tail can be used to display all new lines as they
are written to the file. When we run tail without specifying any options, it will read the last
10 lines and exit. However, by that time, new lines would have been appended to the file by a
process. To constantly monitor the growth of file, tail has a special option -f or --follow,
which enables tail to follow the appended lines and keep being updated as data is added:

$ tail -f growing_file

You will probably want to use this on logfiles. The command to monitor the growth of the files
would be:

tail -f /var/log/messages

Or:

$ dmesg | tail -f

We frequently run dmesg to look at kernel ring buffer messages either to debug the USB
devices or to look at sdX (X is the minor number for the sd device corresponding to a SCSI
disk). The -f tail can also add a sleep interval -s, so that we can set the interval during which
the file updates are monitored.

tail has the interesting property that allows it to terminate after a given process ID dies.

Suppose we are reading a growing file, and a process Foo is appending data to the file, the -f
tail should be executed until the process Foo dies.

$ PID=$(pidof Foo)

$ tail -f file --pid $PID

When the process Foo terminates, tail also terminates.

Chapter 3

135

Let us work on an example.

1. Create a new file file.txt and open the file in gedit (you can use any text editor).

2. Add new lines to the file and make frequent file saves in the gedit.

3. Now run the following commands:
$ PID=$(pidof gedit)

$ tail -f file.txt --pid $PID

When you make frequent changes to the file, it will be written to the terminal by the tail
command. When you close the gedit, the tail command will get terminated.

Listing only directories – alternative
methods

Listing only directories via scripting can be deceptively difficult. This recipe is worth knowing
since it introduces multiple ways of listing only directories with various useful techniques.

Getting ready
There are multiple ways of listing directories only. When you ask people about these
techniques, the first answer that they would probably give is dir. However, the dir command
is just another command like ls, but with fewer options. Let us see how to list directories.

How to do it...
There are several ways in which directories in the current path can be displayed:

1. Using ls with -l to print directories:
$ ls -d */

2. Using ls -F with grep:
 $ ls -F | grep "/$"

3. Using ls -l with grep:
$ ls -l | grep "^d"

4. Using find to print directories:

$ find . -type d -maxdepth 1 -print

File In, File Out

136

How it works...
When the -F parameter is used with ls, all entries are appended with some type of file
characters such as @, *, |, and so on. For directories, entries are appended with the
/ character. We use grep to filter only entries ending with the /$ end-of-line indicator.

The first character of any line in the ls -d output is the type of file character. For a directory,
the type of file character is "d". Hence, we use grep to filter lines starting with "d". ^ is a
start-of-line indicator.

The find command can take the parameter type as directory and maxdepth is set to 1 since
we don't want it to search inside the subdirectories.

Fast command-line navigation using pushd
and popd

When dealing with multiple locations on a terminal or shell prompt, our common practice is to
copy and paste the paths. However, this is ineffective when there is only command-line access
without a GUI. For example, if we are dealing with locations /var/www, /home/slynux, and
/usr/src, when we need to navigate to these locations one by one, it is really difficult to type
the path every time when we need to switch between the paths. Hence, the command-line
interface (CLI) based navigation techniques such as pushd and popd are used. Let us see
how to use them in this recipe.

Getting ready
pushd and popd are used to switch between multiple directories without the copying and
pasting of directory paths. pushd and popd operate on a stack. We know that a stack is a
last in first out (LIFO) data structure. It will store the directory paths in a stack and switch
between them using the push and pop operations.

How to do it...
We omit the use of the cd command while using pushd and popd:

1. To push and change a directory to a path, use the following command:
~ $ pushd /var/www

Now the stack contains /var/www ~ and the current directory is changed to
/var/www.

2. Now, again push the next directory path as follows:
/var/www $ pushd /usr/src

Chapter 3

137

Now the stack contains /usr/src /var/www ~ and the current directory is
/usr/src.

You can similarly push as many directory paths as needed.

3. To view the stack contents, use the following command:
$ dirs

/usr/src /var/www ~ /usr/share /etc

0 1 2 3 4

4. Now when you want to switch to any path in the list, number each path from 0 to n,
then use the path number for which we need to switch, for example:
$ pushd +3

Now it will rotate the stack and switch to the /usr/share directory.

pushd will always add paths to the stack, to remove paths from the stack use popd.

5. To remove a last pushed path and change directory to the next directory, use the
following command:
$ popd

Suppose the stack is /usr/src /var/www ~ /usr/share /etc such that the
current directory is /usr/src, then popd will change the stack to /var/www ~ /
usr/share /etc and change the directory to /var/www.

6. To remove a specific path from the list, use popd +num:

num is counted as 0 to n from left to right.

There's more...
Let's go through the essential directory navigation practices.

Most frequently used directory switching
pushd and popd can be used when there are more than three directory paths used.
But when you use only two locations, there is an alternative and easier way. That is cd -.

The current path is /var/www.

/var/www $ cd /usr/src

/usr/src $ # do something

Now, to switch back to /var/www; you don't have to type again, but just execute:

/usr/src $ cd -

File In, File Out

138

Now, again to switch to /usr/src as follows:

/var/www $ cd -

Counting the number of lines, words, and
characters in a file

Counting the number of lines, words, and characters from a text file are very useful for text
manipulations. In several cases, these counts are used in indirect ways to perform some
hacks in order to produce the required output patterns and results. This book includes
some tricky examples in other chapters. Counting LOC (Lines of Code) is a very important
application for developers. We may need to count special types of files excluding unnecessary
files. A combination of wc with other commands help to perform that.

wc is the utility used for counting. It stands for word count. Let us see how to use wc to count
lines, words, and characters.

How to do it...
We can use various options for wc to count the number of lines, words, and characters:

1. Count the number of lines in the following manner:
$ wc -l file

2. To use stdin as input, use the following command:
$ cat file | wc -l

3. Count the number of words as follows:
$ wc -w file

$ cat file | wc -w

4. In order to count the number of characters, use the following commands:
$ wc -c file

$ cat file | wc -c

For example, we can count the characters in a text as follows:
echo -n 1234 | wc -c

4

-n is used to avoid an extra newline character.

Chapter 3

139

5. To print the number of lines, words, and characters, execute wc without any options:
$ wc file

 1435 15763 112200

Those are the number of lines, words, and characters respectively.

6. Print the length of the longest line in a file using the -L option:

$ wc file -L

205

Printing the directory tree
Graphically representing directories and filesystems as a tree hierarchy is quite useful
when preparing tutorials and documents. Also, they are sometimes useful in writing certain
monitoring scripts that help to look at the filesystem using easy-to-read tree representations.
Let us see how to do it.

Getting ready
The tree command is the hero that helps us to print graphical trees of files and directories.
Usually, tree does not come with preinstalled Linux distributions. You have to install it using
the package manager.

How to do it...
The following is a sample Unix filesystem tree to show an example:

$ tree ~/unixfs

unixfs/

|-- bin

| |-- cat

| `-- ls

|-- etc

| `-- passwd

|-- home

| |-- pactpub

| | |-- automate.sh

| | `-- schedule

| `-- slynux

|-- opt

File In, File Out

140

|-- tmp

`-- usr

8 directories, 5 files

The tree command comes with many interesting options, let us look at a few of them:

 f To highlight only files matched by the pattern, use the following syntax:
$ tree path -P PATTERN # Pattern should be wildcard

For example:

$ tree PATH -P "*.sh" # Replace PATH with a directory path

|-- home

| |-- packtpub

| | `-- automate.sh

 f To highlight only files excluding the match pattern:
$ tree path -I PATTERN

 f To print the size along with files and directories, use the -h option:

$ tree -h

There's more...
Let's see an interesting option that is available with the tree command.

HTML output for tree
It is possible to generate an HTML output from the tree command. For example, use the
following command to create an HTML file with the tree output:

$ tree PATH -H http://localhost -o out.html

Replace http://localhost with the URL where you are planning to host the file. Replace
PATH with a real path for the base directory. For the current directory use . as PATH.

Chapter 3

141

The web page generated from the directory listing will look as follows:

4
Texting and Driving

In this chapter, we will cover the following recipes:

 f Using regular expressions

 f Searching and mining text inside a file with grep

 f Cutting a file column-wise with cut

 f Using sed to perform text replacement

 f Using awk for advanced text processing

 f Finding frequency of words used in a given file

 f Compressing or decompressing JavaScript

 f Merging multiple files as columns

 f Printing the nth word or column in a file or line

 f Printing text between line numbers or patterns

 f Printing lines in the reverse order

 f Parsing e-mail address and URLs from text

 f Removing a sentence in a file containing a word

 f Replacing a pattern with text in all files in a directory

 f Text slicing and parameter operations

Introduction
The shell scripting language is packed with all the essential problem-solving components for
Unix/Linux systems. Text processing is one of the key areas where shell scripting is used, and
there are beautiful utilities such as sed, awk, grep, and cut, which can be combined to solve
problems related to text processing.

Texting and Driving

144

Various utilities help to process a file in fine detail of a character, line, word, column, row, and
so on, allowing us to manipulate a text file in many ways. Regular expressions are the core of
pattern-matching techniques, and most of the text-processing utilities come with support for
it. By using suitable regular expression strings, we can produce the desired output, such as
filtering, stripping, replacing, and searching.

This chapter includes a collection of recipes, which walk through many contexts of problems
based on text processing that will be helpful in writing real scripts.

Using regular expressions
Regular expressions are the heart of text-processing techniques based on pattern matching.
For fluency in writing text-processing tools, one must have a basic understanding of regular
expressions. Using wild card techniques, the scope of matching text with patterns is very
limited. Regular expressions are a form of tiny, highly-specialized programming language
used to match text. A typical regular expression for matching an e-mail address might look
like [a-z0-9_]+@[a-z0-9]+\.[a-z]+.

If this looks weird, don't worry, it is really simple once you understand the concepts through
this recipe.

How to do it...
Regular expressions are composed of text fragments and symbols, which have special
meanings. Using these, we can construct any suitable regular expression string to match
any text according to the context. As regex is a generic language to match texts, we are not
introducing any tools in this recipe. However, it follows in the other recipes in this chapter.

Let's see a few examples of text matching:

 f To match all words in a given text, we can write the regex as follows:
(?[a-zA-Z]+ ?)

? is the notation for zero or one occurrence of the previous expression, which in
this case is the space character. The [a-zA-Z]+ notation represents one or more
alphabet characters (a-z and A-Z).

 f To match an IP address, we can write the regex as follows:

[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}

Or:
[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]{1,3}\.[[:digit:]]
{1,3}

Chapter 4

145

We know that an IP address is in the form 192.168.0.2. It is in the form of four
integers (each from 0 to 255), separated by dots (for example, 192.168.0.2).

[0-9] or [:digit:] represents a match for digits from 0 to 9. {1,3} matches one
to three digits and \. matches the dot character (.).

This regex will match an IP address in the text being processed.
However, it doesn't check for the validity of the address. For
example, an IP address of the form 123.300.1.1 will be
matched by the regex despite being an invalid IP. This is because
when parsing text streams, usually the aim is to only detect IPs.

How it works...
Let's first go through the basic components of regular expressions (regex):

regex Description Example
^ This specifies the start of the line marker. ^tux matches a line that

starts with tux.
$ This specifies the end of the line marker. tux$ matches a line that

ends with tux.
. This matches any one character. Hack. matches Hack1,

Hacki, but not Hack12 or
Hackil; only one additional
character matches.

[] This matches any one of the characters enclosed
in [chars].

coo[kl] matches cook or
cool.

[^] This matches any one of the characters except
those that are enclosed in [^chars].

9[^01] matches 92 and
93, but not 91 and 90.

[-] This matches any character within the range
specified in [].

[1-5] matches any digits
from 1 to 5.

? This means that the preceding item must match
one or zero times.

colou?r matches color
or colour, but not
colouur.

+ This means that the preceding item must match
one or more times.

Rollno-9+ matches
Rollno-99 and
Rollno-9, but not
Rollno-.

* This means that the preceding item must match
zero or more times.

co*l matches cl, col, and
coool.

Texting and Driving

146

regex Description Example
() This treats the terms enclosed as one entity ma(tri)?x matches max

or matrix.
{n} This means that the preceding item must match

n times.
[0-9]{3} matches any
three-digit number. [0-9]
{3} can be expanded as
[0-9][0-9][0-9].

{n,} This specifies the minimum number of times the
preceding item should match.

[0-9]{2,} matches any
number that is two digits or
longer.

{n, m} This specifies the minimum and maximum number
of times the preceding item should match.

[0-9]{2,5} matches any
number that has two digits
to five digits.

| This specifies the alternation—one of the items on
either of side of | should match.

Oct (1st | 2nd)
matches Oct 1st or Oct
2nd.

\ This is the escape character for escaping any of
the special characters mentioned previously.

a\.b matches a.b, but not
ajb. It ignores the special
meaning of . because of \.

For more details on the regular expression components available, you can refer to the
following URL:

http://www.linuxforu.com/2011/04/sed-explained-part-1/

There's more...
Let's see how the special meanings of certain characters are specified in the
regular expressions.

Treatment of special characters
Regular expressions use some characters, such as $, ^, ., *, +, {, and }, as special
characters. But, what if we want to use these characters as normal text characters?
Let's see an example of a regex, a.txt.

This will match the character a, followed by any character (due to the '.' character), which
is then followed by the string txt . However, we want '.' to match a literal '.' instead of any
character. In order to achieve this, we precede the character with a backward slash \ (doing
this is called escaping the character). This indicates that the regex wants to match the literal
character rather than its special meaning. Hence, the final regex becomes a\.txt.

Chapter 4

147

Visualizing regular expressions
Regular expressions can be tough to understand at times, but for people who are good at
understanding things with diagrams, there are utilities available to help in visualizing regex.
Here is one such tool that you can use by browsing to http://www.regexper.com; it
basically lets you enter a regular expression and creates a nice graph to help understand
it. Here is a screenshot showing the regular expression we saw in the previous section:

Searching and mining a text inside a file
with grep

Searching inside a file is an important use case in text processing. We may need to
search through thousands of lines in a file to find out some required data, by using certain
specifications. This recipe will help you learn how to locate data items of a given specification
from a pool of data.

Texting and Driving

148

How to do it...
The grep command is the magic Unix utility for searching in text. It accepts regular
expressions, and can produce output in various formats. Additionally, it has numerous
interesting options. Let's see how to use them:

1. To search for lines of text that contain the given pattern:
$ grep pattern filename

this is the line containing pattern

Or:

$ grep "pattern" filename

this is the line containing pattern

2. We can also read from stdin as follows:
$ echo -e "this is a word\nnext line" | grep word

this is a word

3. Perform a search in multiple files by using a single grep invocation, as follows:
$ grep "match_text" file1 file2 file3 ...

4. We can highlight the word in the line by using the --color option as follows:
$ grep word filename --color=auto

this is the line containing word

5. Usually, the grep command only interprets some of the special characters in
match_text. To use the full set of regular expressions as input arguments, the -E
option should be added, which means an extended regular expression. Or, we can
use an extended regular expression enabled grep command, egrep. For example:
$ grep -E "[a-z]+" filename

Or:

$ egrep "[a-z]+" filename

6. In order to output only the matching portion of a text in a file, use the -o option
as follows:
$ echo this is a line. | egrep -o "[a-z]+\."

line.

7. In order to print all of the lines, except the line containing match_pattern, use:
$ grep -v match_pattern file

The -v option added to grep inverts the match results.

Chapter 4

149

8. Count the number of lines in which a matching string or regex match appears in a file
or text, as follows:
$ grep -c "text" filename

10

It should be noted that -c counts only the number of matching lines, not the number
of times a match is made. For example:
$ echo -e "1 2 3 4\nhello\n5 6" | egrep -c "[0-9]"

2

Even though there are six matching items, it prints 2, since there are only two
matching lines. Multiple matches in a single line are counted only once.

9. To count the number of matching items in a file, use the following trick:
$ echo -e "1 2 3 4\nhello\n5 6" | egrep -o "[0-9]" | wc -l

6

10. Print the line number of the match string as follows:
$ cat sample1.txt

gnu is not unix

linux is fun

bash is art

$ cat sample2.txt

planetlinux

$ grep linux -n sample1.txt

2:linux is fun

or
$ cat sample1.txt | grep linux -n

If multiple files are used, it will also print the filename with the result as follows:

$ grep linux -n sample1.txt sample2.txt

sample1.txt:2:linux is fun

sample2.txt:2:planetlinux

11. Print the character or byte offset at which a pattern matches, as follows:
$ echo gnu is not unix | grep -b -o "not"

7:not

Texting and Driving

150

The character offset for a string in a line is a counter from 0, starting with the first
character. In the preceding example, not is at the seventh offset position (that is,
not starts from the seventh character in the line; that is, gnu is not unix).

The -b option is always used with -o.

12. To search over multiple files, and list which files contain the pattern, we use
the following:

$ grep -l linux sample1.txt sample2.txt

sample1.txt

sample2.txt

The inverse of the -l argument is -L. The -L argument returns a list of
non-matching files.

There's more...
We have seen the basic usages of the grep command, but that's not it; the grep command
comes with even more features. Let's go through those.

Recursively search many files
To recursively search for a text over many directories of descendants, use the
following command:

$ grep "text" . -R -n

In this command, "." specifies the current directory.

The options -R and -r mean the same thing when used with grep.

For example:

$ cd src_dir

$ grep "test_function()" . -R -n

./miscutils/test.c:16:test_function();

test_function() exists in line number 16 of miscutils/test.c.

This is one of the most frequently used commands by developers. It is used to
find files in the source code where a certain text exists.

Chapter 4

151

Ignoring case of pattern
The -i argument helps match patterns to be evaluated, without considering the uppercase or
lowercase. For example:

$ echo hello world | grep -i "HELLO"

hello

grep by matching multiple patterns
Usually, we specify single patterns for matching. However, we can use an argument -e to
specify multiple patterns for matching, as follows:

$ grep -e "pattern1" -e "pattern"

This will print the lines that contain either of the patterns and output one line for each match.
For example:

$ echo this is a line of text | grep -e "this" -e "line" -o

this

line

There is also another way to specify multiple patterns. We can use a pattern file for reading
patterns. Write patterns to match line-by-line, and execute grep with a -f argument
as follows:

$ grep -f pattern_filesource_filename

For example:

$ cat pat_file

hello

cool

$ echo hello this is cool | grep -f pat_file

hello this is cool

Including and excluding files in a grep search
grep can include or exclude files in which to search. We can specify include files or
exclude files by using wild card patterns.

To search only for .c and .cpp files recursively in a directory by excluding all other file types,
use the following command:

$ grep "main()" . -r --include *.{c,cpp}

Texting and Driving

152

Note, that some{string1,string2,string3} expands as somestring1 somestring2
somestring3.

Exclude all README files in the search, as follows:

$ grep "main()" . -r --exclude "README"

To exclude directories, use the --exclude-dir option.

To read a list of files to exclude from a file, use --exclude-from FILE.

Using grep with xargs with zero-byte suffix
The xargs command is often used to provide a list of file names as a command-line
argument to another command. When filenames are used as command-line arguments, it is
recommended to use a zero-byte terminator for the filenames instead of a space terminator.
Some of the filenames can contain a space character, and it will be misinterpreted as a
terminator, and a single filename may be broken into two file names (for example, New file.
txt can be interpreted as two filenames New and file.txt). This problem can be avoided
by using a zero-byte suffix. We use xargs so as to accept a stdin text from commands such
as grep and find. Such commands can output text to stdout with a zero-byte suffix. In
order to specify that the input terminator for filenames is zero byte (\0), we should use -0
with xargs.

Create some test files as follows:

$ echo "test" > file1

$ echo "cool" > file2

$ echo "test" > file3

In the following command sequence, grep outputs filenames with a zero-byte terminator (\0),
because of the -Z option with grep. xargs -0 reads the input and separates filenames with
a zero-byte terminator:

$ grep "test" file* -lZ | xargs -0 rm

Usually, -Z is used along with -l.

Silent output for grep
Sometimes, instead of actually looking at the matched strings, we are only interested in
whether there was a match or not. For this, we can use the quiet option (-q), where the grep
command does not write any output to the standard output. Instead, it runs the command and
returns an exit status based on success or failure.

We know that a command returns 0 on success, and non-zero on failure.

Chapter 4

153

Let's go through a script that makes use of grep in a quiet mode, for testing whether a match
text appears in a file or not.

#!/bin/bash
#Filename: silent_grep.sh
#Desc: Testing whether a file contain a text or not

if [$# -ne 2]; then
 echo "Usage: $0 match_text filename"
 exit 1
fi

match_text=$1
filename=$2
grep -q "$match_text" $filename

if [$? -eq 0]; then
 echo "The text exists in the file"
else
 echo "Text does not exist in the file"
fi

The silent_grep.sh script can be run as follows, by providing a match word (Student)
and a file name (student_data.txt) as the command argument:

$./silent_grep.sh Student student_data.txt

The text exists in the file

Printing lines before and after text matches
Context-based printing is one of the nice features of grep. Suppose a matching line for a
given match text is found, grep usually prints only the matching lines. But, we may need
"n" lines after the matching line, or "n" lines before the matching line, or both. This can be
performed by using context-line control in grep. Let's see how to do it.

In order to print three lines after a match, use the -A option:

$ seq 10 | grep 5 -A 3

5

6

7

8

Texting and Driving

154

In order to print three lines before the match, use the -B option:

$ seq 10 | grep 5 -B 3

2

3

4

5

Print three lines after and before the match, and use the -C option as follows:

$ seq 10 | grep 5 -C 3

2

3

4

5

6

7

8

If there are multiple matches, then each section is delimited by a line "--":

$ echo -e "a\nb\nc\na\nb\nc" | grep a -A 1

a

b

--

a

b

Cutting a file column-wise with cut
We may need to cut the text by a column rather than a row. Let's assume that we have a text
file containing student reports with columns, such as Roll, Name, Mark, and Percentage.
We need to extract only the name of the students to another file or any nth column in the file,
or extract two or more columns. This recipe will illustrate how to perform this task.

How to do it...
cut is a small utility that often comes to our help for cutting in column fashion. It can also
specify the delimiter that separates each column. In cut terminology, each column is known
as a field.

Chapter 4

155

1. To extract particular fields or columns, use the following syntax:
cut -f FIELD_LIST filename

FIELD_LIST is a list of columns that are to be displayed. The list consists of column
numbers delimited by commas. For example:
$ cut -f 2,3 filename

Here, the second and the third columns are displayed.

2. cut can also read input text from stdin.

Tab is the default delimiter for fields or columns. If lines without delimiters are found,
they are also printed. To avoid printing lines that do not have delimiter characters,
attach the -s option along with cut. An example of using the cut command for
columns is as follows:

$ cat student_data.txt

No Name Mark Percent

1 Sarath 45 90

2 Alex 49 98

3 Anu 45 90

$ cut -f1 student_data.txt

No

1

2

3

3. Extract multiple fields as follows:
$ cut -f2,4 student_data.txt

Name Percent

Sarath 90

Alex 98

Anu 90

4. To print multiple columns, provide a list of column numbers separated by commas as
arguments to -f.

Texting and Driving

156

5. We can also complement the extracted fields by using the --complement option.
Suppose you have many fields and you want to print all the columns except the third
column, then use the following command:
$ cut -f3 --complement student_data.txt

No Name Percent

1 Sarath 90

2 Alex 98

3 Anu 90

6. To specify the delimiter character for the fields, use the -d option as follows:

$ cat delimited_data.txt

No;Name;Mark;Percent

1;Sarath;45;90

2;Alex;49;98

3;Anu;45;90

$ cut -f2 -d";" delimited_data.txt

Name

Sarath

Alex

Anu

There's more
The cut command has more options to specify the character sequences to be displayed as
columns. Let's go through the additional options available with cut.

Specifying the range of characters or bytes as fields
Suppose that we don't rely on delimiters, but we need to extract fields in such a way that we
need to define a range of characters (counting from 0 as the start of line) as a field. Such
extractions are possible with cut.

Let's see what notations are possible:

N- from the Nth byte, character, or field, to the end of the line
N-M from the Nth to Mth (included) byte, character, or field
-M from the first to Mth (included) byte, character, or field

Chapter 4

157

We use the preceding notations to specify fields as a range of bytes or characters with the
following options:

 f -b for bytes

 f -c for characters

 f -f for defining fields

For example:

$ cat range_fields.txt

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxy

You can print the first to fifth characters as follows:

$ cut -c1-5 range_fields.txt

abcde

abcde

abcde

abcde

The first two characters can be printed as follows:

$ cut range_fields.txt -c -2

ab

ab

ab

ab

Replace -c with -b to count in bytes.

We can specify the output delimiter while using with -c, -f, and -b, as follows:

--output-delimiter "delimiter string"

When multiple fields are extracted with -b or -c, the --output-delimiter is a must.
Otherwise, you cannot distinguish between fields if it is not provided. For example:

$ cut range_fields.txt -c1-3,6-9 --output-delimiter ","

abc,fghi

abc,fghi

abc,fghi

abc,fghi

Texting and Driving

158

Using sed to perform text replacement
sed stands for stream editor. It is a very essential tool for text processing, and a marvelous
utility to play around with regular expressions. A well-known usage of the sed command is for
text replacement. This recipe will cover most of the frequently-used sed techniques.

How to do it…
sed can be used to replace occurrences of a string with another string in a given text.

1. It can be matched using regular expressions.
$ sed 's/pattern/replace_string/' file

Or:
$ cat file | sed 's/pattern/replace_string/'

This command reads from stdin.

If you use the vi editor, you will notice that the command to
replace the text is very similar to the one discussed here.

2. By default, sed only prints the substituted text. To save the changes along with the
substitutions to the same file, use the -i option. Most of the users follow multiple
redirections to save the file after making a replacement as follows:
$ sed 's/text/replace/' file >newfile

$ mv newfile file

However, it can be done in just one line; for example:

$ sed -i 's/text/replace/' file

3. These usages of the sed command will replace the first occurrence of the pattern in
each line. If we want to replace every occurrence, we need to add the g parameter at
the end, as follows:

$ sed 's/pattern/replace_string/g' file

The /g suffix means that it will substitute every occurrence. However, we sometimes
need to replace only the Nth occurrence onwards. For this, we can use the /Ng form
of the option.

Chapter 4

159

Have a look at the following commands:
$ echo thisthisthisthis | sed 's/this/THIS/2g'

thisTHISTHISTHIS

$ echo thisthisthisthis | sed 's/this/THIS/3g'

thisthisTHISTHIS

$ echo thisthisthisthis | sed 's/this/THIS/4g'

thisthisthisTHIS

We have used / in sed as a delimiter character. We can use any delimiter characters
as follows:
sed 's:text:replace:g'

sed 's|text|replace|g'

When the delimiter character appears inside the pattern, we have to escape it using
the \ prefix, as follows:
sed 's|te\|xt|replace|g'

\| is a delimiter appearing in the pattern replaced with escape.

There's more...
The sed command comes with numerous options for text manipulation. By combining the
options available with sed in logical sequences, many complex problems can be solved in
one line. Let's see the different options available with sed.

Removing blank lines
Removing blank lines is a simple technique by using sed to remove blank lines. Blanks can be
matched with regular expression ^$:

$ sed '/^$/d' file

/pattern/d will remove lines matching the pattern.

For blank lines, the line end marker appears next to the line start marker.

Performing replacement directly in the file
When a filename is passed to sed, it usually prints its output to stdout. Instead, if we want it
to actually modify the contents of the file, we use the -i option, as follows:

$ sed 's/PATTERN/replacement/' -i filename

Texting and Driving

160

For example, replace all three-digit numbers with another specified number in a file,
as follows:

$ cat sed_data.txt

11 abc 111 this 9 file contains 111 11 88 numbers 0000

$ sed -i 's/\b[0-9]\{3\}\b/NUMBER/g' sed_data.txt

$ cat sed_data.txt

11 abc NUMBER this 9 file contains NUMBER 11 88 numbers 0000

The preceding one-liner replaces three-digit numbers only. \b[0-9]\{3\}\b is the regular
expression used to match three-digit numbers. [0-9] is the range of digits; that is, from 0
to 9. {3} is used for matching the preceding character thrice. \ in \{3\} is used to give a
special meaning for { and }. \b is the word boundary marker.

It's a useful practice to first try the sed command without -i to
make sure your regex is correct, and once you are satisfied with
the result, add the -i option to actually make changes to the file.
Alternatively, you can use the following form of sed:
sed -i .bak 's/abc/def/' file

In this case, sed will not only perform the replacement on the file,
but it will also create a file called file.bak, which will contain the
original contents.

Matched string notation (&)
In sed, we can use & as the matched string for the substitution pattern, in such a way that we
can use the matched string in the replacement string.

For example:

$ echo this is an example | sed 's/\w\+/[&]/g'

[this] [is] [an] [example]

Here, regex \w\+ matches every word. Then, we replace it with [&]. & corresponds to the
word that is matched.

Substring match notation (\1)
& corresponds to the matched string for the given pattern. We can also match the substrings
of the given pattern. Let's see how to do it.

$ echo this is digit 7 in a number | sed 's/digit \([0-9]\)/\1/'

this is 7 in a number

Chapter 4

161

The preceding command replaces digit 7 with 7. The substring matched is 7. \
(pattern\) is used to match the substring. The pattern is enclosed in (), and is escaped
with slashes. For the first substring match, the corresponding notation is \1; for the second, it
is \2, and so on. Go through the following example with multiple matches:

$ echo seven EIGHT | sed 's/\([a-z]\+\) \([A-Z]\+\)/\2 \1/'

EIGHT seven

([a-z]\+\) matches the first word, and \([A-Z]\+\) matches the second word. \1 and
\2 are used for referencing them. This type of referencing is called back referencing. In the
replacement part, their order is changed as \2 \1 and, hence, it appears in reverse order.

Combination of multiple expressions
The combination of multiple sed using a pipe can be replaced as follows:

sed 'expression' | sed 'expression'

The preceding command is equivalent to the following:

$ sed 'expression; expression'

Or:

$ sed -e 'expression' -e expression'

For example,

$ echo abc | sed 's/a/A/' | sed 's/c/C/'

AbC

$ echo abc | sed 's/a/A/;s/c/C/'

AbC

$ echo abc | sed -e 's/a/A/' -e 's/c/C/'

AbC

Quoting
Usually, it is seen that the sed expression is quoted by using single quotes. But, double
quotes can also be used. Double quotes expand the expression by evaluating it. Using
double quotes are useful when we want to use a variable string in a sed expression.

For example:

$ text=hello

$ echo hello world | sed "s/$text/HELLO/"

HELLO world

$text is evaluated as hello.

Texting and Driving

162

Using awk for advanced text processing
awk is a tool designed to work with data streams. It is very interesting, as it can operate on
columns and rows. It supports many built-in functionalities, such as arrays and functions, in
the C programming language. Its biggest advantage is its flexibility.

Getting ready...
The structure of an awk script is as follows:

awk ' BEGIN{ print "start" } pattern { commands } END{ print "end" }
file

The awk command can read from stdin also.

An awk script usually consists of three parts—BEGIN, END, and a common statements block
with the pattern match option. The three of them are optional and any of them can be absent
in the script.

How to do it…
Let's write a simple awk script enclosed in single quotes or double quotes, as follows:

awk 'BEGIN { statements } { statements } END { end statements }'

Or, alternately, use the following command:

awk "BEGIN { statements } { statements } END { end statements }"

For example:

$ awk 'BEGIN { i=0 } { i++ } END{ print i}' filename

Or:

$ awk "BEGIN { i=0 } { i++ } END{ print i }" filename

How it works…
The awk command works in the following manner:

1. Execute the statements in the BEGIN { commands } block.

2. Read one line from the file or stdin, and execute pattern { commands }.
Repeat this step until the end of the file is reached.

3. When the end of the input stream is reached, execute the END { commands } block.

Chapter 4

163

The BEGIN block is executed before awk starts reading lines from the input stream. It is an
optional block. The statements, such as variable initialization and printing the output header
for an output table, are common statements that are written in the BEGIN block.

The END block is similar to the BEGIN block. It gets executed when awk completes reading
all the lines from the input stream. The statements, such as printing results after analyzing
all the values calculated for all the lines or printing the conclusion are the commonly-used
statements in the END block (for example, after comparing all the lines, print the maximum
number from a file). This is an optional block.

The most important block is of the common commands with the pattern block. This block is
also optional. If this block is not provided, by default { print } gets executed so as to print
each of the lines read. This block gets executed for each line read by awk. It is like a while
loop for lines read, with statements provided inside the body of the loop.

When a line is read, it checks whether the provided pattern matches the line. The pattern can
be a regular expression match, conditions, range of lines match, and so on. If the current read
line matches with the pattern, it executes the statements enclosed in { }.

The pattern is optional. If it is not used, all the lines are matched and the statements inside {
} are executed.

Let's go through the following example:

$ echo -e "line1\nline2" | awk 'BEGIN{ print "Start" } { print } END{
print "End" } '

Start

line1

line2

End

When print is used without an argument, it will print the current line. There are
two important things to be kept in mind about it. When the arguments of the print are
separated by commas, they are printed with a space delimiter. Double quotes are used
as the concatenation operator in the context of print in awk.

For example:

$ echo | awk '{ var1="v1"; var2="v2"; var3="v3"; \

print var1,var2,var3 ; }'

The preceding statement will print the values of the variables as follows:

v1 v2 v3

Texting and Driving

164

The echo command writes a single line into the standard output. Hence, the statements in
the { } block of awk are executed once. If the standard input to awk contains multiple lines,
the commands in awk will be executed multiple times.

Concatenation can be used as follows:

$ echo | awk '{ var1="v1"; var2="v2"; var3="v3"; \

print var1 "-" var2 "-" var3 ; }'

The output will be as follows:

v1-v2-v3

{ } is like a block in a loop, iterating through each line of a file.

Usually, we place initial variable assignments, such as var=0; and
like statements, print the file header in the BEGIN block. In the END{}
block, we place statements such as printing results.

There's more…
The awk command comes with a lot of rich features. In order to master the art of awk
programming, you should be familiar with the important awk options and functionalities.
Let's go through the essential functionalities of awk.

Special variables
Some special variables that can be used with awk are as follows:

 f NR: It stands for the current record number, which corresponds to the current line
number when it uses lines as records

 f NF: It stands for the number of fields, and corresponds to the number of fields in the
current record under execution (fields are delimited by space)

 f $0: It is a variable that contains the text content of the current line under execution

 f $1: It is a variable that holds the text of the first field

 f $2: It is the variable that holds the text of the second field

For example:

$ echo -e "line1 f2 f3\nline2 f4 f5\nline3 f6 f7" | \

awk '{

Chapter 4

165

print "Line no:"NR",No of fields:"NF, "$0="$0, "$1="$1,"$2="$2,"$3="$3

}'

Line no:1,No of fields:3 $0=line1 f2 f3 $1=line1 $2=f2 $3=f3

Line no:2,No of fields:3 $0=line2 f4 f5 $1=line2 $2=f4 $3=f5

Line no:3,No of fields:3 $0=line3 f6 f7 $1=line3 $2=f6 $3=f7

We can print the last field of a line as print $NF, last but the second as $(NF-1),
and so on.

awk also provides the printf() function with the same syntax as in C. We can also use that
instead of print.

Let's see some basic awk usage examples. Print the second and third field of every line
as follows:

$awk '{ print $3,$2 }' file

In order to count the number of lines in a file, use the following command:

$ awk 'END{ print NR }' file

Here, we only use the END block. NR will be updated on entering each line by awk with its line
number. When it reaches the end of the line, it will have the value of the last line number.
Hence, in the END block NR will have the value of the last line number.

You can sum up all the numbers from each line of field 1 as follows:

$ seq 5 | awk 'BEGIN{ sum=0; print "Summation:" }

{ print $1"+"; sum+=$1 } END { print "=="; print sum }'

Summation:

1+

2+

3+

4+

5+

==

15

Passing an external variable to awk
By using the -v argument, we can pass external values other than stdin to awk, as follows:

$ VAR=10000

$ echo | awk -v VARIABLE=$VAR '{ print VARIABLE }'

10000

Texting and Driving

166

There is a flexible alternate method to pass many variable values from outside awk.
For example:

$ var1="Variable1" ; var2="Variable2"

$ echo | awk '{ print v1,v2 }' v1=$var1 v2=$var2

Variable1 Variable2

When an input is given through a file rather than standard input, use the following command:

$ awk '{ print v1,v2 }' v1=$var1 v2=$var2 filename

In the preceding method, variables are specified as key-value pairs, separated by a space
and (v1=$var1 v2=$var2) as command arguments to awk soon after the BEGIN, { },
and END blocks.

Reading a line explicitly using getline
Usually, awk reads all the lines in a file by default. If you want to read one specific line, you
can use the getline function. Sometimes, you may need to read the first line from the
BEGIN block.

The syntax is getline var. The variable var will contain the content for the line. If getline
is called without an argument, we can access the content of the line by using $0, $1, and $2.

For example:

$ seq 5 | awk 'BEGIN { getline; print "Read ahead first line", $0 } {
print $0 }'

Read ahead first line 1

2

3

4

5

Filtering lines processed by awk with filter patterns
We can specify some conditions for lines to be processed. For example:

$ awk 'NR < 5' # first four lines

$ awk 'NR==1,NR==4' #First four lines

$ awk '/linux/' # Lines containing the pattern linux (we can specify
regex)

$ awk '!/linux/' # Lines not containing the pattern linux

Chapter 4

167

Setting delimiter for fields
By default, the delimiter for fields is a space. We can explicitly specify a delimiter by using -F
"delimiter":

$ awk -F: '{ print $NF }' /etc/passwd

Or:

awk 'BEGIN { FS=":" } { print $NF }' /etc/passwd

We can set the output fields separator by setting OFS="delimiter" in the BEGIN block.

Reading the command output from awk
In the following code, echo will produce a single blank line. The cmdout variable will contain
the output of the command grep root /etc/passwd, and it will print the line containing
the root:

The syntax for reading out the command in a variable output is as follows:

"command" | getline output ;

For example:

$ echo | awk '{ "grep root /etc/passwd" | getline cmdout ; print cmdout
}'

root:x:0:0:root:/root:/bin/bash

By using getline, we can read the output of external shell commands in a variable
called cmdout.

awk supports associative arrays, which can use the text as the index.

Using loop inside awk
A for loop is available in awk. It has the following format:

for(i=0;i<10;i++) { print $i ; }

Or:

for(i in array) { print array[i]; }

Texting and Driving

168

String manipulation functions in awk
awk comes with many built-in string manipulation functions. Let's have a look at a few
of them:

 f length(string): This returns the string length.

 f index(string, search_string): This returns the position at which
search_string is found in the string.

 f split(string, array, delimiter): This stores the list of strings generated
by using the delimiter in the array.

 f substr(string, start-position, end-position): This returns the
substring created from the string by using the start and end character offsets.

 f sub(regex, replacement_str, string): This replaces the first occurring
regular expression match from the string with replacment_str.

 f gsub(regex, replacment_str, string): This is similar to sub(), but it
replaces every regular expression match.

 f match(regex, string): This returns the result of whether a regular expression
(regex) match is found in the string or not. It returns a non-zero output if a match is
found, otherwise it returns zero. Two special variables are associated with match().
They are RSTART and RLENGTH. The RSTART variable contains the position at which
the regular expression match starts. The RLENGTH variable contains the length of the
string matched by the regular expression.

Finding the frequency of words used in a
given file

Finding the frequency of words used in a file is an interesting exercise to apply the text-
processing skills. It can be done in many different ways. Let's see how to do it.

Getting ready
We can use associative arrays, awk, sed, grep, and so on, to solve this problem in different
ways. Words are alphabetic characters, delimited by space or a period. First, we should parse
all the words in a given file and then the count of each word needs to be found. Words can be
parsed by using regex with any of the tools, such as sed, awk, or grep.

Chapter 4

169

How to do it...
We just saw the logic and ideas about the solution; now let's create the shell script as follows:

#!/bin/bash
#Name: word_freq.sh
#Desc: Find out frequency of words in a file

if [$# -ne 1];
then
 echo "Usage: $0 filename";
 exit -1
fi

filename=$1

egrep -o "\b[[:alpha:]]+\b" $filename | \

awk '{ count[$0]++ }
END{ printf("%-14s%s\n","Word","Count") ;
for(ind in count)
{ printf("%-14s%d\n",ind,count[ind]); }

}'

A sample output is as follows:

$./word_freq.sh words.txt

Word Count

used 1

this 2

counting 1

How it works...
egrep -o "\b[[:alpha:]]+\b" $filename is used to output only words. The -o option
will print the matching character sequence, delimited by a newline character. Hence, we
receive words in each line.

\b is the word boundary character. [:alpha:] is a character class for alphabets. The awk
command is used to avoid the iteration through each word. Since awk, by default, executes
the statements in the { } block for each row, we don't need a specific loop for doing that.
Hence, the count is incremented as count[$0]++ by using the associative array. Finally,
in the END{} block, we print the words and their count by iterating through the words.

Texting and Driving

170

See also
 f The Using awk for advanced text processing recipe in this chapter explains the

awk command

 f The Arrays and associative arrays recipe in Chapter 1, Shell Something Out, explains
the arrays in Bash

Compressing or decompressing JavaScript
JavaScript is widely used for designing websites. While writing the JavaScript code, we use
several white spaces, comments, and tabs for readability and maintenance of the code.
This causes the file size to increase, and as the file size increases, so does the time taken
to load the page. Hence, most of the professional websites use compressed JavaScript for
fast loading. This compression (also known as minified JS) is mostly squeezing white spaces
and newline characters. Once JavaScript is compressed, it can be decompressed by adding
enough white space and newline characters, which makes it readable. This recipe is an
attempt to produce similar capabilities in the shell.

Getting ready
We are going to write a JavaScript compressor or obfuscation tool as well as a decompressing
tool. Let's consider the following sample JavaScript:

$ cat sample.js

function sign_out()

{

 $("#loading").show();

 $.get("log_in",{logout:"True"},

 function(){

 window.location="";

 });

}

Following are the tasks that we need to perform for compressing this JavaScript:

1. Remove newline and tab characters.

2. Squeeze spaces.

3. Replace comments that look like /* content */.

Chapter 4

171

To decompress or to make the JavaScript more readable, we can use the following tasks:

 f Replace ; with ;\n

 f Replace { with {\n, and } with \n}

How to do it...
Using the steps that we now have in mind, we can use the following command chain:

$ cat sample.js | \

tr -d '\n\t' | tr -s ' ' \

| sed 's:/*.**/::g' \

| sed 's/ \?\([{}();,:]\) \?/\1/g'

The output is as follows:

function sign_out(){$("#loading").show();$.get("log_
in",{logout:"True"},function(){window.location="";});}

We can write a decompression script for making the obfuscated code readable, as follows:

$ cat obfuscated.txt | sed 's/;/;\n/g; s/{/{\n\n/g; s/}/\n\n}/g'

Or:

$ cat obfuscated.txt | sed 's/;/;\n/g' | sed 's/{/{\n\n/g' | sed 's/}/\n\
n}/g'

There is a limitation in the script that it even gets rid of extra spaces
where it is intended. For example, if you have a line like the following:

var a = "hello world"

The two spaces will be converted into one space. Things like these are
possible to fix by using the pattern-matching tools we have discussed.
Also, when dealing with mission-critical JavaScript code, it is advised
to use well-established tools to do this.

How it works...
The compression command performs the following tasks:

 f Removes the \n and \t characters:
tr -d '\n\t'

Texting and Driving

172

 f Removes extra spaces:
tr -s ' ' or sed 's/[]\+/ /g'

 f Removes comments:
sed 's:/*.**/::g'

: is used as a sed delimiter to avoid the need of escaping / since we need to use
/* and */.

in sed, * is escaped as *.

.* is used to match all the text in between /* and */.

 f Removes all the spaces preceding and suffixing the {, }, (,), ;, :, and ,.

sed 's/ \?\([{}();,:]\) \?/\1/g'

The preceding sed statement works as follows:

 � / \?\([{}();,:]\) \?/ in the sed code is the match part, and /\1 /g
is the replacement part.

 � \([{}();,:]\) is used to match any one character in the set [{ }()
; , :] (inserted spaces for readability). \(and \) are group operators
used to memorize the match and back reference in the replacement part. (
and) are escaped to give them a special meaning as a group operator.\?
precedes and follows the group operators. It is to match the space character
that may precede or follow any of the characters in the set.

 � In the replacement part, the match string (that is, the combination of :, a
space (optional), a character from the set, and again an optional space)
is replaced with the character matched. It uses a back reference to the
character matched and memorized using the group operator (). Back-
referenced characters refer to a group match using the \1 symbol.

The decompression command works as follows:

 f s/;/;\n/g replaces ; with ;\n

 f s/{/{\n\n/g replaces { with {\n\n

 f s/}/\n\n}/g replaces } with \n\n}

See also
 f The Using sed to perform text replacement recipe in this chapter explains the

sed command

 f The Translate with tr recipe in Chapter 2, Have a Good Command, explains the
tr command

Chapter 4

173

Merging multiple files as columns
There are different cases when we need to concatenate files by their columns. We may need
each file's content to appear in separate columns. Usually, the cat command concatenates in
a line (or row-wise) fashion.

How to do it...
paste is the command that can be used for column-wise concatenation. The paste
command can be used with the following syntax:

$ paste file1 file2 file3 …

Let's try an example as follows:

$ cat file1.txt

1

2

3

4

5

$ cat file2.txt

slynux

gnu

bash

hack

$ paste file1.txt file2.txt

1slynux

2gnu

3bash

4hack

5

The default delimiter is tab. We can also explicitly specify the delimiter by using -d.
For example:

$ paste file1.txt file2.txt -d ","

1,slynux

2,gnu

3,bash

4,hack

5,

Texting and Driving

174

See also
 f The Column-wise cutting of the file with cut recipe in this chapter explains how to

extract data from text files

Printing the nth word or column in a file or
line

We may have a file having a number of columns, and only a few will actually be useful. For
example, in a list of students in an order of their scores, we want to get, for instance, the
fourth highest scorer. In this recipe, we will see how to do this.

How to do it...
The most widely-used method is to use awk for doing this task. It can be also done using cut.

1. To print the fifth column, use the following command:
$ awk '{ print $5 }' filename

2. We can also print multiple columns and insert our custom string in between columns.

For example, to print the permission and filename of each file in the current directory,
use the following set of commands:

$ ls -l | awk '{ print $1 " : " $8 }'

-rw-r--r-- : delimited_data.txt

-rw-r--r-- : obfuscated.txt

-rw-r--r-- : paste1.txt

-rw-r--r-- : paste2.txt

See also
 f The Using awk for advanced text processing recipe in this chapter explains the

awk command

 f The Column-wise cutting of the file with cut recipe in this chapter explains how to
extract data from text files

Chapter 4

175

Printing text between line numbers or
patterns

We may require to print a certain section of text lines, based on conditions such as a range of
line numbers, and a range matched by a start and end pattern. Let's see how to do it.

Getting ready
We can use utilities such as awk, grep, and sed to perform the printing of a section based on
conditions. Still, I found awk to be the simplest one to understand. Let's do it using awk.

How to do it...
1. To print the lines of a text in a range of line numbers, M to N, use the following syntax:

$ awk 'NR==M, NR==N' filename

Or, it can take the stdin input as follows:

$ cat filename | awk 'NR==M, NR==N'

2. Replace M and N with numbers as follows:
$ seq 100 | awk 'NR==4,NR==6'

4

5

6

3. To print the lines of a text in a section with start_pattern and end_pattern, use
the following syntax:

$ awk '/start_pattern/, /end _pattern/' filename

For example:
$ cat section.txt
line with pattern1
line with pattern2
line with pattern3
line end with pattern4
line with pattern5

$ awk '/pa.*3/, /end/' section.txt
line with pattern3
line end with pattern4

The patterns used in awk are regular expressions.

Texting and Driving

176

See also
 f The Using awk for advanced text processing recipe in this chapter explains the

awk command

Printing lines in the reverse order
This is a very simple recipe. It may not seem very useful, but it can be used to emulate the
stack datastructure in Bash. This is something interesting. Let's print the lines of text in a file
in reverse order.

Getting ready
A little hack with awk can do the task. However, there is a direct command, tac, to do the
same as well. tac is the reverse of cat.

How to do it...
We will first see how to do this with tac.

1. The tac syntax is as follows:
tac file1 file2 …

It can also read from stdin, as follows:
$ seq 5 | tac
5
4
3
2
1

In tac, \n is the line separator. But, we can also specify our own separator by using
the -s "separator" option.

2. We can do it in awk as follows:

$ seq 9 | \
awk '{ lifo[NR]=$0 }
END{ for(lno=NR;lno>-1;lno--){ print lifo[lno]; }
}'

\ in the shell script is used to conveniently break a single line command sequence
into multiple lines.

Chapter 4

177

How it works...
The awk script is very simple. We store each of the lines into an associative array with the
line number as an array index (NR returns the line number). In the end, awk executes the END
block. In order to get the last line number, lno=NR is used in the { } block. Hence, it iterates
from the last line number to 0, and prints the lines stored in the array in reverse order.

Parsing e-mail addresses and URLs
from text

Parsing a required text from a given file is a common task that we encounter in text
processing. Items such as, e-mails and URLs can be found out with the help of correct regex
sequences. Mostly, we need to parse e-mail addresses from a contact list of an e-mail client,
which is composed of many unwanted characters and words, or from an HTML web page.

How to do it...
The regular expression pattern to match an e-mail address is as follows:

[A-Za-z0-9._]+@[A-Za-z0-9.]+\.[a-zA-Z]{2,4}

For example:

$ cat url_email.txt

this is a line of text contains,<email> #slynux@slynux.com. </email>
and email address, blog "http://www.google.com", test@yahoo.com
dfdfdfdddfdf;cool.hacks@gmail.com

<h1>Heading</h1>

As we are using extended regular expressions (+, for instance), we should use egrep.

$ egrep -o '[A-Za-z0-9._]+@[A-Za-z0-9.]+\.[a-zA-Z]{2,4}' url_email.txt
slynux@slynux.com
test@yahoo.com
cool.hacks@gmail.com

The egrep regex pattern for an HTTP URL is as follows:

http://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,4}

For example:

$ egrep -o "http://[a-zA-Z0-9.]+\.[a-zA-Z]{2,3}" url_email.txt
http://www.google.com
http://code.google.com

Texting and Driving

178

How it works...
The regular expressions are really easy to design part-by-part. In the e-mail regex, we all know
that an e-mail address takes the form name@domain.some_2-4_letter. Here, the same is
written in the regex language as follows:

[A-Za-z0-9.]+@[A-Za-z0-9.]+\.[a-zA-Z]{2,4}

[A-Za-z0-9.]+ means that some combination of characters in the [] block should
appear one or more times (that is the meaning of +), before a literal @ character appears.
Then, [A-Za-z0-9.] also should appear one or more times (+). The pattern \. means that
a literal period should appear, and finally, the last part should be 2 to 4 alphabetic characters.

The case of an HTTP URL is similar to an e-mail, but we don't need the name@ match part of
the e-mail regex.

http://[a-zA-Z0-9.]+\.[a-zA-Z]{2,3}

See also
 f The Using sed to perform string replacement recipe in this chapter explains the

sed command

 f The Using regular expressions recipe in this chapter explains how to use
regular expressions

Removing a sentence in a file containing a
word

Removing a sentence containing a word is a simple task when a correct regular expression is
identified. This is just an exercise on solving similar problems.

Getting ready
sed is the best utility for making substitutions. Hence, let's use sed to replace the matched
sentence with a blank.

Chapter 4

179

How to do it...
Let's create a file with some text to carry out the substitutions. For example:

$ cat sentence.txt

Linux refers to the family of Unix-like computer operating systems
that use the Linux kernel. Linux can be installed on a wide variety of
computer hardware, ranging from mobile phones, tablet computers and video
game consoles, to mainframes and supercomputers. Linux is predominantly
known for its use in servers.

We will remove the sentence containing the words mobile phones. Use the following sed
expression for this task:

$ sed 's/ [^.]*mobile phones[^.]*\.//g' sentence.txt

Linux refers to the family of Unix-like computer operating systems
that use the Linux kernel. Linux is predominantly known for its use in
servers.

This recipe assumes that no sentence spans more than one line, for example,
a sentence should always begin and end on the same line in the text.

How it works...
Let's evaluate the sed regex 's/ [^.]*mobile phones[^.]*\.//g'. It has the format
's/substitution_pattern/replacement_string/g. It replaces every occurrence of
substitution_pattern with the replacement string.

Here, the substitution pattern is the regex for a sentence. Every sentence is delimited by ".",
and the first character is a space. Therefore, we need to match the text that is in the format
"space" some text MATCH_STRING some text "dot". A sentence may contain any
characters except a "dot", which is the delimiter. Hence, we have used [^.]. [^.]*matches
a combination of any characters except the dot. In between, the text match string "mobile
phones" is placed. Every match sentence is replaced by // (nothing).

See also
 f The Using sed to perform text replacement recipe in this chapter explains the

sed command

 f The Using regular expressions recipe in this chapter explains how to use
regular expressions

Texting and Driving

180

Replacing a pattern with text in all the files
in a directory

There will be numerous occasions when we will need to replace a particular text with a new
text in every file in a directory. An example would be changing a common URI everywhere in a
website's source directory. Using the shell for this is one of the quickest methods out there.

How to do it...
From what we have learnt up to now, we can first use find to locate the files we want to
perform the text replacement on. Then, we can use sed to do the actual replacement.

Let's say we want to replace the text Copyright with the word Copyleft in all .cpp files:

$ find . -name *.cpp -print0 | xargs -I{} -0 sed -i 's/Copyright/
Copyleft/g' {}

How it works...
We use find on the current directory to find all the files of .cpp, and use print0 to print
a null-separated list of files (recall that this helps, if the filenames have spaces in them).
We then pipe this list to xargs, which will pass these files to sed, which in turn will make
the modifications.

There's more...
If you recall, find has an option -exec, which can be used to run a command on each of the
files that find will match. We can use this option to achieve the same effect or replace the
text with a new one, as follows:

$ find . -name *.cpp -exec sed -i 's/Copyright/Copyleft/g' \{\} \;

Or:

$ find . -name *.cpp -exec sed -i 's/Copyright/Copyleft/g' \{\} \+

While they perform the same function, the first form will call sed once for every file that
is found, while in the second form, find will combine multiple filenames and pass them
together to sed.

Chapter 4

181

Text slicing and parameter operations
This recipe walks through some of the simple text-replacement techniques and parameter-
expansion shorthands available in Bash. A few simple techniques can often help us avoid
having to write multiple lines of code.

How to do it...
Let's get into the tasks.

Replacing some text from a variable can be done as follows:

$ var="This is a line of text"
$ echo ${var/line/REPLACED}
This is a REPLACED of text"

line is replaced with REPLACED.

We can produce a substring by specifying the start position and string length, by using the
following syntax:

${variable_name:start_position:length}

To print from the fifth character onwards, use the following command:

$ string=abcdefghijklmnopqrstuvwxyz
$ echo ${string:4}
efghijklmnopqrstuvwxyz

To print eight characters starting from the fifth character, use the following command:

$ echo ${string:4:8}
efghijkl

The index is specified by counting the start letter as 0. We can also specify counting from the
last letter as -1. It is used inside a parenthesis. (-1) is the index for the last letter:

echo ${string:(-1)}
z
$ echo ${string:(-2):2}
yz

See also
 f The Iterating through lines, words, and characters in a file recipe in this chapter

explains slicing of a character from a word

5
Tangled Web?

Not At All!

In this chapter, we will cover:

 f Downloading from a web page

 f Downloading a web page as plain text

 f A primer on cURL

 f Accessing unread Gmail e-mails from the command line

 f Parsing data from a website

 f Image crawler and downloader

 f Web photo album generator

 f Twitter command-line client

 f Creating a "define " utility by using the Web backend

 f Finding broken links in a website

 f Tracking changes to a website

 f Posting to a web page and reading response

Tangled Web? Not At All!

184

Introduction
The Web is becoming the face of technology and the central access point for data processing.
Though shell scripting cannot do everything that languages like PHP can do on the Web, there
are still many tasks to which shell scripts are ideally suited. In this chapter, we will explore
some recipes that can be used to parse website content, download and obtain data, send
data to forms, and automate website-usage tasks and similar activities. We can automate
many activities that we perform interactively through a browser with a few lines of scripting.
Access to the functionalities provided by the HTTP protocol with command-line utilities
enables us to write scripts that are suitable for solving most of the web-automation utilities.
Have fun while going through the recipes of this chapter.

Downloading from a web page
Downloading a file or a web page from a given URL is simple. A few command-line download
utilities are available to perform this task.

Getting ready
wget is a file download command-line utility. It is very flexible and can be configured with
many options.

How to do it...
A web page or a remote file can be downloaded by using wget, as follows:

$ wget URL

For example:

$ wget http://slynux.org

--2010-08-01 07:51:20-- http://slynux.org/

Resolving slynux.org... 174.37.207.60

Connecting to slynux.org|174.37.207.60|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 15280 (15K) [text/html]

Saving to: "index.html"

100%[======================================>] 15,280 75.3K/s in
0.2s

2010-08-01 07:51:21 (75.3 KB/s) - "index.html" saved [15280/15280]

Chapter 5

185

It is also possible to specify multiple download URLs, as follows:

$ wget URL1 URL2 URL3 ..

How it works...
Usually, files are downloaded with the same filename as in the URL, and the download log
information or progress is written to stdout.

You can specify the output filename with the -O option. If the file with the specified
filename already exists, it will be truncated first and the downloaded file will be written
to the specified file.

You can also specify a different logfile path rather than printing logs to stdout, by using
the -o option:

$ wget ftp://example_domain.com/somefile.img -O dloaded_file.img -o log

By using the preceding command, nothing will be printed on screen. The log or progress will
be written to the log, and the output file will be dloaded_file.img.

There is a chance that downloads might break due to unstable Internet connections. In that
case, we can use the number of tries as an argument so that once interrupted, the utility will
retry the download that many times before giving up.

To specify the number of tries, use the -t flag as follows:

$ wget -t 5 URL

Or to ask wget to keep trying infinitely, use -t as follows:

$ wget -t 0 URL

There's more...
The wget utility has several additional options that can be used under different problem
domains. Let us go through a few of them.

Restricting the download speed
When we have a limited Internet bandwidth and many applications are sharing the Internet
connection, and if a large file is given for download, it will suck all the bandwidth and may
cause other processes to starve for the bandwidth. The wget command comes with a built-in
option to specify the maximum bandwidth limit the download job can possess. Hence, all the
applications can simultaneously access the Internet fairly.

Tangled Web? Not At All!

186

We can restrict the speed limits in wget by using the --limit-rate argument as follows:

$ wget --limit-rate 20k http://example.com/file.iso

In this command, k (kilobyte) specifies the speed limit. You can also use m for megabyte.

We can also specify the maximum quota for the download. It will stop when the quota is
exceeded. It is useful when downloading multiple files, limited by the total download size.
This is useful to prevent the download from accidently using too much disk space.

Use --quota or -Q as follows:

$ wget -Q 100m http://example.com/file1 http://example.com/file2

Resume downloading and continue
If a download using wget gets interrupted before it is complete, we can resume the download
from where we left off by using the -c option as follows:

$ wget -c URL

Copying a complete website (mirroring)
wget has an option to download the complete website by recursively collecting all the URL
links in the web pages and downloading all of them like a crawler. Hence, we can completely
download all the pages of a website.

In order to download the pages, use the --mirror option as follows:

$ wget --mirror --convert-links exampledomain.com

Or use the following command:

$ wget -r -N -l -k DEPTH URL

-l specifies the depth of web pages as levels. This means it will traverse only that many
number of levels. It is used along with -r (recursive). The -N argument is used to enable time
stamping for the file. URL is the base URL for a website for which the download needs to be
initiated. The -k or --convert-links option instructs wget to convert the links to other
pages in a downloaded page, to the local copy of those pages.

Exercise discretion when mirroring other websites. Unless you
have permission, only perform this for your personal use and
don't do it too frequently.

Chapter 5

187

Accessing pages with HTTP or FTP authentication
Some web pages require authentication for HTTP or FTP URLs. It can be obtained by using the
--user and --password arguments:

$ wget --user username --password pass URL

It is also possible to ask for a password without specifying the password inline. For this, use
--ask-password instead of the --password argument.

Downloading a web page as plain text
Web pages are HTML pages that contain a collection of HTML tags, along with other elements,
such as JavaScript and CSS. Of these, the HTML tags define the content of a web page, which
we can parse to look for a specific content, and this is something Bash scripting can help
us with. When we download a web page, we receive an HTML file, and in order to view the
formatted page, it should be viewed in a web browser.

In most of the circumstances, parsing a text document will be easier than parsing HTML data
because we aren't required to strip off the HTML tags. Lynx is an interesting command-line
web browser, which can get the web page as plaintext. Let us see how to do it.

How to do it...
Let's download the webpage view, in ASCII character representation, in a text file by using the
-dump flag with the lynx command:

$ lynx URL -dump > webpage_as_text.txt

This command will also list all the hyperlinks () separately under a
heading References, as the footer of the text output. This will help us avoid parsing of
links separately by using regular expressions.

For example:

$lynx -dump http://google.com > plain_text_page.txt

You can see the plaintext version of text by using the cat command, as follows:

$ cat plain_text_page.txt

Tangled Web? Not At All!

188

A primer on cURL
cURL is a powerful utility that supports protocols, such as HTTP, HTTPS, and FTP. It supports
many features including POST, cookies, authentication, downloading partial files from a
specified offset, referer, user agent string, extra headers, limit speed, maximum file size,
progress bar, and so on. cURL is very useful when we play around with automating a web
page usage sequence, and to retrieve data. This recipe is a list of the most important
features of cURL.

Getting ready
cURL mostly doesn't come with any Linux distros; you may have to install it by using the
package manager. By default, distributions ship with wget.

cURL usually dumps the downloaded files to stdout, and progress information to stderr.
To avoid the progress information from being shown, we use the --silent option.

How to do it…
The curl command can be used to perform different activities, such as downloading, sending
different HTTP requests, and specifying HTTP headers. Let's see how we can perform different
tasks with cURL:

 f To dump the downloaded file onto the terminal (the downloaded data is written to
stdout, use the following command:
$ curl URL

 f To prevent the curl command from displaying the progress information,
mention --silent.
$ curl URL --silent

 f To write the downloaded data into a file with the filename parsed from the URL rather
than writing into the standard output, use the -O option:
$ curl URL --silent -O

 f To show the # progress bar while downloading, use --progress instead of
--silent:

$ curl http://slynux.org -o index.html --progress

################################## 100.0%

Chapter 5

189

How it works...
cURL writes a web page or file to the filename as in the URL, instead of writing to stdout.
If the filenames are not present in the URL, it will produce an error. Hence, make sure that
the URL is a URL to a remote file. curl http://slynux.org -O --silent will display
an error, since the filename cannot be parsed from the URL. In such cases, we can manually
specify the filename as follows, by using the -o option:

$ curl URL --silent -o new_filename

There's more...
In the preceding sections, we learned how to download files and dump HTML pages to the
terminal. There are several advanced options that come along with cURL. Let us explore
more of cURL.

Continuing and resuming downloads
cURL has advanced resume download features to continue at a given offset. It helps to
download portions of files by specifying an offset:

$ curl URL/file -C offset

The offset is an integer value in bytes.

cURL doesn't require us to know the exact byte offset, if we want to resume downloading a
file. If you want cURL to figure out the correct resume point, use the -C - option, as follows:

$ curl -C - URL

cURL will automatically figure out where to restart the download of the specified file.

Setting the referer string with cURL
Referer is a string in the HTTP header, used to identify the page from which the user reaches
the current web page. When a user clicks on a link on web page A to go to web page B, the
referer header string for page B will contain the URL of page A.

Some dynamic pages check the referer string before returning the HTML data. For example,
a web page shows a Google logo attached page when a user navigates to a website by
searching on Google, and shows a different page when the user navigates to the web
page by manually typing the URL.

The author of a website can write a condition to return a Google page if the referer is
www.google.com, or else return a different page.

Tangled Web? Not At All!

190

You can use --referer with the curl command to specify the referer string as follows:

$ curl --referer Referer_URL target_URL

For example:

$ curl --referer http://google.com http://slynux.org

Cookies with cURL
By using curl we can specify, as well as store, the cookies that are encountered during
HTTP operations.

To specify cookies, use the --cookie "COOKIES" option.

Cookies should be provided as name=value. Multiple cookies should be delimited by a
semicolon (;). For example:

$ curl http://example.com --cookie "user=slynux;pass=hack"

To specify a file to which the cookies encountered are to be stored, use the --cookie-jar
option. For example:

$ curl URL --cookie-jar cookie_file

Setting a user agent string with cURL
Some web pages that check the user agent won't work if there is no user agent specified. You
must have noticed that certain old websites work only on Internet Explorer (IE). If a different
browser is used, it will show a message that it will work only on IE. This is because the website
checks for a user agent. You can set the user agent with curl.

Using cURL it can be set using --user-agent or -A as follows:

$ curl URL --user-agent "Mozilla/5.0"

Additional headers can be passed with cURL. Use -H "Header" to pass multiple additional
headers. For example:

$ curl -H "Host: www.slynux.org" -H "Accept-language: en" URL

There are many different user agent strings across multiple browsers and
crawlers on the web. You can find a list of some of them at http://www.
useragentstring.com/pages/useragentstring.php.

Chapter 5

191

Specifying a bandwidth limit on cURL
When the available bandwidth is limited and multiple users are sharing the Internet, in order
to share bandwidth smoothly, we can limit the download rate to a specified limit in curl by
using the --limit-rate option, as follows:

$ curl URL --limit-rate 20k

In this command, k (kilobyte) specifies the download rate limit. You can also use m
for megabyte.

Specifying the maximum download size
The maximum download file size for cURL can be specified by using the -max-filesize
option as follows:

$ curl URL --max-filesize bytes

It will return a non-zero exit code if the file size exceeds. It will return zero if it succeeds.

Authenticating with cURL
HTTP authentication or FTP authentication can be done by using cURL with the -u argument.

The username and password can be specified by using -u username:password. It is
possible to not provide a password in such a way that it will prompt for the password while
executing. For example:

$ curl -u user:pass http://test_auth.com

If you prefer to be prompted for the password, you can do that by using only -u username.

$ curl -u user http://test_auth.com

Printing response headers excluding the data
It is useful to print only response headers to apply many checks or statistics. For example,
to check whether a page is reachable or not, we don't need to download the entire page
contents; just reading the HTTP response header can be used to identify whether a page is
available or not.

An example use case for checking the HTTP header, is to check the file size before
downloading. We can check the Content-length parameter in the HTTP header to find out
the length of a file before downloading. Also, several useful parameters can be retrieved from
the header. The Last-Modified parameter enables us to know the last modification time for
the remote file.

Tangled Web? Not At All!

192

Use the -I or -head option with curl to dump only the HTTP headers, without downloading
the remote file. For example:

$ curl -I http://slynux.org

HTTP/1.1 200 OK

Date: Sun, 01 Aug 2010 05:08:09 GMT

Server: Apache/1.3.42 (Unix) mod_gzip/1.3.26.1a mod_log_bytes/1.2
mod_bwlimited/1.4 mod_auth_passthrough/1.8 FrontPage/5.0.2.2635 mod_
ssl/2.8.31 OpenSSL/0.9.7a

Last-Modified: Thu, 19 Jul 2007 09:00:58 GMT

ETag: "17787f3-3bb0-469f284a"

Accept-Ranges: bytes

Content-Length: 15280

Connection: close

Content-Type: text/html

See also
 f The Posting to a web page and reading response recipe in this chapter

Accessing Gmail e-mails from the command
line

Gmail is a widely-used free e-mail service from Google—http://mail.google.com/. It
allows you to read your mail via authenticated RSS feeds. We can parse the RSS feeds with
the sender's name, and an e-mail with a subject. It will help us to have a look at the unread
e-mails in the inbox, without opening the web browser.

How to do it...
Let's go through the shell script to parse the RSS feeds for Gmail to display the unread mails:

#!/bin/bash
#Desc: Fetch gmail tool

username='PUT_USERNAME_HERE'
password='PUT_PASSWORD_HERE'

SHOW_COUNT=5 # No of recent unread mails to be shown

echo

Chapter 5

193

curl -u $username:$password --silent "https://mail.google.com/mail/
feed/atom" | \
tr -d '\n' | sed 's:</entry>:\n:g' |\
 sed -n 's/.*<title>\(.*\)<\/title.*<author><name>\([^<]*\)<\/
name><email>
\([^<]*\).*/From: \2 [\3] \nSubject: \1\n/p' | \
head -n $(($SHOW_COUNT * 3))

The output will be as follows:

$./fetch_gmail.sh

From: SLYNUX [slynux@slynux.com]

Subject: Book release - 2

From: SLYNUX [slynux@slynux.com]

Subject: Book release - 1

.

… 5 entries

If you are using a Google Mail account with two factor authentication,
you will have to generate a new key for this script and use it. Your
regular password won't work.

How it works...
The script uses cURL to download the RSS feed by using user authentication. User
authentication is provided by the -u user:pass argument. You can use -u user without
providing the password. Then, while executing cURL, it will interactively ask for the password.
Here, you can split the piped commands into different blocks to illustrate how they work.

tr -d '\n' removes the newline character, so that we restructure each e-mail entry with \n
as the delimiter.

sed 's:</entry>:\n:g' replaces every </entry> element with a newline, so that each
e-mail entry is delimited by a new line and, hence, mails can be parsed one-by-one. Have a
look at the source of https://mail.google.com/mail/feed/atom for XML tags used
in the RSS feeds. <entry> TAGS </entry> corresponds to a single mail entry.

Tangled Web? Not At All!

194

The next block of script is as follows:

 sed 's/.*<title>\(.*\)<\/title.*<author><name>\([^<]*\)<\/
name><email>
\([^<]*\).*/Author: \2 [\3] \nSubject: \1\n/'

This script matches the substring title by using <title>\(.*\)<\/title, the sender name
by using <author><name>\([^<]*\)<\/name>, and e-mail by using <email>\([^<]*\).
Then back referencing is used as follows:

Author: \2 [\3] \nSubject: \1\n

This is to replace an entry for a mail with the matched items in an easy-to-read format. \1
corresponds to the first substring match, \2 for the second substring match, and so on.

The SHOW_COUNT=5 variable is used to take the number of unread mail entries to be printed
on the terminal.

head is used to display only the SHOW_COUNT*3 lines from the first line. SHOW_COUNT is
multiplied by three in order to show three lines of the output.

See also
 f The A primer on cURL recipe in this chapter explains the curl command

 f The Basic sed primer recipe in this chapter explains the sed command

Parsing data from a website
It is often useful to parse data from web pages by eliminating unnecessary details. sed and
awk are the main tools that we will use for this task. You might have come across a list of
actress rankings in a grep recipe in the Chapter 4, Texting and driving; it was generated by
parsing the website page http://www.johntorres.net/BoxOfficefemaleList.html.

Let us see how we can parse the same data by using text-processing tools.

How to do it...
Let's go through the commands used to parse details of actresses from the website:

$ lynx -dump -nolist http://www.johntorres.net/BoxOfficefemaleList.html
| \

grep -o "Rank-.*" | \

sed -e 's/ *Rank-\([0-9]*\) *\(.*\)/\1\t\2/' | \

sort -nk 1 > actresslist.txt

Chapter 5

195

The output will be as follows:

Only 3 entries shown. All others omitted due to space limits

1 Keira Knightley

2 Natalie Portman

3 Monica Bellucci

How it works...
Lynx is a command-line web browser—it can dump a text version of a website as we would
see in a web browser, rather than showing us the raw code. Hence, we can avoid the job
of removing the HTML tags. We use the -nolist option for lynx, as we don't need the
numbers that it adds automatically with each link. Parsing and formatting the lines that
contain Rank is done by using sed, as follows:

sed -e 's/ *Rank-\([0-9]*\) *\(.*\)/\1\t\2/'

These lines are then sorted according to the ranks.

See also
 f The Basic sed primer recipe in this chapter explains the sed command

 f The Downloading a web page as plain text recipe in this chapter explains the
lynx command

Image crawler and downloader
Image crawlers are very useful when we need to download all the images that appear in a
web page. Instead of going through the HTML sources and picking all the images, we can use
a script to parse the image files and download them automatically. Let's see how to do it.

How to do it...
Let's write a Bash script to crawl and download the images from a web page, as follows:

#!/bin/bash
#Desc: Images downloader
#Filename: img_downloader.sh

if [$# -ne 3];
then
 echo "Usage: $0 URL -d DIRECTORY"
 exit -1

Tangled Web? Not At All!

196

fi

for i in {1..4}
do
 case $1 in
 -d) shift; directory=$1; shift ;;
 *) url=${url:-$1}; shift;;
 esac
done

mkdir -p $directory;
baseurl=$(echo $url | egrep -o "https?://[a-z.]+")

echo Downloading $url
curl -s $url | egrep -o "]*>" |
sed 's/ /tmp/$$.list

sed -i "s|^/|$baseurl/|" /tmp/$$.list

cd $directory;

while read filename;
do
 echo Downloading $filename
 curl -s -O "$filename" --silent

done < /tmp/$$.list

An example usage is as follows:

$./img_downloader.sh http://www.flickr.com/search/?q=linux -d images

How it works...
The preceding image downloader script parses an HTML page, strips out all tags except
, then parses src="URL" from the tag, and downloads them to the specified
directory. This script accepts a web page URL and the destination directory path as command-
line arguments. The [$# -ne 3] statement checks whether the total number of
arguments to the script is three, otherwise it exits and returns a usage example.

Chapter 5

197

If there are three arguments, we parse the URL and destination directory. This is done
as follows:

while [-n "$1"]

do

 case $1 in

 -d) shift; directory=$1; shift ;;

 *) url=${url:-$1}; shift;;

esac

done

A while loop is used. It runs as long as there are more arguments to be processed. The
case statement will evaluate the first argument ($1), and matches -d or any other string
arguments are checked. The advantage of parsing arguments in this way is that we can place
the -d argument anywhere in the command line:

$./img_downloader.sh -d DIR URL

Or:

$./img_downloader.sh URL -d DIR

shift is used to shift arguments to the left in such a way that when shift is called, $1 will
take the next argument's value; that is, $2, and so on. Hence, we can evaluate all arguments
through $1 itself.

When -d is matched, it is obvious that the next argument is the value for the destination
directory. *) corresponds to a default match. It will match anything other than -d. Hence,
while iteration $1="" or $1=URL in the default match, we need to take $1=URL, avoiding ""
to overwrite. Hence, we use the expression url=${url:-$1}. It will return a URL value if
already not "", otherwise it will assign $1.

egrep -o "]*>" will print only the matching strings, which are the
tags including their attributes. [^>]* is used to match all the characters except the closing >,
that is, .

sed 's/<img src=\"\([^"]*\).*/\1/g' parses src="url", so that all the image
URLs can be parsed from the tags already parsed.

There are two types of image source paths—relative and absolute. Absolute paths contain
full URLs that start with http:// or https://. Relative URLs starts with / or image_name
itself. An example of an absolute URL is http://example.com/image.jpg. An example of
a relative URL is /image.jpg.

Tangled Web? Not At All!

198

For relative URLs, the starting / should be replaced with the base URL to transform it to
http://example.com/image.jpg. For this transformation, we initially find out baseurl
by parsing, and then in every URL that starts with /, we replace it with baseurl:

"s|^/|$baseurl/|" /tmp/$$.list

Then, a while loop is used to iterate each line of the list and download the images by using
curl. The --silent argument is used with curl to avoid extra progress messages from
being printed on the screen.

See also
 f The A primer on curl recipe in this chapter explains the curl command

 f The Basic sed primer recipe in this chapter explains the sed command

 f The Searching and mining *test* inside a file with grep recipe in this chapter
explains the grep command

Web photo album generator
Web developers commonly design photo album pages for websites that consist of a number
of image thumbnails on the page. When thumbnails are clicked, a large version of the picture
will be displayed. However, to do this, many images are required. Afterwards, copying the
 tags, resizing the image to create a thumbnail, placing them in the thumbs directory,
and so on, is a real hurdle. As with any repetitive task, this can be automated easily by writing
a simple bash script. By writing a script, we can create thumbnails, place them in exact
directories, and generate the code fragment for tags automatically in few seconds.
This recipe will do exactly this.

Getting ready
We can perform this task with a for loop that iterates every image in the current directory.
The usual Bash utilities such as cat and convert (from the Image Magick package) are
used. These will generate an HTML album, using all the images, to index.html.

How to do it...
Let's write a Bash script to generate an HTML album page:

#!/bin/bash
#Filename: generate_album.sh
#Description: Create a photo album using images in current directory

echo "Creating album.."

Chapter 5

199

mkdir -p thumbs
cat <<EOF1 > index.html
<html>
<head>
<style>

body
{
 width:470px;
 margin:auto;
 border: 1px dashed grey;
 padding:10px;
}

img
{
 margin:5px;
 border: 1px solid black;

}
</style>
</head>
<body>
<center><h1> #Album title </h1></center>
<p>
EOF1

for img in *.jpg;
do
 convert "$img" -resize "100x" "thumbs/$img"
 echo "</
a>" >> index.html
done

cat <<EOF2 >> index.html

</p>
</body>
</html>
EOF2

echo Album generated to index.html

Tangled Web? Not At All!

200

Run the script as follows:

$./generate_album.sh

Creating album..

Album generated to index.html

How it works...
The initial part of the script is used to write the header part of the HTML page.

The following script redirects all the contents up to EOF1 to index.html:

cat <<EOF1 > index.html
contents...
EOF1

The header includes the HTML and CSS styling.

Chapter 5

201

for img in *.jpg *.JPG; will iterate through the names of each file and will perform the
necessary actions.

convert "$img" -resize "100x" "thumbs/$img" will create images of 100 px width
as thumbnails.

The following statement will generate the required tag and append it to index.html:

echo "</
a>" >> index.html

Finally, the footer HTML tags are appended with cat as well.

See also
 f The Playing with file descriptors and redirection recipe in this chapter explains EOF

and stdin redirection

Twitter command-line client
Twitter is the hottest micro-blogging platform, as well as the latest buzz of the online social
media now. We can use Twitter API to read tweets on our timeline from the command line!
Let us see how to do it.

Getting ready
Recently, Twitter has stopped allowing people to log in by using plain HTTP Authentication, and
we must use OAuth to authenticate ourselves. A full explanation of OAuth is out of the scope
of this book, so we will use a library which makes it easy to use OAuth from bash scripts.
Perform the following steps:

1. Download the bash-oauth library from https://github.com/livibetter/
bash-oauth/archive/master.zip, and unzip it to any directory

2. Go to that directory and then inside the subdirectory bash-oauth-master, run
make install-all as root.

Tangled Web? Not At All!

202

3. Go to https://dev.twitter.com/apps/new and register a new app. This will
make it possible to use OAuth:

Chapter 5

203

4. After registering the new app, go to your app's settings and change Access type to
Read and Write:

Tangled Web? Not At All!

204

5. Now, go to the Details section of the app and note two things—Consumer Key and
Consumer Secret, so that you can substitute these in the script we are going to write:

Great, now let us write the script that uses this.

How to do it...
Let's write a Bash script by using the library:

#!/bin/bash
#Filename: twitter.sh
#Description: Basic twitter client

oauth_consumer_key=YOUR_CONSUMER_KEY

Chapter 5

205

oauth_consumer_secret=YOUR_CONSUMER_SECRET
config_file=~/.$oauth_consumer_key-$oauth_consumer_secret-rc

if [["$1" != "read"]] && [["$1" != "tweet"]];
then
 echo -e "Usage: $0 tweet status_message\n OR\n $0 read\n"
 exit -1;
fi

source TwitterOAuth.sh
TO_init

if [! -e $config_file]; then
 TO_access_token_helper
 if (($? == 0)); then
 echo oauth_token=${TO_ret[0]} > $config_file
 echo oauth_token_secret=${TO_ret[1]} >> $config_file
 fi
fi

source $config_file

if [["$1" = "read"]];
then
 TO_statuses_home_timeline '' 'shantanutushar' '10'
 echo $TO_ret | sed 's/<\([a-z]\)/\n<\1/g' | \
grep -e '^<text>' -e '^<name>' | sed 's/<name>/\ - by /g' | \
sed 's$</*[a-z]*>$$g'

elif [["$1" = "tweet"]];
then
 shift
 TO_statuses_update '' "$@"
 echo 'Tweeted :)'
fi

Run the script as follows:

$./twitter.sh read

Please go to the following link to get the PIN: https://api.twitter.com/
oauth/authorize?oauth_token=GaZcfsdnhMO4HiBQuUTdeLJAzeaUamnOljWGnU

PIN: 4727143

Now you can create, edit and present Slides offline.

 - by A Googler

Tangled Web? Not At All!

206

$./twitter.sh tweet "I am reading Packt Shell Scripting Cookbook"

Tweeted :)

$./twitter.sh read | head -2

I am reading Packt Shell Scripting Cookbook

 - by Shantanu Tushar Jha

How it works...
First of all, we use the source command to include the TwitterOAuth.sh library, so we
can use its functions to easily access Twitter. We are required to call the TO_init function,
so the library can initialize itself.

Now, every app needs to get an OAuth token and token secret the first time a user uses it. We
check if we have already got these; if not, we use the library function TO_access_token_
helper, which will let us get these. Once we have these, we save these to a config file, so
we can simply source it the next time the script is run.

To read the tweets, we use the library function TO_statuses_home_timeline, which
fetches the tweets from Twitter, and sets the XML into a variable TO_ret. We then use sed
to put a newline for each tag, filter out only the <text> and <name> tags, and then finally
remove the tags and replace with user-friendly text.

To post a new tweet, we use the library function TO_statuses_update, to which we pass an
empty first parameter, which tells it to use the default format, and then we pass the message
as a part of the second parameter.

See also
 f The Basic sed primer recipe in this chapter explains the sed command

 f The Searching and mining text inside a file with grep recipe in this chapter explains
the grep command

Creating a "define" utility by using the Web
backend

There are a lot of dictionaries on the Web that offer APIs that can be used to get a
machine-readable definition of words. Let us use one of the APIs and see how to
write a define script.

Chapter 5

207

Getting ready
We are going to use curl, sed, and grep to write the define utility. There are a lot of
dictionary websites, where you can register and use their APIs for personal use for free. In this
example, we are using Merriam-Webster's dictionary API. Please perform the following steps:

1. Go to http://www.dictionaryapi.com/register/index.htm, and register
an account for yourself. Select Collegiate Dictionary and Learner's Dictionary:

Tangled Web? Not At All!

208

2. Log in using the newly created account and go to My Keys to access the keys.
Note down the key for the learner's dictionary:

How to do it...
Let's go through the code for the define utility script:

#!/bin/bash
#Filename: define.sh
#Desc: A script to fetch definitions from dictionaryapi.com

apikey=YOUR_API_KEY_HERE

if [$# -ne 2];
then
 echo -e "Usage: $0 WORD NUMBER"
 exit -1;
fi

curl --silent http://www.dictionaryapi.com/api/v1/references/learners/
xml/$1?key=$apikey | \
grep -o \<dt\>.*\</dt\> | \
sed 's$</*[a-z]*>$$g' | \
head -n $2 | nl

Chapter 5

209

Run the script as follows:

$./define.sh usb 1

 1 :a system for connecting a computer to another device (such as a
printer, keyboard, or mouse) by using a special kind of cord a USB cable/
port USB is an abbreviation of "Universal Serial Bus."How it works...

How it works...
We use curl to fetch the data from the dictionary API webpage by specifying our API Key
($apikey), and the word that we want the definition for ($1). The result contains definitions
in the <dt> tags, which we select by using grep and then we remove the tags by using sed.
We then pick the required number of lines from the definitions and use nl to put the line
numbers in each line.

See also
 f The Basic sed primer recipe in this chapter explains the sed command

 f The Searching and mining text inside a file with grep recipe in this chapter explains
the grep command

Finding broken links in a website
Some people manually check every page on a website to search for broken links. It is feasible
for websites having very few pages, but gets difficult when the number of pages become large.
It becomes really easy if we can automate the process of finding broken links. We can find the
broken links by using HTTP manipulation tools. Let's see how to do it.

Getting ready
To identify the links and find the broken ones from the links, we can use lynx and curl. It
has an option, namely -traversal, which will recursively visit pages on the website and
build a list of all hyperlinks in the website. We can use cURL to verify each of the links for
whether they're broken or not.

Tangled Web? Not At All!

210

How to do it...
Let's write a Bash script with the help of the curl command to find out the broken links on a
web page:

#!/bin/bash
#Filename: find_broken.sh
#Desc: Find broken links in a website

if [$# -ne 1];
then
 echo -e "$Usage: $0 URL\n"
 exit 1;
fi

echo Broken links:

mkdir /tmp/$$.lynx
cd /tmp/$$.lynx

lynx -traversal $1 > /dev/null
count=0;

sort -u reject.dat > links.txt

while read link;
do
 output=`curl -I $link -s | grep "HTTP/.*OK"`;
 if [[-z $output]];
 then
 echo $link;
 let count++
 fi
done < links.txt

[$count -eq 0] && echo No broken links found.

Chapter 5

211

How it works...
lynx -traversal URL will produce a number of files in the working directory. It includes
a file reject.dat, which will contain all the links in the website. sort -u is used to build a
list by avoiding duplicates. Then, we iterate through each link and check the header response
by using curl -I. If the header contains the first line to have HTTP/1.0 200 OK as the
response, it means that the target is not broken. All other responses corresponding to the
broken links are printed on the screen.

From its name, it might seem like reject.dat should contain a list
of URLs, which were broken or unreachable. However, this is not the
case, and lynx just adds all the URLs there.
Also note that lynx generates a file called traverse.errors,
which contains all the URLs that had problems in browsing.
However, lynx will only add URLs which return HTTP 404 (not
found), and so we will lose other errors (for instance, HTTP 403
Forbidden). This is why we manually check for statuses.

See also
 f The Downloading web page as formatted plain text recipe in this chapter explains the

lynx command

 f The A primer on cURL recipe in this chapter explains the curl command

Tracking changes to a website
Tracking changes to a website is helpful to web developers and users. Checking a website
manually in intervals is really hard and impractical. Hence, we can write a change tracker
running at repeated intervals. When a change occurs, it can play an audio or send some
other notification. Let us see how to write a basic tracker for the website changes.

Getting ready
Tracking changes in terms of Bash scripting means fetching websites at different times and
taking the difference by using the diff command. We can use curl and diff to do this.

Tangled Web? Not At All!

212

How to do it...
Let's write a Bash script by combining different commands, to track changes in a web page:

#!/bin/bash
#Filename: change_track.sh
#Desc: Script to track changes to webpage

if [$# -ne 1];
then
 echo -e "$Usage: $0 URL\n"
 exit 1;
fi

first_time=0
Not first time

if [! -e "last.html"];
then
 first_time=1
 # Set it is first time run
fi

curl --silent $1 -o recent.html

if [$first_time -ne 1];
then
 changes=$(diff -u last.html recent.html)
 if [-n "$changes"];
 then
 echo -e "Changes:\n"
 echo "$changes"
 else
 echo -e "\nWebsite has no changes"
 fi
else
 echo "[First run] Archiving.."

fi

cp recent.html last.html

Chapter 5

213

Let's look at the output of the track_changes.sh script when changes are made to the
webpage and when the changes are not made to the page:

 f First, run the following command:
$./track_changes.sh http://web.sarathlakshman.info/test.html

[First run] Archiving..

 f Second, run the following command:
$./track_changes.sh http://web.sarathlakshman.info/test.html

Website has no changes

 f Third, run the following command after making changes to the web page:

$./test.sh http://web.sarathlakshman.info/test_change/test.html

Changes:

--- last.html 2010-08-01 07:29:15.000000000 +0200

+++ recent.html 2010-08-01 07:29:43.000000000 +0200

@@ -1,3 +1,4 @@

<html>

+added line :)

<p>data</p>

</html>

How it works...
The script checks whether the script is running for the first time by using [! -e "last.
html"];. If last.html doesn't exist, it means that it is the first time and, hence, the
webpage must be downloaded and copied as last.html.

If it is not the first time, it should download the new copy (recent.html) and check the
difference by using the diff utility. If there are changes, it should print the changes and
finally, copy recent.html to last.html.

See also
 f The A primer on cURL recipe in this chapter explains the curl command

Tangled Web? Not At All!

214

Posting to a web page and reading the
response
POST and GET are two types of requests in HTTP to send information to, or retrieve
information from a website. In a GET request, we send parameters (name-value pairs) through
the webpage URL itself. In the case of POST, it won't be attached with the URL. POST is used
when a form needs to be submitted. For example, a username, the password to be submitted,
and the login page to be retrieved.

Posting to pages is used frequently while writing scripts based on webpage retrievals. Let
us see how to work with POST. Automating the HTTP GET and POST request by sending the
POST data and retrieving the output is a very important task that we practice while writing
shell scripts that parse data from websites.

Getting ready
For this recipe, we will use a test website (http://book.sarathlakshman.com/lsc/
mlogs/), which is used to submit the current user information, such as the hostname and
username. In the home page of the website, there are two fields HOSTNAME and USER, and
a SUBMIT button. When the user enters a hostname, a user name, and clicks on the Submit
button, the details will be stored in the website. This process can be automated by using a
single line of curl (or wget) command by automating the POST request. Let's see how to do
this by using curl or wget.

How to do it...
POST and read the HTML response from a real website using curl as follows:

$ curl URL -d "postvar=postdata2&postvar2=postdata2"

For example,

$ curl http://book.sarathlakshman.com/lsc/mlogs/submit.php -d "host=test-
host&user=slynux"

<html>

You have entered :

<p>HOST : test-host</p>

<p>USER : slynux</p>

<html>

curl prints the response page.

-d is the argument used for posting. The string argument for -d is similar to the GET request
semantics. var=value pairs are to be delimited by &.

Chapter 5

215

You can POST the data using wget by using --post-data "string". For example:

$ get http://book.sarathlakshman.com/lsc/mlogs/submit.php --post-data
"host=test-host&user=slynux" -O output.html

$ cat output.html

<html>

You have entered :

<p>HOST : test-host</p>

<p>USER : slynux</p>

<html>

Use the same format as cURL for name-value pairs.

The string to the post arguments (for example, to -d or --post-data)
should always be given in quotes. If quotes are not used, & is interpreted by
the shell to indicate that this should be a background process.

How it works...
If you look at the website source (use the View Source option from the web browser), you will
see an HTML form defined, similar to the following code:

<form action="http://book.sarathlakshman.com/lsc/mlogs/submit.php"
method="post" >

<input type="text" name="host" value="HOSTNAME" >
<input type="text" name="user" value="USER" >
<input type="submit" >
</form>

Here, http://book.sarathlakshman.com/lsc/mlogs/submit.php is the target
URL. When the user enters the details and clicks on the Submit button, the host and user
inputs are sent to submit.php as a POST request, and the response page is returned on
the browser.

See also
 f The A primer on cURL recipe in this chapter explains the curl command

 f The Download a file from a website recipe in this chapter explains the
wget command

6
The Backup Plan

In this chapter, we will cover:

 f Archiving with tar

 f Archiving with cpio

 f Compressing data with gzip

 f Archiving and compressing with zip

 f Faster archiving with pbzip2

 f Creating filesystems with compression

 f Backup snapshots with rsync

 f Version control-based backup with Git

 f Creating entire disk images using fsarchiver

Introduction
Taking snapshots and backups of data are regular tasks we come across and they are even
more important when it comes to a server or large data storage systems. Shell scripting is
one of the easiest ways to automate such backups, because if not automated they aren't very
useful. Also, it is desirable to use various compression formats so that we don't create large
backups. Encryption is another task that comes under frequent usage for protection of data.
It is also important to note that in order to reduce the size of data to encrypted, usually files
are archived and compressed before encrypting. Many standard encryption algorithms are
available and can be handled with shell utilities. This chapter walks through different recipes
for creating and maintaining files or folder archives, compression formats, and encrypting
techniques with shell. Let's go through the recipes.

The Backup Plan

218

Archiving with tar
The tar command can be used to archive files, originally designed for storing data on Tape
archives. It allows you to store multiple files and directories as a single file while retaining
all the file attributes, such as owner, permissions, and so on. The file created by the tar
command is often referred to as a tarball. In this recipe, we will learn how to create archives
using tar.

Getting ready
The tar command comes by default with all Unix-like operating systems. It has a simple
syntax and is a portable file format. It supports these arguments: A, c, d, r, t, u, x, f, and v.
Each of these options can be used independently for different purposes corresponding to it.

How to do it...
We can use tar to create archives, and perform operations on existing archives. Let's see how:

1. To archive files with tar, use the following syntax:
$ tar -cf output.tar [SOURCES]

For example:

$ tar -cf output.tar file1 file2 file3 folder1 ..

2. To list files in an archive, use the -t option:
$ tar -tf archive.tar

file1

file2

3. In order to print more details while archiving or listing, use the -v or the -vv flag.
This feature is called verbose (v), which for most of the commands will turn on
printing more details on the terminal. For example, using verbose you could print
more details, such as file permissions, owner group, modification date, and so on:

$ tar -tvf archive.tar

-rw-rw-r-- shaan/shaan 0 2013-04-08 21:34 file1

-rw-rw-r-- shaan/shaan 0 2013-04-08 21:34 file2

Chapter 6

219

The file name must appear immediately after the -f and it should be the last
option in the argument group. For example, if you want verbose output, you
should use the options like this:
$ tar -cvf output.tar file1 file2 file3 folder1 ..

How it works...
In this command, -c stands for "create file" and -f stands for "specify filename".

We can specify folders and filenames as SOURCES. We can use a list of file names or
wildcards such as *.txt to specify the sources. When finished, tar will archive the source
files into a file called output.tar.

We cannot pass hundreds of files or folders as command-line arguments because there is a
limit. So, it is safer to use the append option (see below) if many files are to be archived.

There's more...
Let's go through additional features that are available with the tar command.

Appending files to an archive
Sometimes we may need to add files to an archive that already exists, we can use the append
option -r for this.

In order to append a file into an already existing archive use:

$ tar -rvf original.tar new_file

Let's create an archive with one text file in it:

$ tar -cf archive.tar hello.txt

To list the files present in the archive, use:

$ tar -tf archive.tar

hello.txt

Now add another file to the archive and list its contents again:

$ tar -rf archive.tar world.txt

$ tar -tf archive.tar

hello.txt

world.txt

The archive now contains both the files.

The Backup Plan

220

Extracting files and folders from an archive
The following command extracts the contents of the archive to the current directory:

$ tar -xf archive.tar

The -x option stands for extract.

When -x is used, the tar command extracts the contents of the archive to the current
directory. We can also specify the directory where the files need to be extracted by using the
-C flag, as follows:

$ tar -xf archive.tar -C /path/to/extraction_directory

The command extracts the contents of an archive to a specified directory. It extracts the
entire contents of the archive. We can also extract only a few files by specifying them as
command arguments:

$ tar -xvf file.tar file1 file4

The command above extracts only file1 and file4, and ignores other files in the archive.

stdin and stdout with tar
While archiving, we can specify stdout as the output file so that another command
appearing through a pipe can read it as stdin and then do some process or extract
the archive.

This is very helpful in order to transfer data through a Secure Shell (SSH) connection (while on
a network). For example:

$ tar cvf - files/ | ssh user@example.com "tar xv -C Documents/"

In the preceding example, the directory files/ is added to a tar archive which is output to
stdout (denoted by '-')

Concatenating two archives
We can easily merge multiple tar files with the -A option.

Let's pretend we have two tarballs: file1.tar and file2.tar. We can merge the contents
of file2.tar to file1.tar as follows:

$ tar -Af file1.tar file2.tar

Verify it by listing the contents:

$ tar -tvf file1.tar

Chapter 6

221

Updating files in an archive with a timestamp check
The append option appends any given file to the archive. If the same file is inside the archive
is given to append, it will append that file and the archive will contain duplicates. We can
use the update option -u to specify only append files that are newer than the file inside the
archive with the same name.

$ tar -tf archive.tar

filea

fileb

filec

This command lists the files in the archive.

To append filea only if filea has been modified since the last time it was added to
archive.tar, use:

$ tar -uf archive.tar filea

Nothing happens if the version of filea outside the archive and the filea inside archive.
tar have the same timestamp.

Use the touch command to modify the file timestamp and then try the tar command again:

$ tar -uvvf archive.tar filea

-rw-r--r-- slynux/slynux 0 2010-08-14 17:53 filea

The file is appended since its timestamp is newer than the one inside the archive. Let's
verify that:

$ tar -tf archive.tar

-rw-r--r-- slynux/slynux 0 2010-08-14 17:52 filea

-rw-r--r-- slynux/slynux 0 2010-08-14 17:52 fileb

-rw-r--r-- slynux/slynux 0 2010-08-14 17:52 filec

-rw-r--r-- slynux/slynux 0 2010-08-14 17:53 filea

As you can notice, a new filea has been appended to the tar archive. While extracting this
archive, tar will pick up the latest version of filea.

The Backup Plan

222

Comparing files in the archive and file system
Sometimes it is useful to know whether files in the archive and the files with the same
filename in the filesystem are the same or contain any differences. The -d flag can be
used to print the differences:

$ tar -df archive.tar

afile: Mod time differs

afile: Size differs

Deleting files from the archive
We can remove files from a given archive using the -delete option. For example:

$ tar -f archive.tar --delete file1 file2 ..

Or,

$ tar --delete --file archive.tar [FILE LIST]

Let's see an example:

$ tar -tf archive.tar

filea

fileb

filec

Now let's delete filea:

$ tar --delete --file archive.tar filea

$ tar -tf archive.tar

fileb

filec

Compression with the tar archive
The tar command only archives files, it does not compress them. For this reason, most
people usually add some form of compression when working with tarballs. This can
significantly decrease the size of the files. Tarballs are often compressed into one of
the following formats:

 f file.tar.gz

 f file.tar.bz2

 f file.tar.lzma

Chapter 6

223

Different tar flags are used to specify different compression formats:

 f -j for bunzip2

 f -z for gzip

 f --lzma for lzma

They are explained in the following compression-specific recipes.

It is possible to use compression formats without explicitly specifying special options as
above. tar can compress by looking at the given extension of the output or input file names.
In order for tar to support compression automatically by looking at the extensions, use -a or
--auto-compress with tar:

$ tar acvf archive.tar.gz filea fileb filec

filea

fileb

filec

$ tar tf archive.tar.gz

filea

fileb

filec

Excluding a set of files from archiving
It is possible to exclude a set of files from archiving by specifying patterns.Use --exclude
[PATTEN] for excluding files matched by wildcard patterns.

For example, to exclude all .txt files from archiving use:

$ tar -cf arch.tar * --exclude "*.txt"

Note, that the pattern should be enclosed within quotes to prevent
the shell from expanding it.

The Backup Plan

224

It is also possible to exclude a list of files provided in a list file with the -X flag as follows:

$ cat list

filea

fileb

$ tar -cf arch.tar * -X list

Now it excludes filea and fileb from archiving.

Excluding version control directories
We usually use tarballs for distributing source code. In general, most source code is
maintained using version control systems such as subversion, Git, mercurial, cvs, and so
on. Code directories under version control will contain special directories used to manage
versions like .svn or .git. However, these directories aren't needed by the code itself
and so should be eliminated from the tarball of the source code.

In order to exclude version control related files and directories while archiving use the
--exclude-vcs option along with tar. For example:

$ tar --exclude-vcs -czvvf source_code.tar.gz eye_of_gnome_svn

Printing total bytes
It is sometimes useful if we can print total bytes copied to the archive. To print the total bytes
copied after archiving use the --totals option as follows:

$ tar -cf arc.tar * --exclude "*.txt" --totals

Total bytes written: 20480 (20KiB, 12MiB/s)

See also
 f Compressing with gzip, explains the gzip command

Archiving with cpio
cpio is another archiving format similar to tar. It is used to store files and directories in a
file with attributes such as permissions, ownership, and so on. But, it is not commonly used
as much as tar. However, cpio is used in RPM package archives (which are used in distros
such as Fedora), initramfs files for the Linux kernel which contain the kernel image, and so on.
This recipe will give minimal usage examples of cpio.

Chapter 6

225

How to do it...
cpio takes input filenames through stdin and it writes the archive into stdout. We have to
redirect stdout to a file to receive the output cpio file as follows:

1. Create test files:
$ touch file1 file2 file3

2. We can archive the test files as follows:
$ echo file1 file2 file3 | cpio -ov > archive.cpio

3. In order to list files in a cpio archive use the following command:
$ cpio -it < archive.cpio

4. In order to extract files from the cpio archive use:

$ cpio -id < archive.cpio

How it works...
For the archiving command:

 f -o specifies the output

 f -v is used for printing a list of files archived

By using cpio, we can also archive using files as absolute paths.
/usr/somedir is an absolute path as it contains the full path
starting from root (/).
A relative path will not start with / but it starts the path from the
current directory. For example, test/file means that there is a
directory test and the file is inside the test directory.
While extracting, cpio extracts to the absolute path itself. But in
case of tar it removes the / in the absolute path and converts it as
a relative path.

In the command for listing all the files in the given cpio archive:

 f -i is for specifying the input

 f -t is for listing

While using the command for extraction, -d stands for extracting and cpio overwrites files
without prompting.

The Backup Plan

226

Compressing data with gzip
gzip is a commonly used compression format in the GNU/Linux platform. It is one of the
utilities (such as gzip, gunzip, and zcat) that handle gzip compression. However, gzip can
be applied only on a single file or data stream. This means that it cannot archive directories
and multiple files. Hence, we must first create a tar archive and compress it with gzip. Let's
see how to operate with gzip.

How to do it...
gzip can be used both to compress files and decompress them back to the original:

1. In order to compress a file with gzip use the following command:
$ gzip filename

$ ls

filename.gz

2. Extract a gzip compressed file as follows:
$ gunzip filename.gz

$ ls

file

3. In order to list out the properties of a compressed file use:
$ gzip -l test.txt.gz

compressed uncompressed ratio uncompressed_name

 35 6 -33.3% test.txt

4. The gzip command can read a file from stdin and also write a compressed file
into stdout.

Read data from stdin and output the compressed data to stdout as follows:
$ cat file | gzip -c > file.gz

The -c option is used to specify output to stdout.

5. We can specify the compression level for gzip using --fast or the--best option to
provide low and high compression ratios, respectively.

Chapter 6

227

There's more...
The gzip command is often used with other commands and also has advanced options to
specify the compression ratio. Let's see how to work with these features.

Gzip with tarball
A gzipped tarball is basically a tar archive compressed using gzip. We can use two methods to
create such tarballs:

 f The first method is as follows:
$ tar -czvvf archive.tar.gz [FILES]

or
$ tar -cavvf archive.tar.gz [FILES]

The -a option specifies that the compression format should automatically be
detected from the extension.

 f Alternatively, here's the second method:

First, create a tarball:
$ tar -cvvf archive.tar [FILES]

Compress the tarball as follows:

$ gzip archive.tar

If many files (a few hundreds) are to be archived in a tarball and need to be compressed,
we use the second method with few changes. The issue with giving many files as command
arguments to tar is that it can accept only a limited number of files from the command line.
In order to solve this issue, we can create a tar file by adding files one by one using a loop
with an append option (-r) as follows:

FILE_LIST="file1 file2 file3 file4 file5"

for f in $FILE_LIST;
do
tar -rvf archive.tar $f
done

gzip archive.tar

The Backup Plan

228

In order to extract a gzipped tarball, use the following command:

$ tar -xavvf archive.tar.gz -C extract_directory

In the above command, the -a option is used to detect the compression format automatically.

zcat - reading gzipped files without extracting
zcat is a command that can be used to dump an extracted file from a .gz file to stdout
without manually extracting it. The .gz file remains as before but it will dump the extracted
file into stdout as follows:

$ ls

test.gz

$ zcat test.gz

A test file

file test contains a line "A test file"

$ ls

test.gz

Compression ratio
We can specify the compression ratio, which is available in range 1 to 9, where:

 f 1 is the lowest, but fastest

 f 9 is the best, but slowest

You can specify any ratio in that range as follows:

$ gzip -5 test.img

This should give a good balance between compression speed and ratio.

Using bzip2
bzip2 is another commonly used tool which is very similar to gzip in function and syntax.
The only difference is that bzip2 offers more effective compression than gzip, while taking
more time than gzip.

To compress a file using bzip2:

$ bzip2 filename

Chapter 6

229

Extract a bzipped file as follows:

$ bunzip2 filename.bz2

The way to compress to and extract from tar.bz2 files is similar to tar.gz discussed earlier:

$ tar -xjvf archive.tar.bz2

where -j denotes that the archive is bzip2 format.

Using lzma
lzma is a compression tool which has even better compression ratios than gzip and bzip2.
To compress a file using lzma:

$ lzma filename

Extract a lzma'd file as follows:

$ unlzma filename.lzma

A tarball can be compressed by using the --lzma option passed to the tar command while
archiving and extracting.

$ tar -cvvf --lzma archive.tar.lzma [FILES]

or

$ tar -cavvf archive.tar.lzma [FILES]

In order to extract a tarball compressed with lzma compression to a specified directory, use:

$ tar -xvvf --lzma archive.tar.lzma -C extract_directory

In this command, -x is used for extraction. --lzma specifies the use of lzma to
decompress the resulting file.

Or, we could also use:

$ tar -xavvf archive.tar.lzma -C extract_directory

See also
 f Archiving with tar, explains the tar command

The Backup Plan

230

Archiving and compressing with zip
ZIP is a popular compression format used on many platforms. It isn't as commonly used as
gzip or bzip2 on Linux platforms, but files from the Internet are often saved in this format.
In this recipe we will see how to use zip to perform compression and extraction.

How to do it...
Let's see how to use various options with zip:

1. In order to archive with ZIP, the following syntax is used:
$ zip archive_name.zip [SOURCE FILES/DIRS]

For example:
$ zip file.zip file

Here, the file.zip file will be produced.

2. Archive directories and files recursively as follows:
$ zip -r archive.zip folder1 folder2

In this command, -r is used for specifying recursive.

3. In order to extract files and folders in a ZIP file, use:

$ unzip file.zip

It will extract the files without removing filename.zip (unlike unlzma or gunzip).

1. In order to update files in the archive with newer files in the filesystem, use
the-u flag:
$ zip file.zip -u newfile

2. Delete a file from a zipped archive, by using -d as follows:
$ zip -d arc.zip file.txt

3. In order to list the files in an archive use:

$ unzip -l archive.zip

How it works...
While being similar to most of the archiving and compression tools we have already
discussed, zip unlike lzma, gzip, or bzip2 won't remove the source file after archiving.
Most importantly, while zip is similar to tar, it performs both archiving and compression
while tar by itself does not perform compression.

Chapter 6

231

Faster archiving with pbzip2
Most modern computers today are equipped with at least two CPU cores - for the user it
means almost the same as two real CPUs doing your work. However, just having a multicore
CPU doesn't mean your programs will run faster, it is important that the programs themselves
have been designed to run faster on multicore processors.

Most of the compression commands that we saw up to now will use only one CPU and, hence,
won't be very fast. pbzip2 can use multiple cores, hence decreasing overall time taken to
compress your files.

Getting ready
pbzip2 usually doesn't come preinstalled with most distros, you will have to use your
package manager to install it.

How to do it...
Let's see how to use pbzip2 to compress files and extract them:

1. Compress a single file like this:
pbzip2 myfile.tar

pbzip2 will automatically detect the number of cores on your system and compress
myfile.tar, to myfile.tar.bz2

2. To compress and archive multiple files or directories, we use pbzip2 in combination
with tar as follows:
tar cf myfile.tar.bz2 --use-compress-prog=pbzip2 dir_to_compress/

Or:

tar -c directory_to_compress/ | pbzip2 -c > myfile.tar.bz2

3. Extracting a pbzip2'd file

If it's a tar.bz2 file, we can perform the decompression and extraction in one step:
pbzip2 -dc myfile.tar.bz2 | tar x

If the archive is a single file which was pbzip2'd, use this:

pbzip2 -d myfile.tar.bz2

The Backup Plan

232

How it works...
pbzip2 internally uses the same compression algorithms as bzip2, but it compresses
separate chunks of data simultaneously using pthreads - a threading library. However, this
is all transparent to the user and all that happens is a much faster compression.

Just like gzip or bzip2, pbzip2 does not create archives itself, it can only work on a single
file. Hence, to compress multiple files and directories, we use it in conjunction with tar.

There's more...
There are other useful options we can use with pbzip2:

Manually specifying the number of CPUs
Use the -p option to pbzip2 to specify the number of CPU cores manually. This is useful if
the automatic detection fails or you want some CPU cores to be free for some other job.

pbzip2 -p4 myfile.tar

This will tell pbzip2 to use 4 CPUs.

Specifying the compression ratio
Just like other compression tools we saw up to now, we can use the options from 1 to 9 to
specify the fastest and best compression ratios respectively.

Creating filesystems with compression
squashfs is a heavy-compression based read-only filesystem that is capable of compressing
2 to 3 GB of data onto a 700 MB file. If you have ever used a Linux LiveCD (or LiveUSB),
they are built using squashfs . These CDs make use of a read-only compressed filesystem
which keeps the root filesystem on a compressed file. It can be loopback mounted and loads
a complete Linux environment. Thus, when some files are required by processes, they are
decompressed and loaded onto the RAM and used.

squashfs can be useful when it is required to keep files heavily compressed and to access
a few of them without extracting all the files. This is because completely extracting a large
compressed archive takes a long time. However, if an archive is loopback mounted, it will be
very fast since only the required portion of the compressed archive is decompressed when
requested. Let's see how we can use squashfs.

Chapter 6

233

Getting ready
squashfs internally uses compression algorithms such as gzip and lzma and is supported
in all modern Linux distros. However, in order to create squashfs files we need to install
squashfs-tools using the package manager.

How to do it...
Let's see how to create and mount squashfs files:

1. In order to create a squashfs file by adding source directories and files, use:
$ mksquashfs SOURCES compressedfs.squashfs

Sources can be wildcards, or file, or folder paths.

For example:

$ sudo mksquashfs /etc test.squashfs

Parallel mksquashfs: Using 2 processors

Creating 4.0 filesystem on test.squashfs, block size 131072.

[=======================================] 1867/1867 100%

More details will be printed on the terminal. The output is
stripped to save space

2. To mount the squashfs file to a mount point, use loopback mounting as follows:

mkdir /mnt/squash

mount -o loop compressedfs.squashfs /mnt/squash

You can access the contents at /mnt/squashfs.

There's more...
The squashfs file system can be customized by specifying additional parameters. Let's go
through the additional options.

Excluding files while creating a squashfs file
While creating a squashfs file, we can exclude a list of files or a file pattern specified
using wildcards.

The Backup Plan

234

To exclude a list of files specified as command-line arguments use the -e option. For example:

$ sudo mksquashfs /etc test.squashfs -e /etc/passwd /etc/shadow

The -e option is used to exclude passwd and shadow files.

It is also possible to specify a list of exclude files given in a file with -ef as follows:

$ cat excludelist

/etc/passwd

/etc/shadow

$ sudo mksquashfs /etc test.squashfs -ef excludelist

If we want to support wildcards in excludes lists, use -wildcard as an argument.

Backup snapshots with rsync
Backing up data is something that most sysadmins need to do regularly. In addition to backing
up local files, we may need to backup data from a web server or from remote locations. rsync
is a command that can be used to synchronize files and directories from one location to
another while minimizing data transfer using file difference calculations and compression. The
advantage of rsync over the cp command is that rsync uses strong difference algorithms.
Additionally, it supports data transfer across remote machines. While making copies, it
compares the files in the original and destination locations and will only copy the files that
are newer. It also supports compression, encryption, and a lot more. Let us see how to work
with rsync.

How to do it...
Let's see how to copy files and create backups with rsync:

1. To copy a source directory to a destination use:
$ rsync -av source_path destination_path

For example,

$ rsync -av /home/slynux/data slynux@192.168.0.6:/home/backups/
data

In this command:

 � -a stands for archiving

 � -v (verbose) prints the details or progress on stdout

The above command will recursively copy all the files from the source path to the
destination path. We can specify paths as remote or local paths.

Chapter 6

235

2. In order to backup data to a remote server or host, use:
$ rsync -av source_dir username@host:PATH

To keep a mirror at the destination, run the same rsync command scheduled at
regular intervals. It will copy only changed files to the destination.

3. Restore the data from the remote host to localhost as follows:
$ rsync -av username@host:PATH destination

The rsync command uses SSH to connect to the remote
machine, hence you should provide the remote machine's
address in the format user@host, where user is the username
and host is the IP address or host name attached to the remote
machine. PATH is the path on the remote machine from where
the data needs to be copied.
Make sure that OpenSSH server is installed and running on
the remote machine. Additionally, to prevent the prompt for a
password for the remote machine, see the recipe "Password-
less auto-login with SSH" from Chapter 7.

4. Compressing data while transferring through the network can significantly optimize
the speed of the transfer. We can use the rsync option -z to specify to compress
data while transferring through a network. For example:
$ rsync -avz source destination

5. Synchronize one directory to another directory as follows:
$ rsync -av /home/test/ /home/backups

This command copies the source (/home/test) to an existing folder called backups.

6. Copy a full directory inside another directory as follows:

$ rsync -av /home/test /home/backups

This command copies the source (/home/test) to a directory named backups by creating
that directory.

For the PATH format, if we use / at the end of the source,
rsync will copy contents of that end directory specified in
the source_path to the destination.
If / is not present at the end of the source, rsync will copy
that end directory itself to the destination.

The Backup Plan

236

For example, the following command copies the content of the test directory:

The following command copies the test directory to the destination:

If / is at the end of destination_path, rsync will copy the
source to the destination directory.
If / is not used at the end of the destination path, rsync will create
a folder, named similar to the source directory, at the end of the
destination path and copy the source into that directory.

For example:

$ rsync -av /home/test /home/backups/

$ rsync -av /home/test /home/backups

How it works...
rsync works with source and destination paths which can be either local or remote. Most
importantly, even both the paths can be remote paths. Usually the remote connections are
made using SSH so that rsync can calculate what files to copy and what not to. Local and
remote paths look like this:

 f /home/slynux/data (local path)

 f slynux@192.168.0.6:/home/backups/data (remote path)

/home/slynux/data specifies the absolute path in the machine in which the rsync
command is executed. slynux@192.168.0.6:/home/backups/data specifies that the
path is/home/backups/data in the machine with IP address 192.168.0.6 and is logged
in as user slynux.

There's more...
The rsync command has several additional functionalities that can be specified using its
command-line options. Let's go through them.

Excluding files while archiving with rsync
Some files need not be updated while archiving to a remote location. It is possible to
tell rsync to exclude certain files from the current operation. Files can be excluded by
two options:

--exclude PATTERN

Chapter 6

237

We can specify a wildcard pattern of files to be excluded. For example:
$ rsync -avz /home/code/some_code /mnt/disk/backup/code --exclude "*.txt"

This command excludes .txt files from backing up.

Or, we can specify a list of files to be excluded by providing a list file.

Use --exclude-from FILEPATH.

Deleting non-existent files while updating rsync backup
By default, rsync does not remove files from the destination if they no longer exist at the
source. In order to remove the files from the destination that do not exist at the source, use
the rsync --delete option:
$ rsync -avz SOURCE DESTINATION --delete

Scheduling backups at intervals
You can create a cron job to schedule backups at regular intervals.

A sample is as follows:

$ crontab -ev

Add the following line:
0 */10 * * * rsync -avz /home/code user@IP_ADDRESS:/home/backups

The above crontab entry schedules the rsync to be executed every 10 hours.

*/10 is the hour position of the crontab syntax. /10 specifies to execute the backup every
10 hours. If */10 is written in the minutes position, it will execute every 10 minutes.

Have a look at the Scheduling with cron recipe in Chapter 9, Administration Calls to
understand how to configure crontab.

Version control-based backup with Git
People use different strategies for backing up data. Out of these, differential backups are
more efficient than making copies of the entire source directory to a target of the backup
directory with the version number using date or time of a day as it causes wastage of space.
We only need to copy the changes that occurred to files from the second time that the
backups occur - this is also called incremental backup. We can manually create incremental
backups using tools like rsync but restoring this sort of backup can be difficult. The best way
to maintain and restore changes is to use version control systems. They are very much used in
software development and maintenance of code, since coding frequently undergoes changes.
Git is the most famous and the most efficient version control system available. Let us use Git
for the backup of regular files in a non-programming context.

The Backup Plan

238

Getting ready
We have a directory that contains several files and subdirectories. We need to keep track of
changes occurring to the directory contents and back them up. If data becomes corrupted or
goes missing, we must be able to restore a previous copy of that data. We will either need to
take the backup at different locations in the local machine, or to a remote machine. To install
git, just use your distro's package manager and let's get started:

How to do it...
Let's see how to use git to version control data, in this case backups:

1. In the directory which is to be backed up use:
$ cd /home/data/source

Let it be the directory source to be tracked.

2. Set up and initiate the remote backup directory. In the remote machine, create the
backup destination directory:

$ mkdir -p /home/backups/backup.git

$ cd /home/backups/backup.git

$ git init --bare

The following steps are to be performed in the source host machine:

1. Add user details to Git in the source host machine:
$ git config --global user.name "Sarath Lakshman"

$ git config --global user.email slynux@slynux.com

2. Initiate the source directory to backup from the host machine. In the source
directory in the host machine whose files are to be backed up, execute the
following commands:
$ git init

Initialized empty Git repository in /home/backups/backup.git/

$ git commit --allow-empty -am "Init"

[master (root-commit) b595488] Init

Chapter 6

239

3. In the source directory, execute the following command to add the remote git
directory and synchronize backup:
$ git remote add origin user@remotehost:/home/backups/backup.git

$ git push origin master

Counting objects: 2, done.

Writing objects: 100% (2/2), 153 bytes, done.

Total 2 (delta 0), reused 0 (delta 0)

To user@remotehost:/home/backups/backup.git

 * [new branch] master -> master

4. Add or remove files for Git tracking.
The following command adds all files and folders in the current
directory to the backup list:

$ git add *

We can conditionally add certain files only to the backup list as follows:
$ git add *.txt

$ git add *.py

We can remove the files and folders not required to be tracked by using:
$ git rm file

It can be a folder or even a wildcard as follows:

$ git rm *.txt

5. Check-pointing or marking backup points.

We can mark checkpoints for the backup with a message using the following command:
$ git commit -m "Commit Message"

We need to update the backup at the remote location at regular intervals. Hence, set
up a cron job (for example, backing up every five hours):

Create a file crontab entry with lines:
0 */5 * * * /home/data/backup.sh

Create a script /home/data/backup.sh as follows:
#!/bin/ bash
cd /home/data/source
git add .
git commit -am "Backup taken at @ $(date)"
git push

The Backup Plan

240

Now we have set up the backup system.

6. To view all backup versions:
$ git log

7. To revert back to any previous state or version, look into the commit ID, which is a
32-character hex string. Use the commit ID with git checkout.

For commit ID 3131f9661ec1739f72c213ec5769bc0abefa85a9 it will be:
$ git checkout 3131f9661ec1739f72c213ec5769bc0abefa85a9

To make this revert permanent:
$ git commit -am "Restore @ $(date) commit ID:
3131f9661ec1739f72c213ec5769bc0abefa85a9"

In order to view the details about versions again, use:

$ git log

8. If the working directory is broken due to some issues, we need to fix the directory with
the backup at the remote location. We can recreate the contents from the backup at
the remote location as follows:
$ git clone user@remotehost:/home/backups/backup.git

It will create a directory backup with all contents.

While git is pretty good for keeping versioned copies of text files which
includes documents, source code and so on, it's not a good idea to use git
for a large amount of binary-only data. For example, it's not sensible to use
git to backup/version control your photo collection. The reason for this is
git keeps whole files instead of differences when it comes to binary files,
and this will make it occupy a huge amount of space.

Creating entire disk images using fsarchiver
fsarchiver is a tool which can save the contents of a complete filesystem to a
compressed archive file. Due to these abilities, it is one of the most complete and easy
to use tools for backup.

fsarchiver is the successor of partimage - the well-known filesystem backup solution.
fsarchiver has the advantage of supporting newer filesystems like ext4 when compared
to partimage, however the latter has a minimal GUI that makes it somewhat easier to use.

Chapter 6

241

Getting ready
fsarchiver is not installed in most of the distros by default. You will have to
manually install it using your package manager. If you want more information,
go to http://www.fsarchiver.org/Installation

How to do it...
1. Creating a backup of a filesystem/partition

Use the savefs option of fsarchiver like this:
fsarchiver savefs backup.fsa /dev/sda1

where backup.fsa is the final backup file and /dev/sda1 is the partition to backup

2. Backup more than one partition at the same time

Use the savefs option as earlier and pass the partitions as the last parameters
to fsarchiver:

fsarchiver savefs backup.fsa /dev/sda1 /dev/sda2

3. Restore a partition from a backup archive

Use the restfs option of fsarchiver like this:
fsarchiver restfs backup.fsa id=0,dest=/dev/sda1

id=0 denotes that we want to pick the first partition from the archive to the partition
specified as dest=/dev/sda1

4. Restore multiple partitions from a backup archive

As earlier, use the restfs option as follows:

fsarchiver restfs backup.fsa id=0,dest=/dev/sda1 id=1,dest=/dev/sdb1

Here, we use two sets of the id,dest parameter to tell fsarchiver to restore the first two
partitions from the backup to two physical partitions.

How it works...
Very similar to the way tar works, fsarchiver goes through the filesystem to create a list
of files and then saves them to a compressed archive file. The advantage here is that unlike
tar which only saves information about the files, fsarchiver performs a backup of the
filesystem as well. This means that it is easier to restore the backup on a fresh system
as it is not necessary to recreate the filesystem.

The Backup Plan

242

If you are seeing the /dev/sda1 notation for partitions for the first time, this deserves some
explanation. /dev in Linux holds special files called device files which refer to a physical
device. The sd in sda1 refers to SATA disk, the next letter can be a, b, c and so on, followed
by the partition number.

/dev/ sd a 1

device
filesystem SATA disk Disk number Partition

number

Diagram showing the various parts of a disk device's filename in Linux

7
The Old-boy Network

In this chapter, we will cover:

 f Setting up the network

 f Let us ping!

 f Listing all the machines alive on a network

 f Running commands on a remote host with SSH

 f Transferring files through the network

 f Connecting to a wireless network

 f Password-less auto-login with SSH

 f Port forwarding using SSH

 f Mounting a remote drive at a local mount point

 f Network traffic and port analysis

 f Creating arbitrary sockets

 f Sharing an Internet connection

 f Basic firewall using iptables

Introduction
Networking is the act of interconnecting machines to form a network so that the machines
can interchange information. The most widely used networking stack is TCP/IP, where each
node is assigned a unique IP address for identification. There are many parameters in
networking, such as subnet mask, route, ports, host names, and so on which require
a basic understanding to follow.

The Old-boy Network

244

Several applications that make use of a network operate by opening and connecting to
something called ports, which denote services such as data transfer, remote shell login, and
so on. Several interesting management tasks can be performed on a network consisting
of many machines. Shell scripts can be used to configure the nodes in a network, test the
availability of machines, automate execution of commands at remote hosts, and so on. This
chapter focuses on different recipes that introduce interesting tools or commands related to
networking, and also how they can be used for solving different problems.

Setting up the network
Before digging through recipes based on networking, it is essential to have a basic
understanding of setting up a network, terminologies, and commands for assigning IP
address, adding routes, and so on. This recipe will give an overview of different commands
used in GNU/Linux for networking and their usages from the basics.

Getting ready
A network interface is used to connect a machine to a network. Usually, Linux denotes
network interfaces using names like eth0, eth1 (referring to Ethernet interfaces). Other
interfaces, such as usb0, wlan0, and so on are available for USB network interfaces,
wireless LAN respectively.

In this recipe, we will use these commands: ifconfig, route, nslookup, and host.

ifconfig is the command that is used to configure and display details about network
interfaces, subnet mask, and so on. On a typical system, it should be available at
/sbin/ifconfig.

How to do it...
1. List the current network interface configuration:

$ ifconfig

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:6078 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6078 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

 RX bytes:634520 (634.5 KB) TX bytes:634520 (634.5 KB)

Chapter 7

245

wlan0 Link encap:EthernetHWaddr 00:1c:bf:87:25:d2

inet addr:192.168.0.82 Bcast:192.168.3.255 Mask:255.255.252.0

inet6addr: fe80::21c:bfff:fe87:25d2/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:420917 errors:0 dropped:0 overruns:0 frame:0

 TX packets:86820 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

 RX bytes:98027420 (98.0 MB) TX bytes:22602672 (22.6 MB)

The left-most column in the ifconfig output lists the names of network interfaces,
and the right-hand columns show the details related to the corresponding network
interface.

2. In order to manually set the IP address for a network interface, use:
ifconfig wlan0 192.168.0.80

You will need to run the preceding command .as root. 192.168.0.80 is the address
to be set,

Set the subnet mask along with the IP address as follows:

ifconfig wlan0 192.168.0.80 netmask 255.255.252.0

3. Automatically configure network interfaces. If you are connecting to, let's say a wired
network which supports automatically assigning IPs, just use this to configure the
network interface:

dhclient eth0

There's more...
Let's go through a few more essential commands and their usage.

Printing the list of network interfaces
Here is a one-line command sequence to print the list of network interfaces available on
a system:

$ ifconfig | cut -c-10 | tr -d ' ' | tr -s '\n'

lo

wlan0

The first 10 characters of each line in ifconfig output is reserved for writing names of
network interfaces. Hence, we use cut to extract the first 10 characters of each line. tr -d
' ' deletes every space character in each line. Now, the \n newline character is squeezed
using tr -s '\n' to produce a list of interface names.

The Old-boy Network

246

Displaying IP addresses
The ifconfig command displays details of every active network interface available on the
system. However, we can restrict it to a specific interface using:

$ ifconfig iface_name

For example:

$ ifconfig wlan0

wlan0 Link encap:EthernetHWaddr 00:1c:bf:87:25:d2

inet addr:192.168.0.82 Bcast:192.168.3.255

 Mask:255.255.252.0

From the outputs of the previously mentioned command, our interests lie in the IP address,
broadcast address, hardware address, and subnet mask. They are as follows:

 f HWaddr 00:1c:bf:87:25:d2 is the hardware address (MAC address)

 f inet addr:192.168.0.82 is the IP address

 f Bcast:192.168.3.255 is the broadcast address

 f Mask:255.255.252.0 is the subnet mask

In several scripting contexts, we may need to extract any of these addresses from the script
for further manipulations. Extracting the IP address is a frequently needed task. In order to
extract the IP address from the ifconfig output use:

$ ifconfig wlan0 | egrep -o "inet addr:[^]*" | grep -o "[0-9.]*"

192.168.0.82

Here ,the first command egrep -o "inet addr:[^]*" will print inet
addr:192.168.0.82. The pattern starts with inet addr: and ends with some
non-space character sequence (specified by [^]*). Now in the next pipe, it prints
the character combination of digits and '.'.

Spoofing the hardware address (MAC address)
In certain circumstances where authentication or filtering of computers on a network are
based on the hardware address, we can use hardware address spoofing. The hardware
address appears in ifconfig output as HWaddr 00:1c:bf:87:25:d2.

We can spoof the hardware address at the software level as follows:

ifconfig eth0 hw ether 00:1c:bf:87:25:d5

Chapter 7

247

In the preceding command, 00:1c:bf:87:25:d5 is the new MAC address to be assigned.
This can be useful when we need to access the Internet through MAC-authenticated service
providers that provide access to the Internet for a single machine. However, note that this only
lasts until a machine restarts.

Name server and DNS (Domain Name Service)
The elementary addressing scheme for the Internet is IP addressing (dotted decimal form, for
example, 202.11.32.75). However, the resources on the Internet (for example, websites)
are accessed through a combination of ASCII characters called URLs or domain names.
For example, www.google.com is a domain name and it corresponds to one (or more) IP
address. Typing the IP address in the browser can also access the URL www.google.com.

This technique of abstracting IP addresses with symbolic names is called Domain Name
Service (DNS). When we enter www.google.com, our computer uses the DNS servers
configured with the network to resolve the domain name into the corresponding IP address.
While on a local network, we set up the local DNS for naming local machines on the network
symbolically using their hostnames.

Name servers assigned to the current system can be viewed by reading /etc/resolv.conf,
for example:

$ cat /etc/resolv.conf

nameserver 8.8.8.8

We can add name servers manually as follows:

echo nameserver IP_ADDRESS >> /etc/resolv.conf

How can we obtain the IP address for a corresponding domain name? The easiest method to
obtain an IP address is by trying to ping the given domain name and looking at the echo reply.
For example:

$ ping google.com

PING google.com (64.233.181.106) 56(84) bytes of data.

Here 64.233.181.106 is the corresponding IP address.

A domain name can have multiple IP addresses assigned. In that case, ping will show one
address among the list of IP addresses. To obtain all the addresses assigned to the domain
name, we should use a DNS lookup utility.

DNS lookup
There are different DNS lookup utilities available from the command line, which will request
a DNS server for an IP address resolution. host and nslookup are two of such DNS
lookup utilities.

The Old-boy Network

248

When host is executed it will list out all of the IP addresses attached to the domain name.
nslookup is another command that is similar to host, which can be used to query details
related to DNS and resolving of names. For example:

$ host google.com

google.com has address 64.233.181.105

google.com has address 64.233.181.99

google.com has address 64.233.181.147

google.com has address 64.233.181.106

google.com has address 64.233.181.103

google.com has address 64.233.181.104

We can also list out all the DNS resource records as follows:

$ nslookup google.com

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: google.com

Address: 64.233.181.105

Name: google.com

Address: 64.233.181.99

Name: google.com

Address: 64.233.181.147

Name: google.com

Address: 64.233.181.106

Name: google.com

Address: 64.233.181.103

Name: google.com

Address: 64.233.181.104

Server: 8.8.8.8

The last line in the preceding command-line snippet corresponds to the default name server
used for resolution.

Chapter 7

249

Without using the DNS server, it is possible to add a symbolic name to the IP address
resolution just by adding entries into the file /etc/hosts. In order to add an entry, use
the following syntax:

echo IP_ADDRESS symbolic_name >> /etc/hosts

For example:

echo 192.168.0.9 backupserver >> /etc/hosts

After adding this entry, whenever resolution to backupserver occurs, it will resolve to
192.168.0.9.

Showing routing table information
Having more than one network connected with each other is a very common scenario. An
example of this is in a college, where different departments may be on separate networks. In
this case, when a device on one network wants to communicate with a device on the other
network, it needs to go through a device which is common to the two networks. This special
device is called a gateway and its function is to route packets to and from different networks.

The operating system maintains a table called the routing table, which contains the
information on how packets are to be forwarded through machines on the network. The
routing table can be displayed as follows:

$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref UseIface

192.168.0.0 * 255.255.252.0 U 2 0 0wlan0

link-local * 255.255.0.0 U 1000 0 0wlan0

default p4.local 0.0.0.0 UG 0 0 0wlan0

Or, you can also use:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.0 0.0.0.0 255.255.252.0 U 2 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlan0

0.0.0.0 192.168.0.4 0.0.0.0 UG 0 0 0 wlan0

Using -n specifies to display the numerical addresses. When -n is used it will display
every entry with a numerical IP address, else it will show symbolic hostnames instead
of IP addresses in DNS entries for IP addresses that are available.

The Old-boy Network

250

A default gateway is set as follows:

route add default gw IP_ADDRESS INTERFACE_NAME

For example:

route add default gw 192.168.0.1 wlan0

See also
 f The Playing with variables and environment variables recipe of Chapter 1, Shell

Something Out, explains the PATH variable

 f The Searching and mining text inside a file with grep recipe of Chapter 4, Texting and
Driving, explains the grep command

Let us ping!
ping is the most basic network command every user should first know and is available on
all major Operating Systems. It is also a diagnostic tool used for verifying the connectivity
between two hosts on a network. It can be used to find out which machines are alive on a
network. Let us see how to use ping.

How to do it...
In order to check the connectivity of two hosts on a network, the ping command uses Internet
Control Message Protocol (ICMP) echo packets. When these echo packets are sent towards
a host, the host responds back with a reply if it is reachable or alive.

Check whether a host is reachable as follows:

$ ping ADDRESS

The ADDRESS can be a hostname, domain name, or an IP address itself.

ping will continuously send packets and the reply information is printed on the terminal.
Stop the pinging process by pressing Ctrl + C.

For example:

 f When a host is reachable, the output will be similar to the following:
$ ping 192.168.0.1

PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.44 ms

^C

Chapter 7

251

--- 192.168.0.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1.440/1.440/1.440/0.000 ms

$ ping google.com

PING google.com (209.85.153.104) 56(84) bytes of data.

64 bytes from bom01s01-in-f104.1e100.net (209.85.153.104): icmp_
seq=1 ttl=53 time=123 ms

^C

--- google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 123.388/123.388/123.388/0.000 ms

 f When a host is unreachable, the output will be similar to:

$ ping 192.168.0.99

PING 192.168.0.99 (192.168.0.99) 56(84) bytes of data.

From 192.168.0.82 icmp_seq=1 Destination Host Unreachable

From 192.168.0.82 icmp_seq=2 Destination Host Unreachable

Once the host is not reachable, the ping returns with the Destination Host
Unreachable error message.

Network administrators generally configure devices such as routers not to
respond to ping. This is done to lower security risks, as ping can be used by
attackers (using brute-force) to find out IP addresses of machines.

There's more
In addition to checking the connectivity between two points in a network, the ping command
can be used with additional options to get useful information. Let us go through the additional
options of ping.

The Old-boy Network

252

Round trip time
The ping command can be used to find out the Round Trip Time (RTT) between two hosts
on a network. RTT is the time required for the packet to reach the destination host and come
back to the source host. RTT in milliseconds can be obtained from ping. An example is
as follows:

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 118.012/206.630/347.186/77.713 ms

Here, the minimum RTT is 118.012ms, the average RTT is 206.630ms, and the maximum
RTT is 347.186ms. The mdev (77.713ms) parameter in the ping output stands for
mean deviation.

Limiting the number of packets to be sent
The ping command sends echo packets and waits for the reply of echo indefinitely until it is
stopped by pressing Ctrl + C. However, we can limit the count of echo packets to be sent by
using the -c flag. The usage is as follows:

-c COUNT

For example:

$ ping 192.168.0.1 -c 2

PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.02 ms

64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.03 ms

--- 192.168.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 1.039/2.533/4.028/1.495 ms

In the previous example, the ping command sends two echo packets and stops. This is
useful when we need to ping multiple machines from a list of IP addresses through a script
and check its statuses.

Return status of the ping command
The ping command returns exit status 0 when it succeeds and returns non-zero when it
fails. Successful means destination host is reachable, whereas Failure is when the
destination host is unreachable.

Chapter 7

253

The return status can be easily obtained as follows:

$ ping domain -c2

if [$? -eq 0];

then

 echo Successful ;

else

 echo Failure

fi

Traceroute
When an application requests a service through the Internet, the server may be at a distant
location and connected through many number of gateways or device nodes. The packets
travel through several gateways and reach the destination. There is an interesting command
traceroute that displays the address of all intermediate gateways through which a packet
travelled to reach a particular destination. traceroute information helps us to understand
how many hops each packet should take in order to reach the destination. The number of
intermediate gateways or routers gives a metric to measure the distance between two nodes
connected in a large network. An example of traceroute is as follows:

$ traceroute google.com

traceroute to google.com (74.125.77.104), 30 hops max, 60 byte packets

1 gw-c6509.lxb.as5577.net (195.26.4.1) 0.313 ms 0.371 ms 0.457 ms

2 40g.lxb-fra.as5577.net (83.243.12.2) 4.684 ms 4.754 ms 4.823 ms

3 de-cix10.net.google.com (80.81.192.108) 5.312 ms 5.348 ms 5.327 ms

4 209.85.255.170 (209.85.255.170) 5.816 ms 5.791 ms 209.85.255.172
(209.85.255.172) 5.678 ms

5 209.85.250.140 (209.85.250.140) 10.126 ms 9.867 ms 10.754 ms

6 64.233.175.246 (64.233.175.246) 12.940 ms 72.14.233.114
(72.14.233.114) 13.736 ms 13.803 ms

7 72.14.239.199 (72.14.239.199) 14.618 ms 209.85.255.166
(209.85.255.166) 12.755 ms 209.85.255.143 (209.85.255.143) 13.803 ms

8 209.85.255.98 (209.85.255.98) 22.625 ms 209.85.255.110
(209.85.255.110) 14.122 ms

*

9 ew-in-f104.1e100.net (74.125.77.104) 13.061 ms 13.256 ms 13.484 ms

The Old-boy Network

254

Modern Linux distributions also ship with a command mtr, which is similar
to traceroute but shows real-time data which keeps refreshing. It is very
useful to check your network carrier quality and so on.

Listing all the machines alive on a network
When we deal with a large local area network, we may need to check the availability of
other machines in the network. A machine may not be alive in two conditions: either it is not
powered on, or due to a problem in the network. By using shell scripting, we can easily find out
and report which machines are alive on the network. Let's see how to do it.

Getting ready
In this recipe, we use two methods. The first method uses ping and the second method uses
fping. fping is easier to use for scripts and has more features as compared to the ping
command. Usually it won't be shipped with your Linux distribution by default, so manually
install it using your package manager.

How to do it...
Let's go through the script to find out all the live machines on the network and alternate
methods to find out the same.

1. The first method is as follows:

We can write our own script using the ping command to query a list of IP addresses
and check whether they are alive or not as follows:
#!/bin/bash

#Filename: ping.sh

Change base address 192.168.0 according to your network.

for ip in 192.168.0.{1..255} ;

do

 ping $ip -c 2 &> /dev/null ;

 if [$? -eq 0];

 then

 echo $ip is alive

 fi

Chapter 7

255

done

The output is as follows:

$./ping.sh

192.168.0.1 is alive

192.168.0.90 is alive

2. Using fping, the second method is as follows:

We can use an existing command-line utility to query the status of machines on a
network as follows:
$ fping -a 192.160.1/24 -g 2> /dev/null

192.168.0.1

192.168.0.90

Or, use:

$ fping -a 192.168.0.1 192.168.0.255 -g

How it works...
In the first method, we used the ping command to find out the alive machines on the
network. We used a for loop for iterating through a list of IP addresses generated using
the expression 192.168.0.{1..255}. The {start..end} notation will expand and will
generate a list of IP addresses, such as 192.168.0.1, 192.168.0.2, 192.168.0.3 up to
192.168.0.255.

ping $ip -c 2 &> /dev/null will run a ping command to the corresponding IP address
in each execution of the loop. The -c option is used to restrict the number of echo packets to
be sent to a specified number. &> /dev/null is used to redirect both stderr and stdout
to /dev/null so that it won't be printed on the terminal. Using $? we evaluate the exit
status. If it is successful, the exit status is 0 else non-zero. Hence, the IP addresses which
replied to our ping are printed.

In this script, each ping command for the IP address is executed one after the other. Even
though all the IP addresses are independent of each other, the ping command is executed as
a sequential program, it takes a delay of sending two echo packets and receiving them or the
time-out for a reply for executing the next ping command.

There's more...
We discussed a method for finding out the alive machines on a network. Let's see some
enhancements and another method to do the same thing.

The Old-boy Network

256

Parallel pings
When it comes to 255 addresses, the delay gets accumulated and becomes large. We can
run all the ping commands in parallel to make this faster. To make the ping commands run
in parallel, we enclose the loop body in ()&. () encloses a block of commands to run as a
subshell and & sends it to the background. For example:

#!/bin/bash
#Filename: fast_ping.sh
Change base address 192.168.0 according to your network.

for ip in 192.168.0.{1..255} ;
do
 (
 ping $ip -c2 &> /dev/null ;

 if [$? -eq 0];
 then
 echo $ip is alive
 fi
)&
 done
wait

In the for loop, we execute many background processes and come out of the loop,
terminating the script. In order to prevent the script to terminate until all its entire child
processes end, we have a command called wait. Place wait at the end of the script,
so that it waits for the time until all the child () subshell processes complete.

Using fping
The second method uses a different command called fping. It can ping a list of IP addresses
simultaneously and respond very quickly. The options available with fping are as follows:

 f The -a option with fping specifies to print all alive machine's IP addresses

 f The -u option with fping specifies to print all unreachable machines

 f The -g option specifies to generate a range of IP addresses from slash-subnet mask
notation specified as IP/mask or start and end IP addresses as:
$ fping -a 192.160.1/24 -g

Or

$ fping -a 192.160.1 192.168.0.255 -g

 f 2>/dev/null is used to dump error messages printed due to an unreachable host
to null device

Chapter 7

257

It is also possible to manually specify a list of IP addresses as command-line arguments or as
a list through stdin. For example:

$ fping -a 192.168.0.1 192.168.0.5 192.168.0.6

Passes IP address as arguments

$ fping -a < ip.list

Passes a list of IP addresses from a file

See also
 f The Playing with file descriptors and redirection recipe of Chapter 1, Shell Something

Out, explains the data redirection

 f The Comparisons and tests recipe of Chapter 1, Shell Something Out, explains
numeric comparisons

Running commands on a remote host with
SSH

SSH is an interesting system administration tool that gives you access to a shell on a remote
computer which you can use to run commands. SSH stands for Secure Shell as it transfers
the network data transfer over an encrypted tunnel. This recipe will introduce different ways in
which commands can be executed at a remote host.

Getting ready
SSH doesn't come preinstalled with all GNU/Linux distributions, and you may have to install
the openssh-server and openssh-client packages using a package manager. SSH
service runs at default port number 22.

How to do it...
1. To connect to a remote host with the SSH server running, use:

$ ssh username@remote_host

In this command:

 � username is the user that exists at the remote host

 � remote_host can be the domain name or IP address

The Old-boy Network

258

For example:
$ ssh mec@192.168.0.1

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is 2b:b4:90:79:49:0a:f1:b3:8a:db:9f:73:2d:75:d
6:f9.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.1' (RSA) to the list of
known hosts.

Password:

Last login: Fri Sep 3 05:15:21 2010 from 192.168.0.82

mec@proxy-1:~$

It will interactively ask for a user password, and upon successful authentication it will
return the shell for the user.

SSH performs a fingerprint verification to make sure that we are
actually connecting to the remote computer we want to. This
is to avoid what is called a man-in-the-middle attack, where
an attacker tries to impersonate another computer. SSH will,
by default, store the fingerprint the first time we connect to a
server and verify that it does not change for future connections.

By default, the SSH server runs at port 22. But certain servers run SSH service at
different ports. In that case, use -p port_num with the ssh command to specify
the port.

2. In order to connect to an SSH server running at port 422, use:
$ ssh user@locahost -p 422

You can execute commands in the shell that corresponds to the remote host.
However, when using ssh in shell scripts, we do not want an interactive shell
as we require to execute several commands and display or store their output.

Issuing a password every time is not practical for an automated
script, hence password-less login using SSH keys should be
configured. The Password-less auto-login with SSH recipe
explains the SSH commands to set this up.

Chapter 7

259

3. To run a command at the remote host and display its output on the local shell, use
the following syntax:
$ ssh user@host 'COMMANDS'

For example:
$ ssh mec@192.168.0.1 'whoami'

mec

Multiple commands can be given by using a semicolon delimiter in between the
commands as:
$ ssh user@host "command1 ; command2 ; command3"

For example:
$ ssh mec@192.168.0.1 "echo user: $(whoami);echo OS: $(uname)"

Password:

user: mec

OS: Linux

In this example, the commands executed at the remote host are:
echo user: $(whoami);

echo OS: $(uname)

It can be generalized as:
COMMANDS="command1; command2; command3"

$ ssh user@hostname "$COMMANDS"

We can also pass a more complex subshell in the command sequence by using the
() subshell operator.

4. Let's write an SSH-based shell script that collects the uptime of a list of remote hosts.
Uptime is the time for which the system is powered on and the uptime command is
used to display this information.

It is assumed that all systems in IP_LIST have a common user test.
#!/bin/bash

#Filename: uptime.sh

#Description: Uptime monitor

IP_LIST="192.168.0.1 192.168.0.5 192.168.0.9"

USER="test"

for IP in $IP_LIST;

The Old-boy Network

260

do
 utime=$(ssh ${USER}@${IP} uptime | awk '{ print $3 }')
 echo $IP uptime: $utime
done

Expected output:

$./uptime.sh
192.168.0.1 uptime: 1:50,
192.168.0.5 uptime: 2:15,
192.168.0.9 uptime: 10:15,

There's more...
The ssh command can be executed with several additional options. Let's go through them.

SSH with compression
The SSH protocol also supports data transfer with compression, which comes in handy when
bandwidth is an issue. Use the -C option with the ssh command to enable compression
as follows:

$ ssh -C user@hostname COMMANDS

Redirecting data into stdin of remote host shell commands
Sometimes, we need to redirect some data into stdin of remote shell commands.
Let's see how to do it. An example is as follows:

$ echo 'text' | ssh user@remote_host 'echo'

text

Or

Redirect data from file as:

$ ssh user@remote_host 'echo' < file

echo on the remote host prints the data received through stdin which in turn is passed to
stdin from localhost.

Running graphical commands on a remote machine
If you attempt to use this recipe with a command that needs to show some kind of GUI to the
user, you will see an error similar to "cannot open display". This is because the ssh shell is not
able to connect to the X server running on the remote machine. For this you need to set the
$DISPLAY variable like this:

ssh user@host "export DISPLAY=:0 ; command1; command2"""

Chapter 7

261

This will launch the graphical output on the remote machine. If you want to show the graphical
output on your local machine, use SSH's X11 forwarding option as follows:

ssh -X user@host "command1; command2"

This will run the commands on the remote machine, but it will bring the graphical output to
your machine.

See also
 f The Password less auto-login with SSH recipe, explains how to configure auto-login to

execute commands without prompting for a password.

Transferring files through the network
The major driver for networking of computers is resource sharing, and file sharing is the
most prominent shared resource. There are different methods by which we can transfer
files between different nodes on a network. This recipe discusses how to transfer files using
commonly used protocols FTP, SFTP, RSYNC, and SCP.

Getting ready
The commands for performing file transfer over the network are mostly available by default
with Linux installation. Files can be transferred via FTP using the lftp command. Files can
be transferred via a SSH connection using sftp. Further, we can use RSYNC over SSH with
rsync command and transfer files through SSH using scp.

How to do it...
File Transfer Protocol (FTP) is a very old file transfer protocol for transferring files between
machines on a network. We can use the command lftp for accessing FTP-enabled servers
for file transfer. FTP can only be used if the FTP server is installed on the remote machine.
FTP is used in many public websites to share files and the service usually runs on port 21.

To connect to an FTP server and transfer files in between, use:

$ lftp username@ftphost

It will prompt for a password and then display a logged in prompt as follows:

lftp username@ftphost:~>

The Old-boy Network

262

You can type commands in this prompt. For example:

 f To change to a directory, use cd directory

 f To change the directory of a local machine, use lcd

 f To create a directory use mkdir

 f To list files in the current directory on the remote machine, use ls

 f To download a file, use get filename as follows:
lftp username@ftphost:~> get filename

 f To upload a file from the current directory, use put filename as follows:
lftp username@ftphost:~> put filename

 f An lftp session can be terminated by using the quit command

Autocompletion is supported by in the lftp prompt.

There's more...
Let's go through additional techniques and commands used for file transfer through
a network.

Automated FTP transfer
ftp is another command used for FTP-based file transfer. lftp is more flexible for usage.
lftp and the ftp commands open an interactive session with the user (it prompts for
user input by displaying messages). What if we want to automate file transfer instead of an
interactive mode? We can automate FTP file transfers by writing a shell script as follows:

#!/bin/bash
#Filename: ftp.sh
#Automated FTP transfer
HOST='domain.com'
USER='foo'
PASSWD='password'
ftp -i -n $HOST <<EOF
user ${USER} ${PASSWD}
binary
cd /home/slynux
puttestfile.jpg
getserverfile.jpg
quit
EOF

Chapter 7

263

The preceding script has the following structure:

<<EOF
DATA
EOF

This is used to send data through stdin to the ftp command. The Playing with file
descriptors and redirection recipe of Chapter 1, Shell Something Out, explains various
methods for redirection into stdin.

The -i option of ftp turns off the interactive session with user. user ${USER} ${PASSWD}
sets the username and password. binary sets the file mode to binary. The -n option tells
ftp to not attempt automatically logging in and use the username and password we supply it.

SFTP (Secure FTP)
SFTP is a FTP-like file transfer system that runs on top of an SSH connection and emulates as
an FTP interface. It doesn't require an FTP server at the remote end to perform file transfer,
but it requires an OpenSSH server to be installed and running. It is an interactive command,
which offers an sftp prompt.

The following commands are used to perform the file transfer. All other commands remain the
same for every automated FTP session with a specific HOST, USER, and PASSWORD:

cd /home/slynux

put testfile.jpg

get serverfile.jpg

In order to run sftp, use:

$ sftp user@domainname

Similar to lftp, an sftp session can be terminated by typing the quit command.

Sometimes, the SSH server will not be running at the default port 22. If it is running at a
different port, we can specify the port along with sftp as -oPort=PORTNO. For example:

$ sftp -oPort=422 user@slynux.org

-oPort should be the first argument of the sftp command.

The rsync command
rsync is an important command-line utility that is widely used for copying files over networks
and for taking backup snapshots. This is better explained in the Backup snapshots with rsync
recipe of Chapter 6, The Backup Plan, that explains the usage of rsync.

The Old-boy Network

264

SCP (secure copy program)
SCP is a file copy technique which is more secure than the traditional remote copy tool called
rcp. The files are transferred through an encrypted channel. SSH is used over an encryption
channel and we can easily transfer files to a remote machine as follows:

$ scp filename user@remotehost:/home/path

This will prompt for a password and can be made password-less by using the auto-login SSH
technique. The Password-less auto-login with SSH recipe explains SSH auto-login. Therefore,
file transfer using scp doesn't require specific scripting. Once SSH login is automated, the
scp command can be executed without an interactive prompt for the password.

Here, remotehost can be an IP address or domain name. The format of the scp
command is:

$ scp SOURCE DESTINATION

SOURCE or DESTINATION can be in the format username@host:/path, for example:

$ scp user@remotehost:/home/path/filename filename

The preceding command copies a file from the remote host to the current directory with the
given filename.

If SSH is running at a different port than 22, use -oPort with the same syntax, sftp.

Recursive copying with SCP
By using scp, we can recursively copy a directory between two machines on a network as
follows with the -r parameter:

$ scp -r /home/slynux user@remotehost:/home/backups

Copies the directory /home/slynux recursively recurisvely to a remote
location

scp can also copy files by preserving permissions and modes by using the -p parameter.

See also
 f The Playing with file descriptors and redirection recipe of Chapter 1, Shell Something

Out, explains the standard input using EOF

Chapter 7

265

Connecting to a wireless network
An Ethernet connection is simple to configure, since it is connected through wired cables
with no special requirements like authentication. However, wireless LAN may require
authentication like a secret key as well as ESSID of the wireless network to connect. ESSID, or
Extended Service Set Identification, is the name of the network. Let's see how to connect to
a wireless network by writing a shell script.

Getting ready
To connect to a wired network, we need to assign an IP address and subnet mask by using the
ifconfig utility. But for a wireless network connection, it will require additional utilities such
as iwconfig and iwlist to configure more parameters.

How to do it...
Let's write a script for connecting to a wireless LAN with WEP (Wired Equivalent Privacy):

#!/bin/bash
#Filename: wlan_connect.sh
#Description: Connect to Wireless LAN

#Modify the parameters below according to your settings
######### PARAMETERS ###########
IFACE=wlan0
IP_ADDR=192.168.1.5
SUBNET_MASK=255.255.255.0
GW=192.168.1.1
HW_ADDR='00:1c:bf:87:25:d2'
#Comment above line if you don't want to spoof mac address

ESSID="homenet"
WEP_KEY=8b140b20e7
FREQ=2.462G
#################################

KEY_PART=""

if [[-n $WEP_KEY]];
then
 KEY_PART="key $WEP_KEY"
fi

The Old-boy Network

266

Turn the interface down before setting new config
/sbin/ifconfig $IFACE down

if [$UID -ne 0];
then
 echo "Run as root"
 exit 1;
fi

if [[-n $HW_ADDR]];
then
 /sbin/ifconfig $IFACE hw ether $HW_ADDR
 echo Spoofed MAC ADDRESS to $HW_ADDR
fi

/sbin/iwconfig $IFACE essid $ESSID $KEY_PART freq $FREQ

/sbin/ifconfig $IFACE $IP_ADDR netmask $SUBNET_MASK

route add default gw $GW $IFACE

echo Successfully configured $IFACE

How it works...
The commands ifconfig, iwconfig, and route are to be run as root. Hence, a check for
the root user is performed before performing any actions in the scripts.

Wireless LAN requires some parameters such as essid, key, and frequency to connect to
the network. essid is the name of the wireless network to which we need to connect. Some
networks use a WEP key for authentication, which is usually a 5 or 10 letter hex passphrase.
Another parameter is the frequency assigned to the network which the iwconfig command
uses to attach the wireless card with the proper wireless network.

We can scan and list the available wireless network using the utility iwlist. To scan, use the
following command:

iwlist scan

wlan0 Scan completed :

 Cell 01 - Address: 00:12:17:7B:1C:65

 Channel:11

 Frequency:2.462 GHz (Channel 11)

 Quality=33/70 Signal level=-77 dBm

 Encryption key:on

 ESSID:"model-2"

Chapter 7

267

The Frequency parameter can be extracted from the scan result, from the line
Frequency:2.462 GHz (Channel 11).

WEP is used in this example for simplicity, but its worthy to note that currently
it is considered insecure. If you are administering the wireless network, make
sure that you use a variant of Wi-Fi Protected Access2 (WPA2) to be secure.

See also
 f The Comparisons and tests recipe of Chapter 1, Shell Something Out, explains

string comparisons

Password-less auto-login with SSH
SSH is widely used with automation scripting, as it makes it possible to remotely execute
commands at remote hosts and read their outputs. Usually, SSH is authenticated by using
a username and password, which are prompted during the execution of SSH commands.
However, providing passwords in automated scripts is impractical, so we need to automate
logins. SSH has an in-built feature by which SSH can auto-login using SSH keys. This recipe
describes how to create SSH keys and facilitate auto-login.

Getting ready
SSH uses an encryption technique called asymmetric keys consisting of two keys: a public
key and a private key for automatic authentication. We can create an authentication key pair
using the ssh-keygen command. For automating the authentication, the public key must be
placed at the server (by appending the public key to the ~/.ssh/authorized_keys file)
and its private key file of the pair should be present at the ~/.ssh directory of the user at
the client machine, which is the computer you are logging in from. Several configurations
(for example, path and name of the authorized_keys file) regarding the SSH can be
configured by altering the configuration file /etc/ssh/sshd_config.

How to do it...
There are two steps towards setup of automatic authentication with SSH. They are:

 f Creating the SSH key on the machine, which requires a login to a remote machine

 f Transferring the public key generated to the remote host and appending it to
~/.ssh/authorized_keys

The Old-boy Network

268

In order to create an SSH key, enter the ssh-keygen command with the encryption algorithm
type specified as RSA as follows:

$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/slynux/.ssh/id_rsa):

Created directory '/home/slynux/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/slynux/.ssh/id_rsa.

Your public key has been saved in /home/slynux/.ssh/id_rsa.pub.

The key fingerprint is:

f7:17:c6:4d:c9:ee:17:00:af:0f:b3:27:a6:9c:0a:05 slynux@slynux-laptop

The key's randomart image is:

+--[RSA 2048]----+

| . |

| o . .|

| E o o.|

| ...oo |

| .S .+ +o.|

| . . .=....|

| .+.o...|

| . . + o. .|

| ..+ |

+-----------------+

You need to enter a passphrase for generating the public-private key pair. It is also possible
to generate the key pair without entering a passphrase, but it is insecure. We can write
monitoring scripts that use automated login from the script to several machines. In such
cases, you should leave the passphrase empty while running the ssh-keygen command to
prevent the script from asking for a passphrase while running.

Now ~/.ssh/id_rsa.pub and ~/.ssh/id_rsa have been generated. id_rsa.pub is the
generated public key and id_rsa is the private key. The public key has to be appended to the
~/.ssh/authorized_keys file on remote servers where we need to auto-login from the
current host.

In order to append a key file, use:

$ ssh USER@REMOTE_HOST "cat >> ~/.ssh/authorized_keys" < ~/.ssh/id_rsa.
pub

Password:

Provide the login password in the previous command.

Chapter 7

269

The auto-login has been set up and from now onwards, SSH will not prompt for passwords
during execution. Test this with the following command:

$ ssh USER@REMOTE_HOST uname

Linux

You will not be prompted for a password.

Most Linux distros ship with a tool called ssh-copy-id which will automatically
add your private key to the authorized_keys file on the remote server. Use it
like this:
ssh-copy-id USER@REMOTE_HOST

Port forwarding using SSH
Port forwarding is a technique by which you can enable other computers to connect to
a particular service on a remote server using your machine. To understand this with an
example, let's say your machine is assigned the IP 192.168.1.2 on a network and it has an
Internet connection as well. Now, if you forward your machine's port 8000 to port 80 of
www.kernel.org, it will be possible for some other computer to access the Linux Kernel
website by going to http://192.168.1.2:8000 using a browser. Let's see how to do this.

How to do it...
You can either forward a port on your local machine to another machine and it's also possible
to forward a port on a remote machine to another machine. In the following methods, you will
eventually get a shell prompt once the forwarding is complete. Keep this shell open to use the
port forward and exit it whenever you want to stop the port forward.

1. Use this command to forward a port 8000 on your local machine to port 80 of
www.kernel.org:
ssh -L 8000:www.kernel.org:80 user@localhost

Here, replace user with the username on your local machine.

2. Use this command to forward a port 8000 on a remote machine to port 80 of
www.kernel.org:

ssh -L 8000:www.kernel.org:80 user@REMOTE_MACHINE

Here, replace REMOTE_MACHINE with the hostname or IP address of the remote
machine and user with the username that you have SSH access to.

The Old-boy Network

270

There's more...
Port forwarding can be made more useful using non-interactive mode or reverse port
forwarding. Let's see these.

Non-interactive port forward
If you want to just set the port forwarding instead of having a shell to be kept open for the port
forwarding to be effective, use the following form of ssh:

ssh -fL 8000:www.kernel.org:80 user@localhost -N

The -f instructs ssh to fork to background just before executing the command, and -l for
the login name for the remote host machine. -N tells ssh that there is no command to run;
we only want to forward ports.

Reverse port forwarding
Reverse port forwarding is one of the most powerful features of SSH. This is most useful in
situations where you have a machine which isn't publicly accessible from the Internet, but
you want others to be able to access a service on this machine. In this case, if you have SSH
access to a remote machine which is publicly accessible on the Internet, you can set up a
reverse port forward on that remote machine to the local machine which is running
the service.

Reverse port forwarding is very similar to port forwarding:

ssh -R 8000:localhost:80 user@REMOTE_MACHINE

This will forward port 8000 on the remote machine to port 80 on the local machine.
As always, don't forget to replace REMOTE_MACHINE with the hostname of the IP address
of the remote machine.

Using this method, if you browse to http://localhost on the remote machine, you will
actually connect to a web server running on port 8000 of the local machine.

Mounting a remote drive at a local mount
point

Having a local mount point to access the remote host filesystem is really helpful while carrying
out both read and write data transfer operations. SSH is the common transfer protocol
available in a network and hence, we can make use of it with sshfs which enables you to
mount a remote filesystem to a local mount point. Let's see how to do it.

Chapter 7

271

Getting ready
sshfs doesn't come by default with GNU/Linux distributions. Install sshfs by using a
package manager. sshfs is an extension to the FUSE filesystem package that allows
supported OSs to mount a wide variety of data as if it were a local filesystem.

For more information on FUSE, visit its website at http://fuse.sourceforge.net/.

How to do it...
In order to mount a filesystem location at a remote host to a local mount point, use:

sshfs -o allow_other user@remotehost:/home/path /mnt/mountpoint

Password:

Issue the password when prompted, and data at /home/path on the remote host can be
accessed via a local mount point /mnt/mountpoint.

In order to unmount after completing the work, use:

umount /mnt/mountpoint

See also
 f The Running commands on remote host with SSH recipe, explains the ssh command

Network traffic and port analysis
Network ports are essential parameters of network-based applications. Applications open
ports on the host and communicate to a remote host through opened ports at the remote
host. Having awareness of opened and closed ports is essential for security context. Malwares
and root kits may be running on the system with custom ports and custom services that allow
attackers to capture unauthorized access to data and resources. By getting the list of opened
ports and services running on the ports, we can analyze and defend the system from being
controlled by root kits and helps to remove them efficiently. The list of opened ports is not only
helpful for malware detection, but is also useful for collecting information about opened ports
on the system which enables us to debug network-based applications. It helps to analyze
whether certain port connections and port listening functionalities are working fine. This
recipe discusses various utilities for port analysis.

The Old-boy Network

272

Getting ready
Various commands are available for listing ports and services running on each port
(for example, lsof and netstat). These commands are, by default, available on all
GNU/Linux distributions.

How to do it...
In order to list all opened ports on the system along with the details on each service attached
to it, use:

$ lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

firefox-b 2261 slynux 78u IPv4 63729 0t0 TCP localhost:47797-
>localhost:42486 (ESTABLISHED)

firefox-b 2261 slynux 80u IPv4 68270 0t0 TCP slynux-laptop.
local:41204->192.168.0.2:3128 (CLOSE_WAIT)

firefox-b 2261 slynux 82u IPv4 68195 0t0 TCP slynux-laptop.
local:41197->192.168.0.2:3128 (ESTABLISHED)

ssh 3570 slynux 3u IPv6 30025 0t0 TCP localhost:39263-
>localhost:ssh (ESTABLISHED)

ssh 3836 slynux 3u IPv4 43431 0t0 TCP slynux-laptop.
local:40414->boneym.mtveurope.org:422 (ESTABLISHED)

GoogleTal 4022 slynux 12u IPv4 55370 0t0 TCP localhost:42486
(LISTEN)

GoogleTal 4022 slynux 13u IPv4 55379 0t0 TCP localhost:42486-
>localhost:32955 (ESTABLISHED)

Each entry in the output of lsof corresponds to each service that opens a port for
communication. The last column of output consists of lines similar to:

laptop.local:41197->192.168.0.2:3128

In this output, laptop.local:41197 corresponds to the localhost and 192.168.0.2:3128
corresponds to the remote host. 41197 is the port opened from the current machine, and 3128
is the port to which the service connects at the remote host.

In order to list out the opened ports from the current machine, use:

$ lsof -i | grep ":[0-9]\+->" -o | grep "[0-9]\+" -o | sort | uniq

Chapter 7

273

How it works...
The :[0-9]\+-> regex for grep is used to extract the host port portion (:34395->) from the
lsof output. The next grep is used to extract the port number (which is numeric). Multiple
connections may occur through the same port and hence, multiple entries of the same port
may occur. In order to display each port once, they are sorted and the unique ones
are printed.

There's more...
Let's go through additional utilities that can be used for viewing the opened port and network
traffic related information.

Opened port and services using netstat
netstat is another command for the network service analysis. Explaining all the features
of netstat is not in the scope of this recipe. We will now look at how to list services and
port numbers.

Use netstat -tnp to list opened port and services as follows:

$ netstat -tnp

(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

tcp 0 0 192.168.0.82:38163 192.168.0.2:3128
ESTABLISHED 2261/firefox-bin

tcp 0 0 192.168.0.82:38164 192.168.0.2:3128 TIME_
WAIT -

tcp 0 0 192.168.0.82:40414 193.107.206.24:422
ESTABLISHED 3836/ssh

tcp 0 0 127.0.0.1:42486 127.0.0.1:32955
ESTABLISHED 4022/GoogleTalkPlug

tcp 0 0 192.168.0.82:38152 192.168.0.2:3128
ESTABLISHED 2261/firefox-bin

tcp6 0 0 ::1:22 ::1:39263
ESTABLISHED -

tcp6 0 0 ::1:39263 ::1:22
ESTABLISHED 3570/ssh

The Old-boy Network

274

Creating arbitrary sockets
For defined operations such as file transfer, remote shells, and so on, we have prebuilt tools
such as ftp and ssh respectively. However, in some cases you will find the need to do a
customized network operation. An example for this might be writing a script which will do
something when a remote client connects to your machine. In this recipe, we will create
simple network sockets and use them for communication.

Getting ready
To perform these things, we will need to create network sockets which enable us to do data
transfer over a TCP/IP network. The easiest way to do this is by using the command netcat
(or nc). We need two sockets: one listens for connections and the other connects to this one.

How to do it...
1. Set up the listening socket using the following:

nc -l 1234

This will create a listening socket on port 1234 on the local machine.

2. Connect to the socket using the following:
nc HOST 1234

If you are running this on the same machine that the listening socket is, replace HOST
with localhost, otherwise replace it with the IP address or hostname of the machine.

3. To actually send messages, type something and press Enter on the terminal
where you performed step 2. The message will appear on the terminal where
you performed step 1.

There's more...
Network sockets can be used for more than just text communication; let's see how.

Quickly copying files over the network
We can exploit netcat and shell redirection to easily copy files over the network:

1. On the receiver machine, run the following command:
nc -l 1234 > destination_filename

2. On the sender machine, run the following command:

nc HOST 1234 < source_filename

Chapter 7

275

Sharing an Internet connection
In the modern computing world, we are using different kinds of devices in our day-to-day life.
We use desktop computers, netbooks, laptop computers, tablets, smartphones and so on.
Additionally, we feel the need to keep all of these connected to the Internet for which people
usually keep a wireless router which distributes an Internet connection across these devices.
But what if you don't have a router (or your router just blew up) and you need to share the
Internet? No problem! Linux, iptables and some scripting are at your rescue.

Getting ready
This recipe uses iptables for setting up Network Address Translation (NAT) which lets
a networking device share a connection with other devices. You will need the name of your
wireless interface for which just use the iwconfig command.

How to do it...
1. Connect to the Internet. In this recipe, we are assuming that the primary wired

network connection, eth0 is connected to Internet. Change it according to your setup.

2. Using your distro's network management tool, create a new ad hoc wireless
connection with the following settings:

 � IP address: 10.99.66.55

 � Subnet mask: 255.255.0.0 (16)

3. Use the following shell script to share the internet connection:
#!/bin/bash

#filename: netsharing.sh

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -A FORWARD -i $1 -o $2 -s 10.99.0.0/16 -m conntrack
--ctstate NEW -j ACCEPT

iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j
ACCEPT

iptables -A POSTROUTING -t nat -j MASQUERADE

4. Run the script as follows:
./netsharing.sh eth0 wlan0

Where eth0 is the interface which is connected to the Internet and wlan0 is the
wireless interface which is supposed to share the Internet to other devices.

The Old-boy Network

276

5. Connect your devices to the wireless network you just created with the
following settings:

 � IP address: 10.99.66.56 (and so on)

 � Subnet mask: 255.255.0.0

To make this more convenient, you might want to install a DHCP and
DNS server on your machine, so it's not necessary to configure IPs on
devices manually. A handy tool for this is dnsmasq which you can use
for performing both DHCP and DNS operations.

Basic firewall using iptables
A firewall is a network service which is used to filter network traffic for unwanted traffic, block
it, and allow the desired traffic to pass. The most powerful tool on Linux is iptables, which
has kernel integration in recent versions of the kernels.

How to do it...
iptables is present, by default, on all modern Linux distributions. We will see how to
configure iptables for common scenarios.

1. Block traffic to a specific IP address:
#iptables -A OUTPUT -d 8.8.8.8 -j DROP

If you run PING 8.8.8.8 in another terminal before running the iptables command,
you will see this:
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_req=1 ttl=56 time=221 ms

64 bytes from 8.8.8.8: icmp_req=2 ttl=56 time=221 ms

ping: sendmsg: Operation not permitted

ping: sendmsg: Operation not permitted

Here, the ping fails the third time because we used the iptables command to drop
all traffic to 8.8.8.8.

2. Block traffic to a specific port:

#iptables -A OUTPUT -p tcp -dport 21 -j DROP

$ ftp ftp.kde.org

ftp: connect: Connection timed out

Chapter 7

277

How it works...
iptables is the standard command used for firewall on Linux. The first argument in
iptables is -A which instructs iptables to append a new rule to the chain specified as
the next parameter. A chain is simply a collection of rules, and in this recipe we have used the
OUTPUT chain which runs on all the outgoing traffic.

In the first step, the -d parameter specifies the destination to match with the packet being
sent. After that, we use the parameter -j to instruct iptables to DROP the packet.

Similarly, in the second one, we use the -p parameter to specify that this rule should match
only TCP on the port specified with -dport. Using this we can block all the outbound
FTP traffic.

There's more...
While playing with iptables commands, you might want to clear the changes made to the
iptables chains. To do this, just use:

#iptables --flush

8
Put on the Monitor's Cap

In this chapter, we will cover:

 f Monitoring disk usage
 f Calculating the execution time for a command
 f Collecting information about logged in users, boot logs, and boot failures
 f Listing the top 10 CPU consuming processes in an hour
 f Monitoring command outputs with watch
 f Logging access to files and directories
 f Logfile management with logrotate
 f Logging with syslog
 f Monitoring user logins to find intruders
 f Remote disk usage health monitor
 f Finding out active user hours on a system
 f Measuring and optimizing power usage
 f Monitoring disk activity
 f Checking disks and filesystems for errors

Introduction
An operating system consists of a collection of system software that is designed for different
purposes. It is a good idea to monitor each of these programs in order to know whether they
are working properly or not. We will also use a technique called logging by which we can get
important information in a file while the program is running. The content of this file can be
used to understand the timeline of operations that are taking place in a running program or
daemon. For instance, if an application or a service crashes, this information helps to debug
the issue and enables us to fix any issues.

Put on the Monitor's Cap

280

This chapter deals with different commands that can be used to monitor different activities.
It also goes through logging techniques and their usages.

Monitoring disk usage
Disk space is a limited resource. We frequently perform disk usage calculation on storage
media (such as hard disks) to find out the free space available on them. When free space
becomes scarce, we find out large files to be deleted or moved in order to create free space. In
addition to this, disk usage manipulations are also used in shell scripting contexts. This recipe
will illustrate various commands used for disk manipulations with a variety of options.

Getting ready
df and du are the two significant commands that are used for calculating disk usage in Linux.
The command df stands for disk free and du stands for disk usage. Let's see how we can use
them to perform various tasks that involve disk usage calculation.

How to do it...
To find the disk space used by a file (or files), use:

$ du FILENAME1 FILENAME2 ..

For example:

$ du file.txt

4

The result is, by default, shown as size in bytes.

To obtain the disk usage for all files inside a directory along with the individual disk usage for
each file showed in each line, use:

$ du -a DIRECTORY

-a outputs results for all files in the specified directory or directories recursively.

Running du DIRECTORY will output a similar result, but it will show only the
size consumed by subdirectories. However, this does not show the disk usage
for each of the files. For printing the disk usage by files, -a is mandatory.

Chapter 8

281

For example:

$ du -a test

4 test/output.txt

4 test/process_log.sh

4 test/pcpu.sh

16 test

An example of using du DIRECTORY is as follows:

$ du test

16 test

There's more...
Let's go through additional usage practices for the du command.

Displaying disk usage in KB, MB, or Blocks
By default, the disk usage command displays the total bytes used by a file. A more
human-readable format is expressed in units such as KB, MB, or GB. In order to print
the disk usage in a display-friendly format, use -h as follows:

du -h FILENAME

For example:

$ du -h test/pcpu.sh

4.0K test/pcpu.sh

Multiple file arguments are accepted

Or

du -h DIRECTORY

$ du -h hack/

16K hack/

Displaying the grand total sum of disk usage
If we need to calculate the total size taken by all the files or directories, displaying individual
file sizes won't help. du has an option -c such that it will output the total disk usage of all files
and directories given as an argument. It appends a line SIZE total with the result. The syntax
is as follows:

$ du -c FILENAME1 FILENAME2..

Put on the Monitor's Cap

282

For example:

du -c process_log.shpcpu.sh

4 process_log.sh

4 pcpu.sh

8 total

Or

$ du -c DIRECTORY

For example:

$ du -c test/

16 test/

16 total

Or

$ du -c *.txt

Wildcards

-c can be used along with other options like -a and -h, in which case they will produce their
usual output with an extra line containing the total size.

There is another option -s (summarize), which will print only the grand total as the output. It
will print the total sum, and the flag -h can be used along with it to print in human-readable
format. This combination has frequent use in practice:

$ du -s FILES(s)

$ du -sh DIRECTORY

For example:

$ du -sh slynux

680K slynux

Printing files in specified units
We can force du to print the disk usage in specified units. For example:

 f Print the size in bytes (by default) by using:
$ du -b FILE(s)

 f Print the size in kilobytes by using:
$ du -k FILE(s)

Chapter 8

283

 f Print the size in megabytes by using:
$ du -m FILE(s)

 f Print the size in the given BLOCK size specified by using:

$ du -B BLOCK_SIZE FILE(s)

Here, BLOCK_SIZE is specified in bytes.

An example consisting of all the commands is as follows:

$ du pcpu.sh

4 pcpu.sh

$ du -b pcpu.sh

439 pcpu.sh

$ du -k pcpu.sh

4 pcpu.sh

$ du -m pcpu.sh

1 pcpu.sh

$ du -B 4 pcpu.sh

1024 pcpu.sh

Excluding files from the disk usage calculation
There are circumstances when we need to exclude certain files from the disk usage
calculation. Such excluded files can be specified in two ways:

 f Wildcards: We can specify a wildcard as follows:
$ du --exclude "WILDCARD" DIRECTORY

For example:

$ du --exclude "*.txt" FILES(s)

Excludes all .txt files from calculation

 f Exclude list: We can specify a list of files to be excluded from a file as follows:

$ du --exclude-from EXCLUDE.txt DIRECTORY

EXCLUDE.txt is the file containing list

Put on the Monitor's Cap

284

There are also some other handy options available with du to restrict the disk usage
calculation. With the --max-depth parameter, we can specify the maximum depth of the
hierarchy du should traverse while calculating disk usage. Specifying a depth of 1 calculates
the size of files in the current directory, a depth of 2, specifies to calculate files in the current
directory and the next subdirectory, and so on. For example:

$ du --max-depth 2 DIRECTORY

du can be restricted to traverse only one filesystem by using the -x
argument. Suppose du DIRECTORY is run, it will traverse through
every possible subdirectory of DIRECTORY recursively. A subdirectory
in the directory hierarchy may be a mount point (for example,
/mnt/sda1 is a subdirectory of /mnt and it is a mount point for the
device /dev/sda1). du will traverse that mount point and calculate
the sum of disk usage for that device filesystem also. -x is used to
prevent du from doing this. For example, du -x / will exclude all
mount points in /mnt/ for the disk usage calculation.

While using du make sure that the directories or files it traverses have the proper
read permissions.

Finding the 10 largest size files from a given directory
Finding large files is a task we come across regularly so that we can delete or move them.
We can easily find out such files using du and sort commands like this:

$ du -ak SOURCE_DIR | sort -nrk 1 | head

Here, -a makes du traverse the SOURCE_DIR and calculates the size of all files and
directories. The first column of the output contains the size in kilobytes since -k is
specified, and the second column contains the file or folder name.

sort is used to perform a numerical sort with column 1 and reverse it. head is used to parse
the first 10 lines from the output. For example:

$ du -ak /home/slynux | sort -nrk 1 | head -n 4

50220 /home/slynux

43296 /home/slynux/.mozilla

43284 /home/slynux/.mozilla/firefox

43276 /home/slynux/.mozilla/firefox/8c22khxc.default

One of the drawbacks of the preceding one-liner is that it includes directories in the result.
However, when we need to find only the largest files and not directories, we can improve the
one-liner to output only the large files as follows:

$ find . -type f -exec du -k {} \; | sort -nrk 1 | head

Chapter 8

285

We used find to filter only files to du rather than allow du to traverse recursively by itself.

Disk free information
The du command provides information about the usage, whereas df provides information
about free disk space. Use -h with df to print the disk space in human-readable format.
For example:

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 9.2G 2.2G 6.6G 25% /

none 497M 240K 497M 1% /dev

none 502M 168K 501M 1% /dev/shm

none 502M 88K 501M 1% /var/run

none 502M 0 502M 0% /var/lock

none 502M 0 502M 0% /lib/init/rw

none 9.2G 2.2G 6.6G 25% /var/lib/ureadahead/debugfs

Calculating the execution time for a
command

While testing an application's efficiency or comparing different algorithms to solve a given
problem, the execution time taken is very critical. A good algorithm should execute in a
minimum amount of time. Let's see how to calculate the execution time.

How to do it...
1. To measure the execution time, just prefix time to the command you want to run.

For example:
$ time COMMAND

The command will execute and its output will be shown. Along with the output, the
time command appends the time taken in stderr. An example is as follows:
$ time ls

test.txt

next.txt

real 0m0.008s

user 0m0.001s

sys 0m0.003s

It will show real, user, and system times for execution.

Put on the Monitor's Cap

286

An executable binary of the time command is available at
/usr/bin/time, as well as a shell built-in named time
exists. When we run time, it calls the shell built-in by default.
The shell built-in time has limited options. Hence, we should
use an absolute path for the executable (/usr/bin/time) for
performing additional functionalities.

2. We can write these time statistics to a file using the -o filename option as follows:
$ /usr/bin/time -o output.txt COMMAND

The filename should always appear after the -o flag.

In order to append the time statistics to a file without overwriting, use the -a flag
along with the -o option as follows:

$ /usr/bin/time -a -o output.txt COMMAND

3. We can also format the time outputs using format strings with -f option. A format
string consists of parameters corresponding to specific options prefixed with %.
Format strings for real time, user time, and sys time are as follows:

 � Real time: %e
 � User: %U
 � sys: %S

By combining parameter strings, we can create a formatted output as follows:
$ /usr/bin/time -f "FORMAT STRING" COMMAND

For example:
$ /usr/bin/time -f "Time: %U" -a -o timing.log uname

Linux

Here %U is the parameter for user time.

When a formatted output is produced, the formatted output of the command is
written to the standard output and the output of the COMMAND, which is timed, is
written to standard error. We can redirect the formatted output using a redirection
operator (>) and redirect the time information output using the (2>) error
redirection operator.

For example:

$ /usr/bin/time -f "Time: %U" uname> command_output.txt 2>time.log

$ cat time.log

Time: 0.00

$ cat command_output.txt

Linux

Chapter 8

287

4. To show the page size, use the %Z parameters as follows:

$ /usr/bin/time -f "Page size: %Z bytes" ls> /dev/null

Page size: 4096 bytes

Here the output of the timed command is not required and hence, the standard
output is directed to the /dev/null device in order to prevent it from writing to
the terminal.

More format string parameters are available. Try man time for more details.

How it works...
The three different times can be defined as follows:

 f Real is wall clock time—the time from start to finish of the call. This is all elapsed time
including time slices used by other processes and the time that the process spends
when blocked (for example, if it is waiting for I/O to complete).

 f User is the amount of CPU time spent in user-mode code (outside the kernel) within
the process. This is only the actual CPU time used in executing the process. Other
processes, and the time that the process spends when blocked do not count towards
this figure.

 f Sys is the amount of CPU time spent in the kernel within the process. This means
executing the CPU time spent in system calls within the kernel, as opposed to the
library code, which is still running in the user space. Like user time, this is only the
CPU time used by the process. Refer to the following table for a brief description of
kernel mode (also known as supervisor mode) and the system call mechanism.

Many details regarding a process can be collected using the time command. The important
details include, exit status, number of signals received, number of context switches made,
and so on. Each parameter can be displayed by using a suitable format string.

The following table shows some of the interesting parameters that can be used:

Parameter Description
%C Name and command-line arguments of the command being timed.
%D Average size of the process's unshared data area, in kilobytes.
%E Elapsed real (wall clock) time used by the process in [hours:]minutes:seconds.
%x Exit status of the command.
%k Number of signals delivered to the process.
%W Number of times the process was swapped out of the main memory.
%Z System's page size in bytes. This is a per-system constant, but varies between

systems.

Put on the Monitor's Cap

288

Parameter Description
%P Percentage of the CPU that this job got. This is just user + system times divided

by the total running time. It also prints a percentage sign.
%K Average total (data + stack + text) memory usage of the process, in Kilobytes.
%w Number of times that the program was context-switched voluntarily, for instance

while waiting for an I/O operation to complete.
%c Number of times the process was context-switched involuntarily (because the

time slice expired).

Collecting information about logged in
users, boot logs, and boot failures

Collecting information about the operating environment, logged in users, the time for which
the computer has been powered on, and boot failures are very helpful. This recipe will go
through a few commands used to gather information about a live machine.

Getting ready
This recipe will introduce commands who, w, users, uptime, last, and lastb.

How to do it...
1. To obtain information about users currently logged into the machine use:

$ who

slynux pts/0 2010-09-29 05:24 (slynuxs-macbook-pro.local)

slynux tty7 2010-09-29 07:08 (:0)

This output lists the login name, the TTY used by the users, login time, and remote
hostname (or X display information) about logged in users.

TTY (the term comes from TeleTYpewriter) is the device file
associated with a text terminal which is created in /dev when
a terminal is newly spawned by the user (for example, /dev/
pts/3). The device path for the current terminal can be found
out by typing and executing the command tty.

Chapter 8

289

2. To obtain more detailed information about the logged in users, use:
$ w
 07:09:05 up 1:45, 2 users, load average: 0.12, 0.06, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
slynux pts/0 slynuxs 05:24 0.00s 0.65s 0.11s sshd: slynux
slynux tty7 :0 07:08 1:45m 3.28s 0.26s gnome-session

This first line lists the current time, system uptime, number of users currently logged
on, and the system load averages for the past 1, 5, and 15 minutes. Following this,
the details about each login are displayed with each line containing the login name,
the TTY name, the remote host, login time, idle time, total CPU time used by the user
since login, CPU time of the currently running process, and the command line of
their current process.

Load average in the uptime command's output is a
parameter that indicates system load. This is explained
in more detail in Chapter 9, Administration Calls.

3. In order to list only the usernames of the users currently logged into the
machine, use:
$ users

slynux slynux slynux hacker

If a user has opened multiple terminals, it will show that many entries for the same
user. In the preceding output, the user slynux has opened three pseudo terminals.
The easiest way to print unique users is to use sort and uniq to filter as follows:
$ users | tr ' ' '\n' | sort | uniq
slynux
hacker

We have used tr to replace ' ' with '\n'. Then a combination of sort and uniq
will produce unique entries for each user.

4. In order to see how long the system has been powered on, use:
$ uptime
 21:44:33 up 3:17, 8 users, load average: 0.09, 0.14, 0.09

The time that follows the word up indicates the time for which the system has been
powered on. We can write a simple one-liner to extract the uptime only:
$ uptime | grep -Po '\d{2}\:\d{2}\:\d{2}'

This uses grep with a perl-style regex to extract only three two-digit numbers
separated by colons.

Put on the Monitor's Cap

290

5. In order to get information about previous boot and user logged sessions, use:
$ last

slynux tty7 :0 Tue Sep 28 18:27 still
logged in

reboot system boot 2.6.32-21-generic Tue Sep 28 18:10 - 21:46
(03:35)

slynux pts/0 :0.0 Tue Sep 28 05:31 - crash
(12:39)

The last command will provide information about logged in sessions. It is actually
a log of system logins that consists of information, such as tty from which it has
logged in, login time, status, and so on.

The last command uses the log file /var/log/wtmp for the input log data. It is
also possible to explicitly specify the log file for the last command using the -f
option. For example:

$ last -f /var/log/wtmp

6. In order to obtain information about login sessions for a single user, use:
$ last USER

7. Get information about reboot sessions as follows:
$ last reboot

reboot system boot 2.6.32-21-generi Tue Sep 28 18:10 - 21:48
(03:37)

reboot system boot 2.6.32-21-generi Tue Sep 28 05:14 - 21:48
(16:33)

8. In order to get information about failed user login sessions, use:

lastb

test tty8 :0 Wed Dec 15 03:56 - 03:56
(00:00)

slynux tty8 :0 Wed Dec 15 03:55 - 03:55
(00:00)

You should run lastb as the root user.

Chapter 8

291

Listing the top 10 CPU consuming processes
in an hour

CPU is a major resource and it is good to keep a track of the processes that consume most of
the CPU in a period of time. By monitoring the CPU usage for a certain period, we can identify
the processes that keep the CPU busy all the time and troubleshoot them to efficiently use the
CPU. In this recipe, we will discuss process monitoring and logging.

Getting ready
ps command is used for collecting details about the processes running on the system. It can
be used to gather details, such as CPU usage, commands under execution, memory usage,
status of processes, and so on. Processes that consume the CPU for one hour can be logged,
and the top 10 can be determined by proper usage of ps and text processing. For more
details on the ps command, refer to Chapter 9, Administration Calls.

How to do it...
Let's go through the following shell script for monitoring and calculating CPU usages in
one hour:

#!/bin/bash

#Name: pcpu_usage.sh

#Description: Script to calculate cpu usage by processes for 1 hour

SECS=3600

UNIT_TIME=60

#Change the SECS to total seconds for which monitoring is to be
performed.

#UNIT_TIME is the interval in seconds between each sampling

STEPS=$(($SECS / $UNIT_TIME))

echo Watching CPU usage... ;

for((i=0;i<STEPS;i++))

do

 ps -eocomm,pcpu | tail -n +2 >> /tmp/cpu_usage.$$

Put on the Monitor's Cap

292

 sleep $UNIT_TIME

done

echo

echo CPU eaters :

cat /tmp/cpu_usage.$$ | \

awk '

{ process[$1]+=$2; }

END{

 for(i in process)

 {

 printf("%-20s %s\n",i, process[i]) ;

 }

 }' | sort -nrk 2 | head

rm /tmp/cpu_usage.$$

#Remove the temporary log file

A sample output is as follows:

$./pcpu_usage.sh

Watching CPU usage...

CPU eaters :

Xorg 20

firefox-bin 15

bash 3

evince 2

pulseaudio 1.0

pcpu.sh 0.3

wpa_supplicant 0

wnck-applet 0

watchdog/0 0

usb-storage 0

Chapter 8

293

How it works...
In the preceding script, the major input source is ps -eocomm,pcpu. comm stands for
command name and pcpu stands for the CPU usage in percent. It will output all the process
names and the CPU usage in percent. For each process there exists a line in the output. Since
we need to monitor the CPU usage for one hour, we repeatedly take usage statistics using ps
-eocomm,pcpu | tail -n +2 and append to a file /tmp/cpu_usage.$$ running inside
a for loop with 60 seconds wait in each iteration. This wait is provided by sleep 60. It will
execute ps once in each minute. tail -n +2 is used to strip off the header and COMMAND
%CPU in the ps output.

$$ in cpu_usage.$$ signifies that it is the process ID of the current script. Suppose PID
is 1345; during execution it will be replaced as /tmp/cpu_usage.1345. We place this file in
/tmp since it is a temporary file.

The statistics file will be ready after one hour and will contain 60 sets of entries, each set
containing entries corresponding to the process status for each minute. Then awk is used
to sum the total CPU usage for each process. An associative array process is used for the
summation of CPU usages. It uses the process name as array index. Finally, it sorts the result
with a numeric reverse sort according to the total CPU usage and pass through head to obtain
the top 10 usage entries.

See also
 f The Using awk for advanced text processing recipe of Chapter 4, Texting and Driving,

explains the awk command

 f The Using head and tail for printing the last or first 10 lines recipe of Chapter 3,
File In, File Out, explains the tail command

Monitoring command outputs with watch
We might need to continuously watch the output of a command for a period of time in equal
intervals. For example, while copying a large file, we might need to watch the growth of the file
size. In order to do that, we can use the watch command to execute the du command and
output repeatedly. This recipe explains how to do that.

How to do it...
The watch command can be used to monitor the output of a command on the terminal at
regular intervals. The syntax of the watch command is as follows:

$ watch COMMAND

Put on the Monitor's Cap

294

For example:

$ watch ls

Or

$ watch 'COMMANDS'

For example:

$ watch 'ls -l | grep "^d"'

list only directories

This command will update the output at a default interval of two seconds.

We can also specify the time interval at which the output needs to be updated, by using
-n SECONDS. For example:

$ watch -n 5 'ls -l'

#Monitor the output of ls -l at regular intervals of 5 seconds

There's more
Let's explore an additional feature of the watch command.

Highlighting the differences in the watch output
In watch, there is an option for updating the differences that occur during the execution of
the command at an update interval to be highlighted using colors. Difference highlighting can
be enabled by using the -d option as follows:

$ watch -d 'COMMANDS'

Logging access to files and directories
Logging of file and directory access is very helpful to keep a track of changes that are
happening to files and folders. This recipe will describe how to log such accesses.

Getting ready
The inotifywait command can be used to gather information about file accesses. It
doesn't come by default with every Linux distro. You have to install the inotify-tools
package by using a package manager. It also requires the Linux kernel to be compiled with
inotify support. Most of the new GNU/Linux distributions come with inotify enabled in
the kernel.

Chapter 8

295

How to do it...
Let's walk through the shell script to monitor the directory access:

#/bin/bash

#Filename: watchdir.sh

#Description: Watch directory access

path=$1

#Provide path of directory or file as argument to script

inotifywait -m -r -e create,move,delete $path -q

A sample output is as follows:

$./watchdir.sh .

./ CREATE new

./ MOVED_FROM new

./ MOVED_TO news

./ DELETE news

How it works...
The previous script will log events, create, move, and delete files and folders from the given
path. The -m option is given for monitoring the changes continuously, rather than going to
exit after an event happens, and -r enables a recursive watch of the directories (symbolic
links are ignored). Finally, -e specifies the list of events to be watched and -q is to reduce the
verbose messages and print only the required ones. This output can be redirected to a log file.

We can add or remove the event list. Important events available are as follows:

Event Description
access When a read happens to a file.
modify When file contents are modified.
attrib When metadata is changed.
move When a file undergoes a move operation.
create When a new file is created.
open When a file undergoes an open operation.
close When a file undergoes a close operation.
delete When a file is removed.

Put on the Monitor's Cap

296

Logfile management with logrotate
Logfiles are essential components of a Linux system to keep track of events happening on
different services on the system. This helps to debug issues as well as provide statistics on
the live machine. Management of logfiles is required because as time passes, the size of a
logfile gets bigger and bigger. Therefore, we use techniques called rotation such that we limit
the size of the logfile and if the logfile reaches a size beyond the limit, it will strip the logfile
with that size and store the older entries in the logfile archived in log directories. Hence, older
logs can be stored and kept for future references. Let's see how to rotate logs and store them.

Getting ready
logrotate is a command every Linux system admin should know. It helps to restrict the
size of the logfile to the given SIZE. In a logfile, the logger appends information to the log
file. Hence, the recent information appears at the bottom of the log file. logrotate will
scan specific logfiles according to the configuration file. It will keep the last 100 kilobytes
(for example, specified SIZE = 100 k) from the logfile and move rest of the data (older log
data) to a new file logfile_name.1 with older entries. When more entries occur in the
logfile (logfile_name.1) and it exceeds the SIZE, it updates the logfile with recent entries
and creates logfile_name.2 with older logs. This process can easily be configured with
logrotate. logrotate can also compress the older logs as logfile_name.1.gz,
logfile_name2.gz, and so on. The option of whether older log files are to be compressed
or not is available with the logrotate configuration.

How to do it...
logrotate has the configuration directory at /etc/logrotate.d. If you look at this
directory by listing its contents, many other logfile configurations can be found.

We can write our custom configuration for our logfile (say /var/log/program.log)
as follows:

$ cat /etc/logrotate.d/program
/var/log/program.log {
missingok
notifempty
size 30k
 compress
weekly
 rotate 5
create 0600 root root
}

Chapter 8

297

Now the configuration is complete. /var/log/program.log in the configuration specifies
the logfile path. It will archive old logs in the same directory path.

How it works...
 Let's see what each of the parameters in the configuration mean:

Parameter Description
missingok Ignore if the logfile is missing and return without rotating

the log.
notifempty Only rotate the log if the source logfile is not empty.
size 30k Limit the size of the logfile for which the rotation is to be

made. It can be 1 M for 1 MB.
compress Enable compression with gzip for older logs.
weekly Specify the interval at which the rotation is to be performed.

It can be weekly, yearly, or daily.
rotate 5 It is the number of older copies of logfile archives to

be kept. Since 5 is specified, there will be program.
log.1.gz, program.log.2.gz, and so on up to
program.log.5.gz.

create 0600 root root Specify the mode, user, and the group of the logfile archive
to be created.

The options specified in the table are optional; we can specify the required options only in
the logrotate configuration file. There are numerous options available with logrotate,
please refer to the man pages (http://linux.die.net/man/8/logrotate) for more
information on logrotate.

Logging with syslog
Usually, logfiles related to different daemons and applications are located in the /var/log
directory, as it is the common directory for storing log files. If you read through a few lines
of the logfiles, you can see that lines in the log are in a common format. In Linux, creating
and writing log information to logfiles at /var/log are handled by a protocol called syslog,
handled by the syslogd daemon. Every standard application makes use of syslog for
logging information. In this recipe, we will discuss how to make use of syslogd for logging
information from a shell script.

Put on the Monitor's Cap

298

Getting ready
Logfiles are very good for helping you deduce what is going wrong with a system. Hence, while
writing critical applications, it is always a good practice to log the progress of an application
with messages into a logfile. We will learn the command logger to log into log files with
syslogd. Before getting to know how to write into logfiles, let's go through a list of important
logfiles used in Linux:

Logfile Description
/var/log/boot.log Boot log information.
/var/log/httpd Apache web server log.
/var/log/messages Post boot kernel information.
/var/log/auth.log User authentication log.
/var/log/dmesg System boot up messages.
/var/log/mail.log Mail server log.
/var/log/Xorg.0.log X Server log.

How to do it...
Let's see how to use logger to create and manage log messages:

1. In order to log to the syslog file /var/log/messages, use:
$ logger LOG_MESSAGE

For example:
$ logger This is a test log line

$ tail -n 1 /var/log/messages

Sep 29 07:47:44 slynux-laptop slynux: This is a test log line

The logfile /var/log/messages is a general purpose logfile. When the logger
command is used, it logs to /var/log/messages by default.

2. In order to log to the syslog with a specified tag, use:
$ logger -t TAG This is a message

$ tail -n 1 /var/log/messages

Sep 29 07:48:42 slynux-laptop TAG: This is a message

Chapter 8

299

syslog handles a number of logfiles in /var/log. However, while logger sends
a message, it uses the tag string to determine in which logfile it needs to be
logged. syslogd decides to which file the log should be made by using the TAG
associated with the log. You can see the tag strings and associated logfiles from
the configuration files located in the /etc/rsyslog.d/ directory.

3. In order to log in to the system log with the last line from another logfile, use:

$ logger -f /var/log/source.log

See also
 f The Using head and tail for printing the last or first 10 lines recipe of Chapter 3,

File In, File Out, explains the head and tail commands

Monitoring user logins to find intruders
Logfiles can be used to gather details about the state of the system. Here is an interesting
scripting problem statement:

We have a system connected to the Internet with SSH enabled. Many attackers are trying to
log in to the system, and we need to design an intrusion detection system by writing a shell
script. Intruders are defined as users who are trying to log in with multiple attempts for more
than two minutes and whose attempts are all failing. Such users are to be detected, and a
report should be generated with the following details:

 f User account to which a login is attempted

 f Number of attempts

 f IP address of the attacker

 f Host mapping for the IP address

 f Time for which login attempts were performed

Getting ready
We can write a shell script that scans through the logfiles and gather the required information
from them. For dealing with SSH login failures, it is useful to know that the user authentication
session log is written to the logfile /var/log/auth.log. The script should scan the logfile to
detect the failure login attempts and perform different checks on the log to infer the data. We
can use the host command to find out the host mapping from the IP address.

Put on the Monitor's Cap

300

How to do it…
Let's write the intruder detection script that can generate a report to intruders by using a
authentication logfile as follows:

#!/bin/bash
#Filename: intruder_detect.sh
#Description: Intruder reporting tool with auth.log input
AUTHLOG=/var/log/auth.log

if [[-n $1]];
then
 AUTHLOG=$1
 echo Using Log file : $AUTHLOG
fi

LOG=/tmp/valid.$$.log
grep -v "invalid" $AUTHLOG > $LOG
users=$(grep "Failed password" $LOG | awk '{ print $(NF-5) }' | sort |
uniq)

printf "%-5s|%-10s|%-10s|%-13s|%-33s|%s\n" "Sr#" "User" "Attempts" "IP
address" "Host_Mapping" "Time range"

ucount=0;

ip_list="$(egrep -o "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" $LOG | sort |
uniq)"

for ip in $ip_list;
do
 grep $ip $LOG > /tmp/temp.$$.log

 for user in $users;
 do
 grep $user /tmp/temp.$$.log> /tmp/$$.log
 cut -c-16 /tmp/$$.log > $$.time
 tstart=$(head -1 $$.time);
 start=$(date -d "$tstart" "+%s");

Chapter 8

301

 tend=$(tail -1 $$.time);
 end=$(date -d "$tend" "+%s")

 limit=$(($end - $start))

 if [$limit -gt 120];
 then
 let ucount++;

 IP=$(egrep -o "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" /tmp/$$.log |
head -1);

 TIME_RANGE="$tstart-->$tend"

 ATTEMPTS=$(cat /tmp/$$.log|wc -l);

 HOST=$(host $IP | awk '{ print $NF }')

 printf "%-5s|%-10s|%-10s|%-10s|%-33s|%-s\n" "$ucount" "$user"
"$ATTEMPTS" "$IP" "$HOST" "$TIME_RANGE";
 fi
 done
done

rm /tmp/valid.$$.log /tmp/$$.log $$.time /tmp/temp.$$.log 2> /dev/null

A sample output is as follows:

Put on the Monitor's Cap

302

How it works…
In the intruder_detect.sh script, we use the auth.log file as input. We can either
provide a logfile as input to the script by using a command-line argument to the script or, by
default, it reads the /var/log/auth.log file. We need to log details about login attempts
for valid usernames only. When a login attempt for an invalid user occurs, a log similar to
Failed password for invalid user bob from 203.83.248.32 port 7016
ssh2 is logged to auth.log. Hence, we need to exclude all lines in the logfile having the
word invalid. The grep command with the invert option (-v) is used to remove all logs
corresponding to invalid users. The next step is to find out the list of users for which login
attempts occurred and failed. The SSH will log lines similar to sshd[21197]: Failed
password for bob1 from 203.83.248.32 port 50035 ssh2 for a failed password.
Hence, we should find all the lines with words Failed password.

Next, all the unique IP addresses are to be found out for extracting all the log lines
corresponding to each IP address. The list of IP addresses is extracted by using a regular
expression for the IP address and the egrep command. A for loop is used to iterate through
the IP address, and the corresponding log lines are found using grep and are written to a
temporary file. The sixth word from the last word in the log line is the username (for example,
bob1). The awk command is used to extract the sixth word from the last word. NF returns
the column number of the last word. Therefore, NF-5 gives the column number of the sixth
word from the last word. We use sort and uniq commands to produce a list of users
without duplication.

Now, we should collect the failed login log lines containing the name of each user. A for
loop is used for reading the lines corresponding to each user and the lines are written to
a temporary file. The first 16 characters in each of the log lines is the timestamp. The cut
command is used to extract the timestamp. Once we have all the timestamps for failed
login attempts for a user, we should check the difference in time between the first attempt
and the last attempt. The first log line corresponds to the first attempt and the last log line
corresponds to the last attempt. We have used head -1 to extract the first line and tail -1
to extract the last line. Now, we have a timestamp for first (tstart) and last attempt (tends)
in string format. Using the date command, we can convert the date in string representation
to total seconds in Unix Epoch time (the Getting, setting dates, and delays recipe of Chapter 1,
Shell Something Out, explains Epoch time).

The variable's start and end has the time in seconds corresponding to the start and end
timestamps in the date string. Now, take the difference between them and check whether
it exceeds two minutes (120 seconds). Thus, the particular user is termed as an intruder
and the corresponding entry with details are to be produced as a log. IP addresses can
be extracted from the log by using a regular expression for the IP address and the egrep
command. The number of attempts is the number of log lines for the user. The number of
lines can be found out by using the wc command. The hostname mapping can be extracted
from the output of the host command by running with the IP address as the argument. The
time range can be printed using the timestamp we extracted. Finally, the temporary files used
in the script are removed.

Chapter 8

303

The previous script is aimed only at illustrating a model for scanning the log and producing a
report from it. It has tried to make the script smaller and simpler to leave out the complexity.
Hence, it has few bugs. You can improve the script by using a better logic.

Remote disk usage health monitor
A network consists of several machines with different users and requires centralized
monitoring of disk usage of remote machines. The system administrator of the network
needs to log the disk usage of all the machines in the network every day. Each log line
should contain details like the date, IP address of the machine, device, capacity of device,
used space, free space, percentage usage, and health status. If the disk usage of any of the
partitions in any remote machine exceeds 80 percent, the health status should be set as
ALERT, else it should be set as SAFE. This recipe will illustrate how to write a monitoring script
that can collect details from remote machines in a network.

Getting ready
We need to collect the disk usage statistics from each machine on the network, individually,
and write a logfile in the central machine. A script that collects the details and writes the log
can be scheduled to run every day at a particular time. SSH can be used to log in to remote
systems to collect disk usage data.

How to do it…
First, we have to set up a common user account on all the remote machines in the network.
It is for the disklog program to log in to the system. We should configure auto-login with SSH
for that particular user (the Password less auto-login with SSH recipe of Chapter 7, The Old-
boy Network, explains configuration of auto-login). We assume that there is a user test in all
remote machines configured with auto-login. Let's go through the shell script:

#!/bin/bash
#Filename: disklog.sh
#Description: Monitor disk usage health for remote systems

logfile="diskusage.log"

if [[-n $1]]
then
 logfile=$1
fi

if [! -e $logfile]

Put on the Monitor's Cap

304

then

 printf "%-8s %-14s %-9s %-8s %-6s %-6s %-6s %s\n" "Date" "IP
address" "Device" "Capacity" "Used" "Free" "Percent" "Status" >
$logfile
fi

IP_LIST="127.0.0.1 0.0.0.0"
#provide the list of remote machine IP addresses

(
for ip in $IP_LIST;
do
 #slynux is the username, change as necessary
 ssh slynux@$ip 'df -H' | grep ^/dev/ > /tmp/$$.df

 while read line;
 do
 cur_date=$(date +%D)
 printf "%-8s %-14s " $cur_date $ip
 echo $line | awk '{ printf("%-9s %-8s %-6s %-6s
%-8s",$1,$2,$3,$4,$5); }'

 pusg=$(echo $line | egrep -o "[0-9]+%")
 pusg=${pusg/\%/};
 if [$pusg -lt 80];
 then
 echo SAFE
 else
 echo ALERT
 fi

 done< /tmp/$$.df
done

) >> $logfile

We can use the cron utility to run the script at regular intervals. For example, to run the script
every day at 10 a.m., write the following entry in the crontab:

00 10 * * * /home/path/disklog.sh /home/user/diskusg.log

Run the command crontab -e and add the preceding line. You can run the script manually
as follows:

$./disklog.sh

Chapter 8

305

A sample output log for the previous script is as follows:

How it works…
In the disklog.sh script, we can provide the logfile path as a command-line argument or
else it will use the default logfile. If the logfile does not exist, it will write the logfile header text
into the new file. -e $logfile is used to check whether the file exists or not. The list of IP
addresses of remote machines are stored in the variable IP_LIST delimited with spaces. It
should be made sure that all the remote systems listed in the IP_LIST have a common user
test with auto-login with SSH configured. A for loop is used to iterate through each of the
IP addresses. A remote command df -H is executed to get the disk free usage data using
the ssh command. It is stored in a temporary file. A while loop is used to read the file line
by line. Data is extracted using awk and is printed. The date is also printed. The percentage
usage is extracted using the egrep command and % is replaced with nothing to get the
numeric value of percent. It is checked whether the percentage value exceeds 80. If it is less
than 80, the status is set as SAFE and if greater than, or equal to 80, the status is set as
ALERT. The entire printed data should be redirected to the logfile. Hence, the portion of
code is enclosed in a subshell () and the standard output is redirected to the logfile.

See also
 f The Scheduling with cron recipe in Chapter 9, Administration Calls, explains the

crontab command

Finding out active user hours on a system
Consider a web server with shared hosting. Many users log in and log out to the server every
day and the user activity gets logged in the server's system log. This recipe is a practice task
to make use of the system logs and to find out how many hours each of the users have spent
on the server and rank them according to the total usage hours. A report should be generated
with the details, such as rank, user, first logged in date, last logged in date, number of times
logged in, and total usage hours. Let's see how we can approach this problem.

Getting ready
The last command is used to list the details about the login sessions of the users in a
system. The log data is stored in the /var/log/wtmp file. By individually adding the
session hours for each user, we can find out the total usage hours.

Put on the Monitor's Cap

306

How to do it…
Let's go through the script to find out active users and generate the report:

#!/bin/bash
#Filename: active_users.sh
#Description: Reporting tool to find out active users

log=/var/log/wtmp

if [[-n $1]];
then
 log=$1
fi

printf "%-4s %-10s %-10s %-6s %-8s\n" "Rank" "User" "Start" "Logins"
"Usage hours"

last -f $log | head -n -2 > /tmp/ulog.$$

cat /tmp/ulog.$$ | cut -d' ' -f1 | sort | uniq> /tmp/users.$$

(
while read user;
do
 grep ^$user /tmp/ulog.$$ > /tmp/user.$$
 minutes=0

 while read t
 do
 s=$(echo $t | awk -F: '{ print ($1 * 60) + $2 }')
 let minutes=minutes+s
 done< <(cat /tmp/user.$$ | awk '{ print $NF }' | tr -d ')(')

 firstlog=$(tail -n 1 /tmp/user.$$ | awk '{ print $5,$6 }')
 nlogins=$(cat /tmp/user.$$ | wc -l)
 hours=$(echo "$minutes / 60.0" | bc)

 printf "%-10s %-10s %-6s %-8s\n" $user "$firstlog" $nlogins $hours
done< /tmp/users.$$

) | sort -nrk 4 | awk '{ printf("%-4s %s\n", NR, $0) }'
rm /tmp/users.$$ /tmp/user.$$ /tmp/ulog.$$

Chapter 8

307

A sample output is as follows:

$./active_users.sh

Rank User Start Logins Usage hours

1 easyibaa Dec 11 531 349

2 demoproj Dec 10 350 230

3 kjayaram Dec 9 213 55

4 cinenews Dec 11 85 139

5 thebenga Dec 10 54 35

6 gateway2 Dec 11 52 34

7 soft132 Dec 12 49 25

8 sarathla Nov 1 45 29

9 gtsminis Dec 11 41 26

10 agentcde Dec 13 39 32

How it works…
In the active_users.sh script, we can either provide the wtmp logfile as a command-line
argument or it will use the default wtmp log file. The last -f command is used to print the
logfile contents. The first column in the logfile is the username. By using cut, we extract the
first column from the logfile. Then, the unique users are found out by using the sort and
uniq commands. Now for each user, the log lines corresponding to their login sessions are
found out using grep and are written to a temporary file. The last column in the last log is the
duration for which the user logged in to the session. Hence, in order to find out the total usage
hours for a user, the session duration is to be added. The usage duration is in (HOUR:SEC)
format and it is converted into minutes using a simple awk script.

In order to extract the session hours for the users, we have used the awk command. For
removing the parenthesis, tr -d is used. The list of the usage hour string is passed to the
standard input for the while loop using the <(COMMANDS) operator, which acts as a file
input. Each hour string is converted into seconds by using the date command and added to
the variable seconds. The first login time for a user is in the last line and it is extracted. The
number of login attempts is the number of log lines. In order to calculate the rank of each
user according to the total usage hours, the data record is to be sorted in the descending
order with usage hours as the key. For specifying the number reverse sort, the -nr option is
used along with sort command. -k4 is used to specify the key column (usage hour). Finally,
the output of the sort is passed to awk. The awk command prefixes a line number to each of
the lines, which becomes the rank for each user.

Put on the Monitor's Cap

308

Measuring and optimizing power usage
Power consumption is one of the factors that one must keep on monitoring, especially on
mobile devices, such as notebook computers, tablets, and so on. There are few tools available
for Linux systems to measure power consumption, one such command is powertop which we
are going to use for this recipe.

Getting ready
powertop doesn't come preinstalled with most Linux distributions, you will have to install it
using your package manager.

How to do it...
Let's see how to use powertop to measure and optimize power consumption:

1. Using powertop is pretty easy, just run:
powertop

powertop will start taking some measurements and once it's done, it will show a
screen which will have detailed information about power usage, the processes using
the most power, and so on:

Chapter 8

309

2. For generating HTML reports, use:
powertop --html

powertop will take measurements over a period of time and generate an HTML
report with the default filename PowerTOP.html, which you can open using any
web browser.

3. For optimizing power usage, use:

When powertop is running, use the arrow keys to switch to the Tunables tab; this
will show you a list of things that powertop can tune so that they consume less
power. Just choose whichever ones you want, press Enter to toggle from Bad
to Good:

If you want to monitor the power consumption from a portable device's
battery, it is required to remove the charger and use the battery for
powertop to make measurements.

Monitoring disk activity
Going by the popular naming convention of monitoring tools ending in the word 'top'
(the command used to monitor processes), the tool to monitor disk I/O is called iotop.

Put on the Monitor's Cap

310

Getting ready
iotop doesn't come preinstalled with most Linux distributions, you will have to install it using
your package manager.

How to do it...
There are multiple ways of using iotop to perform I/O monitoring, some of which we will see
in this recipe:

1. For interactive monitoring, use:
iotop -o

The -o option to iotop tells it to show only those processes which are doing active
I/O while it is running. It is a useful option to reduce the noise in the output.

2. For non-interactive use from shell scripts, use:
iotop -b -n 2

This will tell iotop to print the statistics two times and then exit, which is useful if we
want this output in a shell script and do some manipulation on it.

3. Monitor a specific process using the following:

iotop -p PID

Put PID of the process that you wish to monitor, and iotop will restrict the output to
it and show statistics.

In most modern distros, instead of finding the PID and supplying
it to iotop, you can use the pidof command and write the
preceding command as:
iotop -p `pidof cp`

Checking disks and filesystems for errors
Data is the most important thing in any computer system. Naturally, it is important to monitor
the consistency of data stored on physical media.

Getting ready
We will use the standard tool, fsck to check for errors in the filesystems. This command
should be preinstalled on all modern distros. If not, use your package manager to install it.

Chapter 8

311

How to do it...
Let us see how to use fsck with its various options to check filesystems for errors, and
optionally fix them.

1. To check for errors on a partition or filesystem, just pass its path to fsck:
fsck /dev/sdb3

fsck from util-linux 2.20.1

e2fsck 1.42.5 (29-Jul-2012)

HDD2 has been mounted 26 times without being checked, check
forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

HDD2: 75540/16138240 files (0.7% non-contiguous),
48756390/64529088 blocks

2. To check all the filesystems configured in /etc/fstab, we can use the
following syntax:
fsck -A

This will go through the /etc/fstab file sequentially, checking each of the
filesystems one-by-one. The fstab file basically configures a mapping between
disks and mount points which makes it easy to mount filesystems. This also makes it
possible to mount certain filesystems during boot.

3. Instruct fsck to automatically attempt fixing errors, instead of interactively asking us
whether or not to repair, we can use this form of fsck:
fsck -a /dev/sda2

4. To simulate the actions, fsck is going to perform:

fsck -AN

fsck from util-linux 2.20.1

[/sbin/fsck.ext4 (1) -- /] fsck.ext4 /dev/sda8

[/sbin/fsck.ext4 (1) -- /home] fsck.ext4 /dev/sda7

[/sbin/fsck.ext3 (1) -- /media/Data] fsck.ext3 /dev/sda6

This will print information on what actions will be performed, which is checking all
the filesystems.

Put on the Monitor's Cap

312

How it works...
fsck is just a frontend for filesystem specific fsck programs written for those
filesystems. When we run fsck, it automatically detects the type of the filesystem
and runs the appropriate fsck.fstype command where fstype is the type of the
filesystem. For example, if we run fsck on an ext4 filesystem, it will end up calling
the fsck.ext4 command.

Because of this, you will find that fsck itself supports only the common options across all
such filesystem-specific tools. To find more detailed options, look at the man pages of specific
commands such as fsck.ext4.

Further, simulating the actions fsck performs is useful when there is a suspicion of a
filesystem being corrupt and we run fsck to fix it, it is sometimes important to make sure that
fsck doesn't perform an operation which we don't want. An example maybe that fsck might
want to mark some sectors as bad, but we might want to try recovering data from it. In this
case, we ask fsck to just do a dry run and print the actions instead of actually performing
the actions.

9
Administration Calls

In this chapter, we will cover:

 f Gathering information about processes

 f Killing processes and send or respond to signals

 f Sending messages to user terminals

 f Gathering system information

 f Using /proc for gathering information

 f Scheduling with cron

 f Writing and reading the MySQL database from Bash

 f User administration script

 f Bulk image resizing and format conversion

 f Taking screenshots from the terminal

 f Managing multiple terminals from one

Introduction
A GNU/Linux ecosystem consists of running programs, services, connected devices,
filesystems, users, and a lot more. Having an overview of the entire system and managing
the OS as a whole is the primary purpose of system administration. One should be armed
with enough knowledge of commonly-used commands and proper usage practices to gather
system information and manage resources. It also helps in writing script and automation tools
that perform management tasks. This chapter will introduce several such tools.

Administration Calls

314

Gathering information about processes
Processes are the running instance of a program. Several processes run on a computer, and
each process is assigned a unique identification number called a process ID (PID). Multiple
instances of the same program with the same name can be executed at the same time,
but they all will have different PIDs. A process consists of several attributes, such as which
user owns the process, the amount of memory used by the program, CPU time used by the
program, and so on. This recipe shows how to gather information about processes.

Getting ready
Important commands related to process management are top, ps, and pgrep. Let's see how
we can gather information about processes.

How to do it...
ps is an important tool for gathering information about the processes. It provides information
on which user owns the process, the time when a process started, the command path used
for executing the process, PID, the terminal it is attached with (TTY), the memory used by the
process, CPU time used by the process, and so on. For example:

$ ps

 PID TTY TIME CMD

 1220 pts/0 00:00:00 bash

 1242 pts/0 00:00:00 ps

The ps command is usually used with a set of parameters. When it is run without any
parameter, ps will display processes that are running on the current terminal (TTY). The first
column shows the process ID (PID), the second column is the TTY (terminal), the third column
is how much time has elapsed since the process started, and finally CMD (the command).

In order to show more columns consisting of more information, use -f (stands for full)
as follows:

$ ps -f

UID PID PPID C STIME TTY TIME CMD

slynux 1220 1219 0 18:18 pts/0 00:00:00 -bash

slynux 1587 1220 0 18:59 pts/0 00:00:00 ps -f

The preceding ps commands are not useful, as it does not provide any information about
processes other than the ones attached to the current terminal. In order to get information
about every process running on the system, add the -e (every) option. The -ax (all) option
will also produce an identical output.

Chapter 9

315

The -x argument along with -a specifies to remove the default TTY restriction
imparted by ps. Usually, using ps without arguments prints processes that
are attached to the terminal only.

Run one of these commands: ps -e, ps -ef, ps -ax, or ps -axf.

$ ps -e | head

 PID TTY TIME CMD

1 ? 00:00:00 init

2 ? 00:00:00 kthreadd

3 ? 00:00:00 migration/0

4 ? 00:00:00 ksoftirqd/0

5 ? 00:00:00 watchdog/0

6 ? 00:00:00 events/0

7 ? 00:00:00 cpuset

8 ? 00:00:00 khelper

9 ? 00:00:00 netns

It will be a long list. The example filters the output using head, so we only get the
first 10 entries.

The ps command supports several details to be displayed along with the process name and
PID. By default, ps shows the information as different columns, and some of them may not
be useful for us. We can specify the columns to be displayed using the -o flag and hence,
thereby print only the required columns. Different parameters associated with a process
are specified with options for that parameter. The list of parameters and usage of -o are
discussed next.

In order to display the required columns of output using ps, use:

$ ps [OTHER OPTIONS] -o parameter1,parameter2,parameter3 ..

Parameters for -o are delimited by using the comma (,) operator.
It should be noted that there is no space in between the comma
operator and the next parameter. Usually, the -o option is combined
with the -e (every) option (-oe), as it should list every process
running in the system. However, when certain filters are used along
with -o, such as those used for listing the processes owned by
specified users, -e is not used along with -o. Usage of -e with a
filter will nullify the filter and it will show all process entries.

Administration Calls

316

An example is as follows. Here, comm stands for COMMAND and pcpu is percent of
CPU usage:

$ ps -eo comm,pcpu | head

COMMAND %CPU

init 0.0

kthreadd 0.0

migration/0 0.0

ksoftirqd/0 0.0

watchdog/0 0.0

events/0 0.0

cpuset 0.0

khelper 0.0

netns 0.0

How it works...
The different parameters that can be used with the -o option and their descriptions are
as follows:

Parameter Description
pcpu Percentage of CPU
pid Process ID
ppid Parent Process ID
pmem Percentage of memory
comm Executable filename
cmd Simple command
user The user who started the process
nice The priority (niceness)
time Cumulative CPU time
etime Elapsed time since the process started
tty The associated TTY device
euid The effective user
stat Process state

Chapter 9

317

There's more...
Let's go through additional usage examples of process manipulation commands.

top
top is a very important command for system administrators. The top command will, by
default, output a list of top CPU consuming processes. The output is updated every few
seconds, and is used as follows:

$ top

It will display several parameters along with the top CPU consuming processes:

Sorting the ps output with respect to a parameter
Output of the ps command can be sorted according to specified columns with the --sort
parameter. The ascending or descending order can be specified by using the + (ascending) or
- (descending) prefix to the parameter as follows:

$ ps [OPTIONS] --sort -paramter1,+parameter2,parameter3..

Administration Calls

318

For example, to list the top 10 CPU consuming processes, use:

$ ps -eo comm,pcpu --sort -pcpu | head

COMMAND %CPU

Xorg 0.1

hald-addon-stor 0.0

ata/0 0.0

scsi_eh_0 0.0

gnome-settings- 0.0

init 0.0

hald 0.0

pulseaudio 0.0

gdm-simple-gree 0.0

Here, processes are sorted in the descending order by percentage of CPU usage, and head is
applied to extract the top 10 processes.

We can use grep to extract entries in the ps output related to a given process name or
another parameter. In order to find out entries about running Bash processes, use:

$ ps -eo comm,pid,pcpu,pmem | grep bash

bash 1255 0.0 0.3

bash 1680 5.5 0.3

Finding the process ID when given command names
Suppose several instances of a command are being executed, we may need to identify the PID
of the processes. This information can be found by using the ps or the pgrep command. We
can use ps as follows:

$ ps -C COMMAND_NAME

Or

$ ps -C COMMAND_NAME -o pid=

The -o user-defined format specifier was described in the earlier part of the recipe. But here,
you can see = appended with pid. This is to remove the header PID in the output of ps. In
order to remove headers for each column, append = to the parameter. For example:

$ ps -C bash -o pid=

 1255

 1680

This command lists the process IDs of Bash processes.

Chapter 9

319

Alternately, there is a handy command called pgrep. You should use pgrep to get a quick list
of process IDs for a particular command. For example:

$ pgrep COMMAND

$ pgrep bash

1255

1680

pgrep requires only a portion of the command name as its input argument to
extract a Bash command, for example, pgrep ash or pgrep bas will also
work. But ps requires you to type the exact command.

pgrep accepts many more output-filtering options. In order to specify a delimiter character for
output rather than using a newline as the delimiter, use:

$ pgrep COMMAND -d DELIMITER_STRING

$ pgrep bash -d ":"

1255:1680

Specify a list of owners of the user for the matching processes as follows:

$ pgrep -u root,slynux COMMAND

In this command, root and slynux are users. Return the count of matching processes
as follows:

$ pgrep -c COMMAND

Filters with ps for real user or ID, effective user or ID
With ps, it is possible to group processes based on the real and effective username or ID
specified. Specified arguments can be used to filter the ps output by checking whether each
entry belongs to a specific, effective user, or real user from the list of arguments and shows
only the entries matching them. This can be done as follows:

 f Specify an effective users' list by using -u EUSER1, EUSER2, and so on

 f Specify a real users' list by using -U RUSER1, RUSER2, and so on

For example:

$ ps -u root -U root -o user,pcpu

This command will show all processes running with root as the effective user ID and real
user ID, and will also show the user and percentage CPU usage columns.

Administration Calls

320

Mostly, we find -o along with -e as -eo, but when filters are applied
-o should act alone, as mentioned in this section.

TTY filter for ps
The ps output can be selected by specifying the TTY to which the process is attached. Use the
-t option to specify the TTY list, as follows:

$ ps -t TTY1, TTY2 ..

For example:

$ ps -t pts/0,pts/1

 PID TTY TIME CMD

 1238 pts/0 00:00:00 bash

 1835 pts/1 00:00:00 bash

 1864 pts/0 00:00:00 ps

Information about process threads
Usually, information about process threads are hidden in the ps output. We can show
information about threads in the ps output by adding the -L option. Then, it will show two
columns NLWP and NLP. NLWP is the thread count for a process and NLP is the thread ID for
each entry in ps. For example:

$ ps -eLf

Or

$ ps -eLf --sort -nlwp | head

UID PID PPID LWP C NLWP STIME TTY TIME CMD

root 647 1 647 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 654 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 656 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 657 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 658 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 659 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

Chapter 9

321

root 647 1 660 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 662 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

root 647 1 663 0 64 14:39 ? 00:00:00 /usr/sbin/
console-kit-daemon --no-daemon

This command lists 10 processes with a maximum number of threads.

Specifying output width and columns to be displayed
We can specify the columns to be displayed in the ps output using the user-defined output
format specifier -o. Another way to specify the output format is with standard options.
Practice them according to your usage style. Try these options:

 f -f ps -ef

 f u ps -e u

 f ps ps -e w (w stands for wide output)

Showing environment variables for a process
Understanding which environment variables a process is dependent on is a very useful bit
of information we might need. The way a process behaves might be heavily dependent on
the environmental variables set. We can debug and make use of environment data for fixing
several problems related to the running of processes.

In order to list environment variables along with ps entries, use:

$ ps -eo cmd e

For example:

$ ps -eo pid,cmd e | tail -n 3

 1162 hald-addon-acpi: listening on acpid socket /var/run/acpid.socket

 1172 sshd: slynux [priv]

 1237 sshd: slynux@pts/0

 1238 -bash USER=slynux LOGNAME=slynux HOME=/home/slynux PATH=/usr/
local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
MAIL=/var/mail/slynux SHELL=/bin/bash SSH_CLIENT=10.211.55.2 49277 22
SSH_CONNECTION=10.211.55.2 49277 10.211.55.4 22 SSH_TTY=/dev/pts/0
TERM=xterm-color LANG=en_IN XDG_SESSION_COOKIE=d1e96f5cc8a7a3bc3a0a73e44c
95121a-1286499339.592429-1573657095

Administration Calls

322

An example of where this type of environment tracing can come in handy is in tracing
problems with the apt-get package manager. If you use an HTTP proxy to connect to the
Internet, you may need to set environment variables http_proxy=host:port. Let's say you
forgot to set the environment variables in a script, the apt-get command will not select the
proxy and hence, it returns an error. Then, you can actually look at an environment variable
and track the issue.

We may need some applications to be run automatically with scheduling tools, such as cron.
But it might be dependent on some environment variables. Suppose, if we want to open a
GUI-windowed application at a given time. We schedule it using crontab at a specified
time, but this will not work:

00 10 * * * /usr/bin/windowapp

It is because a windowed application always depends on the DISPLAY environment variable.
To figure out the environment variables needed, run windowapp manually, and then run ps
-C windowapp -eo cmd e.

Find out the environment variables and prefix them before a command name appears in
crontab as follows:

00 10 * * * DISPLAY=:0 /usr/bin/windowapp

Here, DISPLAY=:0 was obtained from the ps output.

About which, whereis, file, whatis, and load average
There are a few commands which are useful for exploring other commands and such.
Let's discuss them:

 f which: The which command is used to find the location of a command. We type
commands in the terminal without knowing the location where the executable file
is stored.

 f When we type a command, the terminal looks for the command in a set of locations
and executes the executable file if found at the location. These sets of locations are
specified using an environment variable PATH. For example:
$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
games

 f We can export PATH and can add our own locations to be searched when command
names are typed. For example, to add /home/slynux/bin to PATH, use the
following command:
$ export PATH=$PATH:/home/slynux/bin

/home/slynux/bin is added to PATH

Chapter 9

323

 f The which command outputs the location of the command given as the argument.
For example:
$ which ls

/bin/ls

 f whereis: whereis is similar to the which command. But it not only returns the path
of the command, it will also print the location of the man page, if available, and also
the path of the source code for the command if available. For example:
$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.gz

 f file: The file command is an interesting and frequently-used command. It is used
for determining the file type:
$ file FILENAME

 f This will print the details of the file regarding its file type.

 f An example is as follows:
$ file /bin/ls

/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.15,
stripped

 f whatis: The whatis command outputs a one-line description of the command given
as the argument. It parses information from the man page. For example:
$ whatis ls

ls (1) - list directory contents

apropos
Sometimes, we need to search if some command related
to a word exists. Then, we can search the man pages for
strings in the command. For this we can use:
apropos COMMAND

 f load average: load average is an important parameter for the total load on the
running system. It specifies the average of the total number of runnable processes on
the system. It is specified by three values. The first value indicates the average in one
minute, the second indicates the average in five minutes, and the third indicates the
average in 15 minutes.

Administration Calls

324

 f It can be obtained by running uptime. For example:

$ uptime

 12:40:53 up 6:16, 2 users, load average: 0.00, 0.00, 0.00

See also
 f The Scheduling with cron recipe explains how to schedule tasks

Killing processes and send or respond to
signals

Termination of processes is an important task we always come across, including the need
to terminate all the instances of a program. The command line provides several options for
terminating programs. An important concept regarding processes in Unix-like environments is
that of signals. Signals are an inter-process communication mechanism used to interrupt a
running process to perform some action. Termination of a program is also performed by using
the same technique. This recipe is an introduction to signals and their usage.

Getting ready
Signals are an inter-process mechanism available in Linux. We can interrupt a process using
a specific signal, which is associated with an integer value. When a process receives a signal,
it responds by executing a signal handler. It is possible to send and receive signals and
respond according to the signals in shell scripts as well. KILL is a signal used to terminate
a process. The events such as Ctrl + C, and Ctrl + Z also send two types of signals. The kill
command is used to send signals to processes and the trap command is used to handle the
received signals.

How to do it...
1. In order to list all the signals available, use:

$ kill -l

It will print signal numbers and corresponding signal names.

2. Terminate a process as follows:
$ kill PROCESS_ID_LIST

The kill command issues a TERM signal by default. The process ID list is to be
specified with space as a delimiter between process IDs.

Chapter 9

325

3. In order to specify a signal to be sent to a process via the kill command, use:
$ kill -s SIGNAL PID

The SIGNAL argument is either a signal name or a signal number. Though there are
many signals specified for different purposes, we frequently use only a few signals.
They are as follows:

 � SIGHUP 1: Hangup detection on death of the controlling process or terminal

 � SIGINT 2: Signal which is emitted when Ctrl + C is pressed

 � SIGKILL 9: Signal used to force kill the process

 � SIGTERM 15: Signal used to terminate a process by default

 � SIGTSTP 20: Signal emitted when Ctrl + Z is pressed

4. We frequently use force kill for processes. In order to force kill a process, use:

$ kill -s SIGKILL PROCESS_ID

Or:

$ kill -9 PROCESS_ID

There's more...
Let's walk through the additional commands used for terminating and signalling processes.

The kill family of commands
The kill command takes the process ID as the argument. There are also a few other
commands in the kill family that accept the command name as the argument and
send a signal to the process.

The killall command terminates the process by name as follows:

$ killall process_name

In order to send a signal to a process by name, use:

$ killall -s SIGNAL process_name

In order to force kill a process by name, use:

$ killall -9 process_name

For example:

$ killall -9 gedit

Administration Calls

326

Specify the process by name, which is specified by users who own it, by using:

$ killall -u USERNAME process_name

If you want killall to interactively confirm before killing processes, use the -i argument.

The pkill command is similar to the kill command but it, by default, accepts a process
name instead of a process ID. For example:

$ pkill process_name

$ pkill -s SIGNAL process_name

SIGNAL is the signal number. The SIGNAL name is not supported with pkill. It provides
many of the same options that the kill command does. Check the pkill man pages for
more details.

Capturing and responding to signals
trap is a command used to assign signal handler to signals in a script. Once a function is
assigned to a signal using the trap command, while the script runs and it receives a signal,
this function is executed upon reception of a corresponding signal.

The syntax is as follows:

trap 'signal_handler_function_name' SIGNAL LIST

SIGNAL LIST is delimited by space. It can be a signal number or a signal name.

Let's write a shell script that responds to the SIGINT signal:

#/bin/bash
#Filename: sighandle.sh
#Description: Signal handler

function handler()
{
 echo Hey, received signal : SIGINT
}

echo My process ID is $$
$$ is a special variable that returns process ID of current process/
script
trap 'handler' SIGINT
#handler is the name of the signal handler function for SIGINT signal

while true;
do
 sleep 1
done

Chapter 9

327

Run this script in a terminal. When the script is running, if you press Ctrl + C, it will show
the message by executing the signal handler associated with it. Ctrl + C corresponds to
a SIGINT signal.

The while loop is used to keep the process running in an infinite loop without getting
terminated. This is done so that it can respond to the signals that are sent to the process
asynchronously by another process. The loop that is used to keep the process alive infinitely
is often called the event loop.

We can send a signal to the script by using the kill command and the process ID of
the script:

$ kill -s SIGINT PROCESS_ID

PROCESS_ID of the preceding script will be printed when it is executed, or you can find it out
by using the ps command.

If no signal handlers are specified for signals, it will call the default signal handlers assigned
by the operating system. Generally, pressing Ctrl + C will terminate a program, as the default
handler provided by the operating system will terminate the process. But the custom handler
defined here specifies a custom action upon receipt of the signal.

We can define signal handlers for any signals available (kill -l) by using the trap
command. It is also possible to set a single signal handler for multiple signals.

Sending messages to user terminals
A system administrator may need to send messages to the terminal of every user or a
specified user on all the machines over a network. This recipe is a guide on how to perform
this task.

Getting ready
wall is a command that is used to write messages on the terminals of all logged in users.
It can be used to convey messages to all logged in users on a server or multiple access
machines. Sending messages to all users may not be useful at all times. Terminals are treated
as devices in a Linux system and hence, these opened terminals will have a corresponding
device node file at /dev/pts/. Writing data to a specific device will display messages on the
corresponding terminal.

Administration Calls

328

How to do it...
In order to broadcast a message to all users and all logged in terminals, use:

$ cat message | wall

Or:

$ wall< message

Broadcast Message from slynux@slynux-laptop

 (/dev/pts/1) at 12:54 ...

This is a message

The message outline will show who sent the message (which user and which host). It is
noteworthy that the message gets displayed to the current terminal only if the write message
option is enabled. In most distros, write message is enabled by default. If the sender of the
message is root, then the message gets displayed on the screen irrespective of whether the
write message option is enabled or disabled by the user.

In order to enable write messages, use:

$ mesg y

In order to disable write messages, use:

$ mesg n

Let's write a script for sending messages specifically to a given user's terminal:

#/bin/bash
#Filename: message_user.sh
#Description: Script to send message to specified user logged
terminals.
USERNAME=$1

devices=`ls /dev/pts/* -l | awk '{ print $3,$10 }' | grep $USERNAME |
awk '{ print $2 }'`
for dev in $devices;
do
 cat /dev/stdin > $dev
done

Run the script as:

./message_user.sh USERNAME < message.txt

Pass message through stdin and username as argument

Chapter 9

329

The output will be as follows:

$ cat message.txt

A message to slynux. Happy Hacking!

./message_user.sh slynux < message.txt

Run message_user.sh as root since the message is to be send to specific
user.

Now, the slynux command's terminal will receive the message text.

How it works...
The /dev/pts directory will contain character devices corresponding to each of the logged
in terminals on the system. We can find out who logged into which terminal by looking at
the owner of the device files from the ls -l output. This information is extracted by using
awk, and then grep is used to extract the lines corresponding to the specified user only. The
username is accepted as the first argument for the script and stored as variable USERNAME.
$devices contains a list of terminals for a given user, which is iterated using a for loop.
/dev/stdin will contain standard input data passed to the current process, which is
redirected to the corresponding terminal (TTY) devices.

Gathering system information
Collecting information about the current system from the command line is very important
in logging system data. The different system information data includes hostname, kernel
version, Linux distro name, CPU information, memory information, disk partition information,
and so on. This recipe will show you different sources in a Linux system to gather information
about the system.

How to do it...
1. In order to print the hostname of the current system, use:

$ hostname

Or:

$ uname -n

2. Print long details about the Linux kernel version, hardware architecture, and more
by using:
$ uname -a

3. In order to print the kernel release, use:
$ uname -r

Administration Calls

330

4. Print the machine type as follows:
$ uname -m

5. In order to print details about the CPU, use:
$ cat /proc/cpuinfo

In order to extract the processor name, use:
$ cat /proc/cpuinfo | sed -n 5p

The fifth line contains the processor name.

6. Print details about the memory or RAM as follows:
$ cat /proc/meminfo

Print the total memory (RAM) available on the system as follows:

$ cat /proc/meminfo | head -1

MemTotal: 1026096 kB

7. In order to list out the partitions information available on the system, use:
$ cat /proc/partitions

Or:

$ fdisk -l #If you don't get any output, run as root

8. Get the entire details about the system as follows:

$ lshw #Recommended to run as root

Using /proc for gathering information
/proc is an in-memory pseudo filesystem available with the GNU/Linux operating system.
It was actually introduced to provide an interface to read several system parameters from
the user space. It is very interesting and we can gather lots of information from it. Let's see
how to.

How to do it...
If you look at /proc, you will see several files and directories, some of which are already
explained in other recipes in this chapter. You can simply cat files in /proc and the
subdirectories to get information. All of them are well-formatted text.

There will be a directory in /proc for every process that is running on the system, named
after the PID of that process.

Chapter 9

331

Suppose Bash is running with PID 4295 (pgrep bash), /proc/4295 will exist. Each of the
directories corresponding to the process will contain a lot of information regarding to that
process. Few of the important files in /proc/PID are as follows.

 f environ: This contains environment variables associated with that process. cat
/proc/4295/environ will display all the environment variables passed to
that process.

 f cwd: This is a symlink to a working directory of the process.

 f exe: This is a symlink to the running executable for the current process.
$ readlink /proc/4295/exe

/bin/bash

 f fd: This is the directory consisting of entries on file descriptors used by the process.

Scheduling with cron
It is a common requirement to schedule execution of scripts at a given time or at given time
intervals. The GNU/Linux system comes with different utilities for scheduling tasks. cron is
such a utility that allows tasks to automatically run in the background of the system at regular
intervals using the cron daemon. The cron utility makes use of a file called cron table that
stores a list of schedules of scripts or commands to be executed and the time at which they
are to be executed. A common example usage is that you can schedule downloads of files
from the Internet during the free hours (certain ISPs provide free usage hours, usually, at night
time). This way you won't be required to wake up in the night to start the download. In addition
to writing a cron entry and schedule the download, you can also schedule to drop the Internet
connection automatically and shutdown the system when the free usage hours end.

Getting ready
The cron scheduling utility comes with all the GNU/Linux distributions by default. Once we
write the cron table entry, the commands will be executed at the time specified for execution.
The command crontab is used to add jobs to the cron table. The cron table is a simple text
file and each user has a separate copy.

How to do it…
In order to schedule tasks, we should know the format for writing the cron table. A cron job
specifies the path of a script or command to be executed and the time at which it is to
be executed.

1. cron job to execute the test.sh script at the second minute of all hours on all days:
02 * * * * /home/slynux/test.sh

Administration Calls

332

2. In order to run the script at the fifth, sixth, and seventh hours on all days, use:
00 5,6,7 * * /home/slynux/test.sh

3. Execute script.sh at every hour on Sundays as follows:
00 */12 * * 0 /home/slynux/script.sh

4. Shutdown the computer at 2 A.M. everyday as follows:
00 02 * * * /sbin/shutdown -h

5. Now, let us see how to schedule a cron job. You can execute the crontab command
in multiple ways to schedule the scripts.

Use the -e option to crontab to start editing the cron table:
$ crontab -e

02 02 * * * /home/slynux/script.sh

When crontab -e is entered, the default text editor (usually vi) is opened up and
the user can type the cron jobs and save it. The cron jobs will be scheduled and
executed at specified time intervals.

6. There are two other methods we usually use when we invoke the crontab command
inside a script for scheduling tasks:

1. Create a text file (for example, task.cron) with the cron job in it, and then
run the crontab with this filename as the command argument:

 $ crontab task.cron

2. Or, specify the cron job inline without creating a separate file. For example:

 crontab<<EOF
 02 * * * * /home/slynux/script.sh
 EOF

The cron job needs to be written in between crontab<<EOF and EOF.

How it works...
Each cron table consists of six sections in the following order:

 f Minute (0 - 59)
 f Hour (0 - 23)
 f Day (1 - 31)
 f Month (1 - 12)
 f Weekday (0 - 6)
 f COMMAND (the script or command to be executed at the specified time)

Chapter 9

333

The first five sections specify the time at which an instance of the command is to be executed.
There are a few additional options to specify the time schedule.

An asterisk (*) is used to specify that the command should be executed at every instance of
time. That is, if * is written in the Hour field in the cron job, the command will be executed
for every hour. Similarly, if you would like to execute the command at multiple instances of a
particular time period, specify the time period separated by a comma in the corresponding
time field (for example, for running the command at the fifth minute and tenth minute, enter
5,10 in the Minute field). We also have another nice option to run the command at particular
divisions of time. Use */5 in the minutes field for running the command at every five minutes.
We can apply this to any time field. A cron table can consist of one or more lines of cron jobs
and each line in the cron table is a single job.

Cron jobs are executed with privileges with which the crontab command was executed. If you
need to execute commands that require higher privileges, such as a command for shutting
down the computer, run the crontab command as root.

The commands specified in a cron job are written with the full path to the command. This
is because the environment in which a cron job is executed is different from the one that
we execute on a terminal. Hence, the PATH environment variable may not be set. If your
command requires certain environment variables to be set for running, you should explicitly
set the environment variables.

There's more…
The crontab command has more options. Let's see a few of them.

Specifying environment variables
Many of the commands require environment variables to be set properly for execution. We can
set environment variables by inserting a line with a variable assignment statement in the cron
table of the user.

For example, if you are using a proxy server for connecting to the Internet, to schedule a
command that uses the Internet you have to set the HTTP proxy environment variable
http_proxy. It can be done as follows:

crontab<<EOF

http_proxy=http://192.168.0.3:3128

00 * * * * /home/slynux/download.sh

EOF

Administration Calls

334

Running commands at system start up/boot
Running specific commands when the system starts (or, boots) is a common requirement
at times. There are a lot of ways to achieve this, and using cron is one of them (the others
being adding your commands to /etc/rc.d but that's not guaranteed to be the same
across distros).

To run a command at boot, add the following line to your crontab:

@reboot command

This will run the command as your user at runtime. To run the command as root, edit
root's crontab.

Viewing the cron table
We can list these existing cron jobs using the -l option:

$ crontab -l

02 05 * * * /home/user/disklog.sh

The crontab -l lists the existing entries in the cron table for the current user.

We can also view the cron table for other users by specifying a username with the -u option
as follows:

$ crontab -l -u slynux

09 10 * * * /home/slynux/test.sh

You should run as root when you use the -u option to gain higher privilege.

Removing the cron table
We can remove the cron table for the current user using the -r option:

$ crontab -r

In order to remove crontab for another user, use:

crontab -u slynux -r

Run as root to get higher privilege.

Chapter 9

335

Writing and reading the MySQL database
from Bash

MySQL is a widely used database management system used to manage databases for the
storage systems for applications that are written in languages, such as PHP, Python, C++, and
so on. Accessing and manipulating MySQL databases from shell scripts is also interesting,
as we can write scripts to store contents from a text file or Comma Separated Values (CSV)
into tables and interact with the MySQL database to read and manipulate data. For example,
we can read all the e-mail addresses stored in a guestbook program's database by running
a query from the shell script. In this recipe, we will see how to read and write to the MySQL
database from Bash. Let's take this example problem:

I have a CSV file containing details of students. I need to insert the contents of the file to a
database table. From this data, I need to generate a separate rank list for each department.

Getting ready
In order to handle MySQL databases, you should have mysql-server and mysql-client
packages installed on your system. These tools do not come with a Linux distribution by
default. As MySQL comes with a username and password for authentication, you should
also set a username and password while installing the MySQL server.

How to do it…
The preceding problem can be solved using Bash utilities sort, awk, and so on. Alternately,
we can also solve it by using an SQL database table. We will write three scripts for the purpose
of creating a database and table, inserting student data into the table, and reading and
displaying processed data from the table.

Create the database and table script as follows:

#!/bin/bash
#Filename: create_db.sh
#Description: Create MySQL database and table

USER="user"
PASS="user"

mysql -u $USER -p$PASS <<EOF 2> /dev/null
CREATE DATABASE students;
EOF

[$? -eq 0] && echo Created DB || echo DB already exist

Administration Calls

336

mysql -u $USER -p$PASS students <<EOF 2> /dev/null
CREATE TABLE students(
id int,
name varchar(100),
mark int,
dept varchar(4)
);
EOF

[$? -eq 0] && echo Created table students || echo Table students
already exist

mysql -u $USER -p$PASS students <<EOF
DELETE FROM students;
EOF

The script for inserting data into the table is as follows:

#!/bin/bash
#Filename: write_to_db.sh
#Description: Read from CSV and write to MySQLdb

USER="user"
PASS="user"

if [$# -ne 1];
then
 echo $0 DATAFILE
 echo
 exit 2
fi

data=$1

while read line;
do

 oldIFS=$IFS
 IFS=,
 values=($line)
 values[1]="\"`echo ${values[1]} | tr ' ' '#' `\""
 values[3]="\"`echo ${values[3]}`\""

 query=`echo ${values[@]} | tr ' #' ', ' `

Chapter 9

337

 IFS=$oldIFS

 mysql -u $USER -p$PASS students <<EOF
INSERT INTO students VALUES($query);
EOF

done< $data
echo Wrote data into DB

The script for the query from the database is as follows:

#!/bin/bash
#Filename: read_db.sh
#Description: Read from the database

USER="user"
PASS="user"

depts=`mysql -u $USER -p$PASS students <<EOF | tail -n +2
SELECT DISTINCT dept FROM students;
EOF`

for d in $depts;
do

echo Department : $d

result="`mysql -u $USER -p$PASS students <<EOF
SET @i:=0;
SELECT @i:=@i+1 as rank,name,mark FROM students WHERE dept="$d" ORDER
BY mark DESC;
EOF`"

echo "$result"
echo

done

The data for the input CSV file (studentdata.csv) is as follows:

1,Navin M,98,CS

2,Kavya N,70,CS

3,Nawaz O,80,CS

4,Hari S,80,EC

5,Alex M,50,EC

Administration Calls

338

6,Neenu J,70,EC

7,Bob A,30,EC

8,Anu M,90,AE

9,Sruthi,89,AE

10,Andrew,89,AE

Execute the scripts in the following sequence:

$./create_db.sh

Created DB

Created table students

$./write_to_db.sh studentdat.csv

Wrote data into DB

$./read_db.sh

Department : CS

rank name mark

1 Navin M 98

2 Nawaz O 80

3 Kavya N 70

Department : EC

rank name mark

1 Hari S 80

2 Neenu J 70

3 Alex M 50

4 Bob A 30

Department : AE

rank name mark

1 Anu M 90

2 Sruthi 89

3 Andrew 89

Chapter 9

339

How it works…
We will now see the explanation of the preceding scripts one by one. The first script create_
db.sh is used to create a database called students and a table named students inside
it. We need the MySQL username and password to access or modify data in the DBMS.
The variables USER and PASS are used to store the username and password. The mysql
command is used for MySQL manipulations. The mysql command can specify the username
by using -u and the password by using -pPASSWORD. The other command argument for the
mysql command is the database name. If a database name is specified as an argument to
the mysql command, it will use that for database operations, else we have to explicitly specify
in the SQL query about which database is to be used with the use database_name query.
The mysql command accepts the queries to be executed through standard input (stdin).
The convenient way of supplying multiple lines through stdin is by using the <<EOF method.
The text that appears in between <<EOF and EOF is passed to mysql as standard input. In
the CREATE DATABASE query, we have redirected stderr to /dev/null in order to prevent
displaying an error message. Also, in the table creation query, we have redirected stderr
to /dev/null to ignore any errors that occur. Then, we check the exit status for the mysql
command by using the exit status variable $? to know if a table or database already exists.
If the database or table already exists, a message is displayed to notify that, else we will
create them.

The next script write_to_db.sh accepts a filename of the student data CSV file. We read
each line of the CSV file by using the while loop. So in each iteration, a line with comma
separated values will be received. We then need to formulate the values in the line to an SQL
query. For that, the easiest way to store data items in the comma-separated line is by using
an array. We know that an array assignment is in the form array=(val1 val2 val3).
Here, the space character is the Internal Field Separator (IFS). We have a line with comma
separated values, hence by changing the IFS to a comma, we can easily assign values to
the array (IFS=,). The data items in the comma separated line are id, name, mark, and
department. id and mark are integer values, whereas name and dept are strings (strings
must be quoted). Also, the name can contain space characters. Space can conflict with the
Internal Field Separator. Hence, we should replace the space in the name with a character (#)
and replace it later after formulating the query. In order to quote the strings, the values in the
array are reassigned prefix and suffix with \". The tr is used to substitute space in the name
to #. Finally, the query is formed by replacing the space character with a comma and replacing
with a space, and this query is executed.

The third script read_db.sh is used to find out the department and print the rank list of
students for each department. The first query is used to find distinct names of departments.
We use a while loop to iterate through each department and run the query to display student
details in the order of highest marks. SET @i=0 is an SQL construct used to set the variable
i=0. On each row it is incremented and is displayed as the rank of the student.

Administration Calls

340

User administration script
GNU/Linux is a multiuser operating system allowing many users to log in and perform several
activities at the same time. There are several administration tasks that are handled with user
management, which include setting the default shell for the user, disabling a user account,
disabling a shell account, adding new users, removing users, setting a password, setting an
expiry date for a user account, and so on. This recipe aims at writing a user management tool
that can handle all of these tasks.

How to do it…
Let's go through the user administration script:

#!/bin/bash
#Filename: user_adm.sh
#Description: A user administration tool

function usage()
{
 echo Usage:
 echo Add a new user
 echo $0 -adduser username password
 echo
 echo Remove an existing user
 echo $0 -deluser username
 echo
 echo Set the default shell for the user
 echo $0 -shell username SHELL_PATH
 echo
 echo Suspend a user account
 echo $0 -disable username
 echo
 echo Enable a suspended user account
 echo $0 -enable username
 echo
 echo Set expiry date for user account
 echo $0 -expiry DATE
 echo
 echo Change password for user account
 echo $0 -passwd username
 echo
 echo Create a new user group
 echo $0 -newgroup groupname

Chapter 9

341

 echo
 echo Remove an existing user group
 echo $0 -delgroup groupname
 echo
 echo Add a user to a group
 echo $0 -addgroup username groupname
 echo
 echo Show details about a user
 echo $0 -details username
 echo
 echo Show usage
 echo $0 -usage
 echo

 exit
}

if [$UID -ne 0];
then
 echo Run $0 as root.
 exit 2
fi

case $1 in

 -adduser) [$# -ne 3] && usage ; useradd $2 -p $3 -m ;;
 -deluser) [$# -ne 2] && usage ; deluser $2 --remove-all-files;;
 -shell) [$# -ne 3] && usage ; chsh $2 -s $3 ;;
 -disable) [$# -ne 2] && usage ; usermod -L $2 ;;
 -enable) [$# -ne 2] && usage ; usermod -U $2 ;;
 -expiry) [$# -ne 3] && usage ; chage $2 -E $3 ;;
 -passwd) [$# -ne 2] && usage ; passwd $2 ;;
 -newgroup) [$# -ne 2] && usage ; addgroup $2 ;;
 -delgroup) [$# -ne 2] && usage ; delgroup $2 ;;
 -addgroup) [$# -ne 3] && usage ; addgroup $2 $3 ;;
 -details) [$# -ne 2] && usage ; finger $2 ; chage -l $2 ;;
 -usage) usage ;;
 *) usage ;;
esac

Administration Calls

342

A sample output is as follows:

./user_adm.sh -details test

Login: test Name:

Directory: /home/test Shell: /bin/sh

Last login Tue Dec 21 00:07 (IST) on pts/1 from localhost

No mail.

No Plan.

Last password change : Dec 20, 2010

Password expires : never

Password inactive : never

Account expires : Oct 10, 2010

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

How it works…
The user_adm.sh script can be used to perform many user management tasks. You can
follow the usage() text for the proper usage of the script which is called when any of the
parameters given by the user is wrong or has the -usage parameter. A case statement is
used to match the command arguments and execute the corresponding commands according
to that. The valid command options for the user_adm.sh script are: -adduser, -deluser,
-shell, -disable, -enable, -expiry, -passwd, -newgroup, -delgroup, -addgroup,
-details, and -usage. When the *) case is matched, it means it is a wrong option and
hence, usage() is invoked. For each match case, we have used [$# -ne 3] && usage.
It is used for checking the number of arguments. If the number of command arguments are
not equal to the required number, the usage() function is invoked and the script will exit
without executing further. In order to run the user management commands, the script needs
to be run as root and hence, a check for the user ID 0 (root has user ID 0) is performed.

Let's explain each case one by one:

 f -useradd: The useradd command can be used to create a new user. It has the
following syntax:
useradd USER -p PASSWORD

 f The -m option is used to create the home directory. It is also possible to provide the
full name of the user by using the -c FULLNAME option.

 f -deluser: The deluser command can be used to remove the user. The syntax is
as follows:
deluser USER

Chapter 9

343

 f --remove-all-files is used to remove all files associated with the user including
the home directory.

 f -shell: The chsh command is used to change the default shell for the user.
The syntax is:
chsh USER -s SHELL

 f -disable and -enable: The usermod command is used to manipulate several
attributes related to user accounts. usermod -L USER locks the user account
and usermod -U USER unlocks the user account.

 f -expiry: The chage command is used to manipulate user account expiry
information. The syntax is:
chage -E DATE

There are additional options as follows:

 � -m MIN_DAYS (set the minimum number of days between password
changes to MIN_DAYS)

 � -M MAX_DAYS (set the maximum number of days during which a password
is valid)

 � -W WARN_DAYS (set the number of days of warning before a password
change is required)

 f -passwd: The passwd command is used to change passwords for the users.
The syntax is:
passwd USER

The command will prompt to enter a new password.

 f -newgroup and addgroup: The addgroup command will add a new user group to
the system. The syntax is:
addgroup GROUP

In order to add an existing user to a group use:
addgroup USER GROUP

-delgroup

The delgroup command will remove a user group. The syntax is:

delgroup GROUP

 f -details: The finger USER command will display the user information for the
user which includes details such as user home directory path, last login time,
default shell, and so on. The chage -l command will display the user account
expiry information.

Administration Calls

344

Bulk image resizing and format conversion
All of us use digital cameras and download photos from the cameras, as well as the Internet.
When we need to deal with a large number of image files, we can use scripts to easily perform
actions on the files in bulk. A regular task we come across with photos is resizing the file. Also,
format conversion from one image format to another comes to use (for example, JPEG to PNG
conversion). When we download pictures from a camera, the large resolution pictures take
a large size. But we may need pictures of lower sizes that are convenient to store and e-mail
over the Internet. Hence, we resize it to lower resolutions. This recipe will discuss how to use
scripts for image management.

Getting ready
We will use the command convert from the Imagemagick suite, which contains
excellent tools for manipulating images that can work across several image formats and
different constructs with rich options. Most of the GNU/Linux distributions don't come
with Imagemagick installed by default. You need to manually install the package.
For more information, point your web browser to www.imagemagick.org.

How to do it..
In order to convert from one image format to another image format, use:

$ convert INPUT_FILE OUTPUT_FILE

For example:

$ convert file1.png file2.png

We can resize an image size to a specified image size either by specifying the scale
percentage, or by specifying the width and height of the output image. Resize the image
by specifying WIDTH or HEIGHT as follows:

$ convert image.png -resize WIDTHxHEIGHT image.png

For example:

$ convert image.png -resize 1024x768 image.png

It is required to provide either WIDTH or HEIGHT, so that the other will be automatically
calculated and resized so as to preserve the image size ratio:

$ convert image.png -resize WIDTHx image.png

For example:

$ convert image.png -resize 1024x image.png

Chapter 9

345

Resize the image by specifying the percentage scale factor as follows:

$ convert image.png -resize "50%" image.png

Let's see a script for image management:

#!/bin/bash
#Filename: image_help.sh
#Description: A script for image management

if [$# -ne 4 -a $# -ne 6 -a $# -ne 8];
then
 echo Incorrect number of arguments
 exit 2
fi

while [$# -ne 0];
do

 case $1 in
 -source) shift; source_dir=$1 ; shift ;;
 -scale) shift; scale=$1 ; shift ;;
 -percent) shift; percent=$1 ; shift ;;
 -dest) shift ; dest_dir=$1 ; shift ;;
 -ext) shift ; ext=$1 ; shift ;;
 *) echo Wrong parameters; exit 2 ;;
 esac;

done

for img in `echo $source_dir/*` ;
do
 source_file=$img
 if [[-n $ext]];
 then
 dest_file=${img%.*}.$ext
 else
 dest_file=$img
 fi

 if [[-n $dest_dir]];
 then
 dest_file=${dest_file##*/}

Administration Calls

346

 dest_file="$dest_dir/$dest_file"
 fi

 if [[-n $scale]];
 then
 PARAM="-resize $scale"
 elif [[-n $percent]]; then
 PARAM="-resize $percent%"
 fi

 echo Processing file : $source_file
 convert $source_file $PARAM $dest_file

done

The following is a sample output, to scale the images in the directory sample_dir to 20% size:

$./image_help.sh -source sample_dir -percent 20%

Processing file :sample/IMG_4455.JPG

Processing file :sample/IMG_4456.JPG

Processing file :sample/IMG_4457.JPG

Processing file :sample/IMG_4458.JPG

In order to scale the images to the width 1024, use:

$./image_help.sh -source sample_dir -scale 1024x

Change the files to a PNG format by adding -ext png along with the preceding commands.

Scale or convert files with a specified destination directory as follows:

$./image_help.sh -source sample -scale 50% -ext png -dest newdir

newdir is the new destination directory

How it works…
The preceding image_help.sh script can accept several command-line arguments, such as
-source, -percent, -scale, -ext, and -dest. A brief explanation of each is as follows:

 f The -source parameter is used to specify the source directory for the images.

 f The -percent parameter is used to specify the scale percent and -scale is used to
specify the scale width and height.

 f Either -percent or -scale is used. Both of them do not appear simultaneously.

Chapter 9

347

 f The -ext parameter is used to specify the target file format. -ext is optional; if it is
not specified, format conversion is not performed.

 f The -dest parameter is used to specify the destination directory for scale or
conversion of image files. -dest is optional. If -dest is not specified, the destination
directory will be the same as the source directory. As the first step in the script, it
checks whether the number of command arguments given to the script are correct.
Either four, six, or eight parameters can appear.

Now, by using a while loop and case statement, we parse the command-line arguments
corresponding to variables. $# is a special variable that returns the number of arguments.
The shift command shifts the command arguments one position to the left, so that on each
execution of shift, we can access command arguments one by one, by using the same $1
variable rather than using $1, $2, $3, and so on. The case statement matches the value of
$1; it is like a switch statement in the C programming language. When a case is matched, the
corresponding statements are executed. Each match case statement is terminated with ;;.
Once all the parameters are parsed in variables percent, scale, source_dir, ext, and
dest_dir, a for loop is used to iterate through the path of each file in the source directory
and the corresponding action to convert the file is performed.

If the variable ext is defined (if -ext is given in the command argument), the extension of
the destination file is changed from source_file.extension to source_file.$ext.
In the next statement, it checks whether the -dest parameter is provided. If the destination
directory is specified, the destination file path is crafted by replacing the directory in the
source path with the destination directory by using filename slicing. In the next statement, it
crafts the parameter to the convert command for performing resize (-resize widthx or
-resize perc%). After the parameters are crafted, the convert command is executed with
proper arguments.

See also
 f The Slicing filenames based on extension recipe of Chapter 2, Have a Good

Command, explains how to extract a portion of the filename

Taking screenshots from the terminal
Taking screenshots is another common day-to-day activity for any computer user. It becomes
even more important for administrators that maintain GUI applications running on computers
and automate them. It is important to take screenshots when a particular event happens, to
figure out what is going on in a GUI application.

Administration Calls

348

Getting ready
We will be using a tool from the suite of programs called ImageMagick, which was used in the
previous recipe as well. Install it using your package manager.

How to do it...
Let's get started with using the import command from ImageMagick to take screenshots:

1. Take the screenshot of the whole screen:
$ import -window root screenshot.png

2. Manually select a region to take the screenshot:
$ import screenshot.png

3. Take a screenshot of a specific window:

$ import -window window_id screenshot.png

To find out window_id, run the command xwininfo and click on the window you
want. Then pass this window_id to the -window option of import.x.

Managing multiple terminals from one
If you have been using the shell extensively, you would have noticed that at times you will
need to have access to more than one terminal at once. If you are using a graphical terminal
emulator like Konsole, you might use multiple tabs to achieve this.

However, what to do when you want a solution without using a graphical terminal emulator?
Or you are logged into a remote machine and want multiple shells? In the latter case, opening
multiple ssh connections will basically waste network bandwidth and even slow down things.
We will see how to achieve multiple shells while avoiding these problems.

Getting ready
To achieve this, we will be using a utility called GNU screen. If the screen is not installed on
your distribution by default, install it using the package manager.

Chapter 9

349

How to do it...
 f Creating screen windows: To create a new screen, run the command screen from

your shell. You will see a welcome message with some information about the screen.
Press space or return to begin. You will be given a new shell to enter the commands.
To create a new window (which basically means a new shell), press Ctrl + A and then
C (these are case sensitive).

 f Viewing a list of open windows: While running the screen, if you want to see a list of
all open windows, use the keystrokes Ctrl + A and ".

 f Switching between windows: A usual requirement while using the screen is to cycle
through the open windows in a next/previous fashion. For this, use the keystrokes Ctrl
+ A and Ctrl + N for the next window and Ctrl + A and Ctrl + P for the previous window.

 f Attaching to and detaching screens: A useful feature of the screen is that you can
save and load screen sessions, called detaching and attaching in screen terminology.
To detach from the current screen session, press Ctrl + A and Ctrl + D. When starting
the screen, to attach to an existing screen use:
screen -r -d

 f Which tells the screen to attach the last screen session. If you have more than one
detached sessions, the screen will output a list of them and then you can use:
screen -r -d PID

 f Where, PID is the pid of the screen session you want to attach to.

Index
Symbols
--convert-links option 186
</entry> element 193
#expect parameter 102
 tags 198
--limit-rate argument 186
--limit-rate option 191
--max-depth parameter 284
-max-filesize option 191
--mirror option 186
-nolist option 195
(()) operator 20
[] operator 20
% operator 93
%% operator 94
--password argument 187
/proc

used, for obtaining information 330
#spawn parameter 102
--totals option 224
--user argument 187

A
absolute paths 197
active user hours, system

monitoring 305-307
active_users.sh script 307
addgroup command 343
administrative user root 8
advanced text processing

awk command, used 162
alias

about 29
escaping 30

visiting 29, 30
arbitrary sockets

creating 274
archives

creating, cpio used 224, 225
creating, pbzip2 command used 231
creating, tar command used 218
creating, zip command used 230

archives, tar command used
concatenating 220
files, appending to 219
files, comparing 222
files, deleting 222
file set, excluding 223
files, extracting 220
files, updating with timestamp check 221
folders, extracting 220
tar archive, compressing 222, 223
total bytes, printing 224
version control directories, excluding 224

arguments
passing, to commands 40

arithmetic operations
about 19
performing 19, 20

array indexes
listing 29

arrays
about 27
associative arrays 27

aspell command
about 97
working 98

aspell list command 98

352

associative arrays
about 28
defining 28, 29
using 27, 28

asymmetric keys 267
auto-login

SSH keys used 267
automatic authentication

setting up, SSH keys used 267, 268
awk command

command output, reading 167
delimiter, setting for fields 167
external variable. passing to 165
for loop, using 167
line, reading explicitly 166
lines, filtering 166
special variables 164
string manipulation functions 168
used, for advanced text processing 162, 163
working 162

awk utility 335

B
back quotes 41
back tick 41
bandwidth limit

specifying, on cURL 191
base64 command 82
Bash

MySQL database, reading from 335-339
MySQL database, writing to 335-339

Bash (Bourne Again Shell) 8
bash-oauth library

downloading 201
bash prompt string

modifying 17
bc 20
BEGIN block 163
blank files

generating, in bulk 119
boot failures, machine

obtaining 290
boot logs, machine

obtaining 289, 290
broken links, website

identifying 209-211
bzip2 command 228

C
cat command

about 54
data, concatenating with 54
extra blank lines, removing 55
general syntax 54
line numbers 56
tabs, displaying as ^I 56
working 54, 55

cd command 42
cdrecord command

used, for burning ISO 129
CD-ROM tray 129
chage command 343
chain 277
changes, website

tracking 211, 213
character classes, tr command

alnum 77
alpha 77
cntrl 77
digit 77
graph 77
lower 77
print 77
punct 77
space 77
upper 77
xdigit 77

characters, files
counting, wc command used 138

chattr command
used, for making file immutable 119

checksums
about 77, 80
calculating 78
computing 78
for directories 80

checksum verification 79
chmod command

about 115
using, for setting file permissions 115

chsh command 343
colored output

printing 12

353

command execution time
calculating, time command used 285-287
real time 287
sys time 287
user time 287

command line
Gmail e-mails, accessing from 192

command-line navigation
pushd and popd command used 136

command-line options, comm command 110
command outputs

monitoring, watch command used 293
commands

delay, adding 45
executing on remote host, with SSH 257-259
executing rapidly 102, 103
faster approach 45
running 44
running, at system boot 334

Comma Separated Values (CSV) 45, 335
comm command 107, 316
comparisons

about 48
mathematical comparisons, performing 49
string comparisons, performing 50

compression command 171
Content-length parameter 191
convert command 344
Coordinated Universal Time (UTC) 34
cpio command

about 224
used, for archiving 224, 225
working 225

CPU 291
CPU usage

monitoring, ps command used 291-293
cron

scheduling with 331-333
cron scheduling utility 331
crontab command

about 331
environment variables, specifying 333
specific commands, running at system boot

334
cron table 331

removing 334
viewing 334

crypt command 81
cryptographic tools

base64 82
crypt command 81
gpg 81
md5sum 82
SHA-1 82
shadow-like salted hash 83

csplit 91, 92
cURL

about 188
authentication 191
bandwidth limit, specifying 191
cookies, storing 190
downloads, resuming 189
features 188
maximum download size, specifying 191
referer string, setting 189
response headers, printing 191
tasks 188
user agent string, setting 190
working 189

curl command 188
custom echo script

writing 70
custom file descriptors 26, 27
cut command

range of characters, specifying as fields
156, 157

used, for cutting file column-wise 154-156

D
data

backing up, rsync command used 234-236
compressing, gzip used 226
concatenating, with cat command 54
parsing, from website 194

date format 34
dates and time delays

working with 32-34
dd command 106
decompression command 172
define utility

code 208
creating, Web backend used 206-208
working 209

354

delays
executing, in script 35

delgroup command 343
deluser command 342
df command

about 280
used, for calculating disk usage 280

dictionary file
using 97

diff command
used, for generating difference files 130, 131

difference file
about 130
generating, against directories 132
generating, diff command used 130, 131

difference operation, text files 108
directories

listing, dir command used 135, 136
directory access

monitoring, inotifywait command used 295
directory tree, files

HTML output 140
printing 139

disk activity
monitoring, iotop command used 309, 310

disk images
creating, fsarchiver used 240, 241

disks
checking for errors, fsck used 310-312

disk space 280
disk usage

displaying in units, with du command 281
monitoring 280, 281

disk usage statistics, remote machine
monitoring 303-305

DNS servers
about 247
DNS lookup utilities 247, 249

domain names 247
Domain Name Service. See DNS servers
du command

about 280
used, for calculating disk usage 280

du command, functionalities
disk free information, providing 285
disk usage, displaying in units 281

files, excluding from disk usage calculation
283, 284

files, printing in specified units 282, 283
largest size files, searching from directory

284
total disk size, displaying 281, 282

duplicate files
about 110
deleting 111-113
searching 110-113

E
echo command

about 10
newline, escaping 12

egrep regex pattern 177
e-mail addresses

parsing, from text 177, 178
encryption techniques 80
END block 163
environment variables

about 13
displaying, for processes 321, 322
specifying 333

epoch 32
ESSID 265
Ethernet connection 265
event loop 327
exit status 39
expect command

automating 101, 102
interactive input, automating 101, 102

export command 15
expr 20
ext4 filesystem 240

creating 124
Extended Service Set Identification.

See ESSID
extfs (extended FS)

file permissions 113

F
file access

monitoring, inotifywait command used 294
file command

about 122, 323

355

using 122
file descriptors

about 21
working with 22

filenames
slicing, based on extension 92-94

file permissions
about 113
applying recursively 117
executable, running as setuid 118
group 114
listing, ls -l command used 114
others 114
ownership 113
ownership, applying recursively 118
ownership, changing 117
removing 116
setting, chmod command used 115, 116
sticky bit, setting 117
user 114

files
blank files, generating in bulk 119, 120
column-wise cutting, with cut command

154-156
copying, over network 274
counting 138
difference file, patching 130
difference file, searching 130
difference operation 108
directories, listing 135
directory tree, printing 139
duplicate files, deleting 110
duplicate files, finding 110
file permissions, working with 113
file type statistics, enumerating 121
generating 106, 107
hybrid ISO, creating 128
intersection operation 107
ISO files, creating 127
last or first 10 lines, printing 132-134
locating, with find command 58, 59
loopback files, using 124
making immutable 118
renaming, rename command used 95
set difference operation 108
symbolic links, searching 120
text, searching with grep command 147

transferring, through network 261
files and data

splitting, split command used 90
filesystem backup solution 240
filesystems

checking for errors, fsck used 310-312
File Transfer Protocol. See FTP
file type statistics

enumerating 121-123
filters 41
find command

about 58
arguments, negating 61
deleting, based on file matches 65
executing 66
match, based on file permissions and

ownership 65
searching, based on directory depth 61, 62
searching, based on filename 59, 60
searching, based on file size 65
searching, based on file times 63, 64
searching, based on file type 62
searching, based on regular expression match

59, 60
specified directories, skipping 67
used, for listing files 58, 59
used, for searching files 58, 59

finger USER command 343
firewall 276
formatted arguments

passing to xargs command 70, 71
fping command

used, for listing live machines on network
254, 256

frequency of words
finding, in file 168, 169

Frequency parameter 267
fsarchiver

about 240
URL 241
used, for creating disk images 240, 241
working 241

fsck command
used, for checking disks and filesystem

310-312

356

FTP
about 261
automated FTP transfer 262, 263
connecting to 261
recursive copying, with SCP 264
rsync command 263
SCP 264
SFTP 263
using 261

FTP authentication, cURL 191
functions

defining 37, 38
exporting 39

G
gateway 249
gedit 13
GET request 214
Git

about 237
used, for version control based backup

237-240
Gmail 192
Gmail e-mails

accessing, from command line 192, 193
GNU/Linux ecosystem 313
GNU screen 348
gpg command 81
grep command

about 148
files, excluding in search 151
files, including in search 151
files, searching recursively 150
lines, printing 153, 154
multiple patterns, matching 151
silent output 152, 153
using 148
using with xargs with zero-byte suffix 152

group, file permissions 115
gzip command

about 226
used, for compressing data 226

gzip command, features
bzip2, using 228
compression ratio, specifying 228

gzipped tarball, creating 227
lzma using 229

gzipped tarball
creating 227

H
hardware address

spoofing 246
head and tail commands

used, for printing last or first 10 lines
132-134

head command 133
HTML output, directory tree 140
HTTP authentication, cURL 191
HTTP or FTP authentication

used, for accessing web pages 187
HTTP protocol 184
HTTP_PROXY 15
hybrid ISO

creating 128

I
ifconfig command

about 244
used, for displaying network interfaces 244

IFS
about 45, 339
example 46
using 46

image
format, converting 344-347
resizing 344-346

Image crawlers
about 195
working 196, 197

image downloader 196
Imagemagick

about 344
URL 344

import command 348
information, about processes

gathering, ps command used 314, 315
inotifywait command

used, for monitoring file and directory access
294

357

working 295
interactive input

automating 99, 100
internal field separator 69. See IFS
Internet connection

sharing 275
Internet Control Message Protocol (ICMP)

echo packets 250
Internet Explorer (IE) 190
intersection operation, text files

about 107
performing 109

intruder_detect.sh script
writing 299, 302

iotop command
used, for monitoring disk activity 309, 310

IP addresses
displaying 246

iptables
using 276
working 277

ISO files
about 127
burning, from command line 129
creating 127

isohybrid command
used, for converting ISO files to hybrid ISOs

129
ISO image

creating 127
iwconfig command 266

using 275

J
JavaScript

compressing 170, 171
decompressing 170, 171

K
killall command 325
kill command 324, 325
Konsole 348
kpartx 126

L
last command

obtaining 290
last in first out (LIFO) 136
Last-Modified parameter 191
last or first 10 lines

about 135
working 136

let command 19
lines, files

counting, wc command used 138
printing, in reverse order 176, 177

Lines of Code (LOC) 72
Linux

disk usage, calculating with df and du 280
live machines

listing, on network 254, 255
listing, on network with fping command 255
listing, on network with ping command 254

load average command 323
local mount point

remote drive, mounting 270
LOC (Lines of Code) 138
log events

access 295
attrib 295
close 295
create 295
delete 295
modify 295
move 295
open 295

logfile management
performing, logrotate command used

296, 297
logfiles

writing into 298
logged in users information

obtaining 288, 289
logrotate command

compress parameter 297
create 0600 root root parameter 297
missingok parameter 297
notifempty parameter 297

358

rotate 5 parameter 297
size 30k parameter 297
used, for logfile management 296, 297
weekly parameter 297

look command 99
loopback disk images

mounting, with partitions 126, 127
loopback files

about 106
changes, flushing with sync command 127
ISO files, mounting 127
partitions, creating inside images 126
using 124, 125

losetup command 126
ls -lS command 112
Lynx

about 187
working 195

lynx command 187
lzma command 229

M
man-in-the-middle attack 258
mathematical comparisons

performing 49
maximum download size, for cURL

specifying 191
md5sum checksum

about 78-82
computing 78
syntax 78

md5sum command 102
messages

sending, to user terminals 327, 329
minified JS 170
mkdir command 125
mkfs command 124
mkfts.ext4 command 125
mkisofs command 128
mktemp command

about 89
temporary file, creating 89
working 90

mount command 106, 125
mountpoint 124, 125

multiple commands
combining 40

multiple files
merging, as columns 173

multiple tar files
concatenating 220

multiple terminals
managing, from one 348, 349

MySQL database
about 335
reading, from Bash 335-339
writing, to Bash 335-339

N
n characters

reading, without return key 43
netcat command

used, for creating arbitrary sockets 274
netstat command 273
network

setting up 244
Network Address Translation (NAT)

setting up 275
networking 243
networking parameters

host names 243
ports 243
route 243
subnet mask 243

network interface 244
network ports 271, 272
network setup

arbitrary sockets, creating 274
commands, running on remote host with SSH

257
DNS 247
domain names 247
files, transferring through network 261
firewall, iptables used 276
hardware address, spoofing 246
Internet connection, sharing 275
IP addresses, displaying with ifconfig

command 246
live machines, listing on network 254
network interfaces list, printing 245

359

network traffic 271
password-less auto-login, with SSH 267
performing 244, 245
ping command 250
port analysis 271
port forwarding, with SSH 269
remote drive, mounting at local mount point

270
routing table information, displaying 249
wireless network, connecting to 265

non-interactive port forward 270
nth word or column, in file

printing 174

O
OAuth 201
opened port

listing 273
others, file permissions 115
output, multiple commands

reading 40, 41

P
parameter operations 181
partimage 240
passwd command 343
paste command 173
patch command

used, for patching difference file 130
patch file

about 130
changes, reverting 132
generating 131

PATH environment variable 15
pattern

replacing, with text in all files in directory 180
pbzip2 command

used, for archiving 231
working 232

pbzip2 command, features
compression ratio, specifying 232
number of CPUs, specifying 232

pcpu command 316
pgrep command 13, 318, 319
PHP 184

PID 314
ping command

about 250
used, for checking the connectivity of hosts

250
used, for listing live machines on network

254, 256
using 250, 251

ping command, functionalities
echo packets, limiting 252
return status 252
Round Trip Time (RTT), finding 252

pkill command 326
popd command

about 136
used, for directory switching 137
using 137

port analysis 271, 272
port forwarding

about 269
SSH, used 269

POST request 214
power consumption

measuring, powertop command used 308
optimizing, powertop command used

308, 309
powertop command

used, for measuring power consumption
308, 309

prepend() function
defining 17
working 18

printf command 11
printf() function 165
processes

about 314
environment variables, displaying for

321, 322
killing 324, 325

process ID. See PID
finding 318, 319

process manipulation commands
pgrep 318, 319
ps 317, 318
top 317

360

process threads
information 320

ps command
about 317, 318
TTY filters 320
used, for gathering information about

processes 314, 315
used, for monitoring CPU usage 291

ps output
filtering 319

pushd command
about 136
used, for directory switching 137
using 136

pwd command 42

R
read command 43
readlink command 121
recursive function 39
redirection

from file to command 25
from text block 25
working with 24, 25

referer string
about 189
setting, with cURL 189

regex 144
regular expressions

about 144
components 145, 146
special characters 146
text matching 144
using 144
visualizing 147

remote disk usage health monitor
about 303
working 305

remote drive
mounting, at local mount point 270

remote host
commands, executing with SSH 257-259

remote machine
graphical commands, executing 260

rename command
about 95, 96

image files, renaming 96
working 96

return value, of command
reading 39

reverse port forwarding 270
root command 319
ROT13 74
rotation 296
Round Trip Time (RTT) 252
routing table

about 249
information, displaying 249

RSS feeds
parsing 192

rsync command
backups, scheduling at intervals 237
files, excluding while archiving 236
functionalities 236
non-existent files, deleting 237
used, for backing up snapshots 234, 236
working 236

S
SCP

about 264
used, for recursive copying 264

screenshots
taking, from terminal 347

script
debugging 36, 37

script command
about 57
used, for recording terminal sessions 57
working 58

scripting 8
scriptreplay command

about 57
used, for recording terminal sessions 57
working 58

secure copy program. See SCP
Secure FTP. See SFTP
Secure Shell. See SSH
sed command

about 110, 158
blank lines, removing 159
matched string notation (&) 160

361

multiple expressions combination 161
quoting 161
substring match notation (\1) 160, 161
text replacement, performing in file 159, 160
used, for performing text replacement

158, 159
used, for replacing matched sentence 178

sentence, containing word
removing 178, 179

services
listing 273

set difference operation, text files
about 108, 110
performing 110

setgid permission 115
setuid permission 114
SFTP 263
SHA-1 78-82
shadow-like salted hash 83
shebang 8
shell

alias 29
arithmetic operations 19
arrays 27
dates and time delays, working with 32
file descriptors 21
functions, defining 37
internal field separator (IFS) 45
prepend() fucntion, defining 17, 18
script, debugging 36
terminal, printing 10, 11
terminal settings, collecting 31
terminal settings, manipulating 31
variables 13

shell scripts 8
SHELL variable

identifying 16
signals

about 324
capturing 326, 327
responding to 326, 327

sort command
about 83
sorting, keys or columns used 85, 86
working 85

sort utility 335

special variables, awk command
$0 164
$1 164
$2 164
NF 164
NR 164

spell checker
using 97

split command
about 90
filename prefix, specifying for split files 91
files and data, splitting 90

squashfs files
creating 233
mounting 233

squashfs filesystem
about 232
creating, with compression 232
customizing 233
files, excluding 233

squashfs-tools
installing 233

SSH
about 257
data, redirecting into stdin of remote shell

commands 260
non-interactive port forward 270
reverse port forwarding 270
used, for executing commands on remote host

257-260
used, for port forwarding 269
with compression 260

ssh-keygen command 267
SSH keys

creating, for auto-login 267
sticky bit permission 115
string comparisons

performing 50
string manipulation functions, awk

gsub() 168
index() 168
length(string) 168
match() 168
split() 168
sub() 168
substr() 168

362

subshell
about 42
quoting, for preserving spacing and newline

character 42
subshell method 41
symbolic links

about 120
handling 120
target path, reading 121
working 121

syslinux package
downloading 129

syslog 297
syslogd

about 297
used, for logging info from shell script

297-299
system information

obtaining 329, 330

T
tac command 176
tail command 132
Tape ARchives 218
tar command

about 218
features 219
stdin 220
stdout 220
used, for creating archives 218
working 219

tar command, features
files and folders, extracting from archives 220
files, appending to archives 219
files, comparing in archive and file system

222
files, deleting from archive 222
file set, excluding from archiving 223
files, updating with timestamp check 221
multiple tar files, concatenating 220
tar archive, compressing 222
total bytes, printing 224
version control directories, excluding 224

TCP/IP 243
temporary file

creating, mktemp command used 89

terminal
about 10
printing 11
screenshots, taking from 347
working 12

terminal session
recording, with script and scriptreplay 57

terminal settings
collecting 31
manipulating 31

tests
performing 48, 49

text
searching, in file with grep command

147-150
slicing 181

text, between line numbers or patterns
printing 175

time command
parameters 287
used, for calculating command execution time

285-287
working 287

TO_init function 206
top command 317
touch command

about 119
used, for generating blank files in bulk 119

traceroute command 253
translate 73
trap command 326
tr command

about 73
character classes 77
characters, deleting 75
character set, complementing 75
characters, squeezing 76
translation, performing 74
working 74

tree command 139, 140
TTY filter, for ps command 320
TTY(Tele TYpewriter) 288
Twitter

about 201
used, for reading tweets on timeline 201-206

TwitterOAuth.sh library 206

363

U
UID value 17
uniq command

about 83, 87, 88
working 85

Unix time 32
until loop 47
URLs

parsing, from text 177, 178
usage() function 342
useradd command 342
user administration script 340-343
user agent string

setting, with cURL 190
user, file permissions 114
user logins

monitoring, for intruder detection 299-303
usermod command 343
user terminals

messages, sending to 327-329

V
var 14
variables

about 13
bash prompt string, modifying 17
environment variables 13
length, finding 16
shell variable, identifying 16
super user, checking 17
working with 13-15

version control based backup
Git used 237-240

W
wall command 327
watch command

differences, highlighting 294
used, for monitoring command output 293

wc command
used, for coutning characters 138
used, for coutning lines 138

used, for coutning words 138
Web 184
Web backend

used, for creating define utility 206-209
web page

accessing, with HTTP or FTP authentication
187

downloading, as plain text 187
downloading, wget command used 184, 185
posting to 214, 215
response, reading 214, 215

Web photo album generator
about 198
working 200, 201

website
broken links, identifying 209-211
changes, tracking 211, 213
data, parsing from 194

WEP (Wired Equivalent Privacy) 265
wget command

about 184
download, resuming 186
download speed, restricting 185
used, for downloading web page 184
website, copying 186

whatis command 323
whereis command 323
which command 322, 323
while loop 47, 197
Wi-Fi Protected Access2 (WPA2) 267
wireless network connection

performing 265, 266, 267
word count 138
words, files

about 168
counting, wc command used 138

X
xargs command

about 68
C program files, counting 72
formatted arguments, passing 70

364

multiple-line input, converting to single-line
output 69

single-line intput, converting to multiple-line
output 69

subshell, using with while loop 73
using 68
using, with find command 72
working 69

Z
zcat command 228
zip command

about 230
used, for archiving 230
used, for compressing 230
working 230

Thank you for buying

Linux Shell Scripting Cookbook Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CentOS 6 Linux Server
Cookbook
ISBN: 978-1-84951-902-1 Paperback: 374 pages

A practical guide to installing, configuring, and
administering the CentOS community-based
enterprise server

1. Delivering comprehensive insight into CentOS
server with a series of starting points that show
you how to build, configure, maintain and deploy
the latest edition of one of the world’s most
popular community based enterprise servers.

2. Providing beginners and more experienced
individuals alike with the opportunity to enhance
their knowledge by delivering instant access to
a library of recipes that addresses all aspects of
CentOS server and put you in control.

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack could environments with complete
coverate of Nova, Swift, Keystone, Glance, and Horizon

1. Learn how to install and configure all the core
components of OpenStack to run an environment
that can be managed and operated just like AWS
or Rackspace

2. Master the complete private cloud stack from
scaling out compute resources to managing swift
services for highly redundant, highly available
storage

Please check www.PacktPub.com for information on our titles

OpenNebula 3 Cloud
Computing
ISBN: 978-1-84951-746-1 Paperback: 314 pages

Set up, manage, and maintain your Cloud and learn
solutions for datacenter virtualization with this
step-by-step practical guide

1. Take advantage of open source distributed
file-systems for storage scalability and
high-availability

2. Build-up, manage, and maintain your Cloud
without previous knowledge of virtualization
and cloud computing

3. Install and configure every supported hypervisor:
KVM, Xen, VMware

Advanced Penetration
Testing for Highly-Secured
Environments: The Ultimate
Security Guide
ISBN: 978-1-84951-774-4 Paperback: 414 pages

Learn to perform professional penetration testing for
highly-secured environment with this intensive
hands-on guide

1. Learn how to perform an efficient, organized, and
effective penetration test from start to finish

2. Gain hands-on penetration testing experience by
building and testing a virtual lab environment that
includes commonly found security measures such
as IDS and firewalls

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Shell Something Out
	Introduction
	Printing in the terminal
	Playing with variables and environment variables
	Function to prepend to environment variables
	Math with the shell
	Playing with file descriptors and redirection
	Arrays and associative arrays
	Visiting aliases
	Grabbing information about the terminal
	Getting and setting dates and delays
	Debugging the script
	Functions and arguments
	Reading the output of a sequence of commands
	Reading n characters without pressing the return key
	Running a command until it succeeds
	Field separators and iterators
	Comparisons and tests

	Chapter 2:
Have a Good Command
	Introduction
	Concatenating with cat
	Recording and playing back of terminal sessions
	Finding files and file listing
	Playing with xargs
	Translating with tr
	Checksum and verification
	Cryptographic tools and hashes
	Sorting unique and duplicates
	Temporary file naming and random numbers
	Splitting files and data
	Slicing filenames based on extension
	Renaming and moving files in bulk
	Spell checking and dictionary manipulation
	Automating interactive input
	Making commands quicker by running parallel processes

	Chapter 3:
File In, File Out
	Introduction
	Generating files of any size
	The intersection and set difference (A-B) on text files
	Finding and deleting duplicate files
	Working with file permissions, ownership, and the sticky bit
	Making files immutable
	Generating blank files in bulk
	Finding symbolic links and their targets
	Enumerating file type statistics
	Using loopback files
	Creating ISO files and hybrid ISO
	Finding the difference between files, patching
	Using head and tail for printing the last or first 10 lines
	Listing only directories – alternative methods
	Fast command-line navigation using pushd and popd
	Counting the number of lines, words, and characters in a file
	Printing the directory tree

	Chapter 4:
Texting and Driving
	Introduction
	Using regular expressions
	Searching and mining a text inside a file with grep
	Cutting a file column-wise with cut
	Using sed to perform text replacement
	Using awk for advanced text processing
	Finding the frequency of words used in a given file
	Compressing or decompressing JavaScript
	Merging multiple files as columns
	Printing the nth word or column in a file or line
	Printing text between line numbers or patterns
	Printing lines in the reverse order
	Parsing e-mail addresses and URLs from a text
	Removing a sentence in a file containing a word
	Replacing a pattern with text in all the files in a directory
	Text slicing and parameter operations

	Chapter 5:
Tangled Web?
Not At All!
	Introduction
	Downloading from a web page
	Downloading a web page as plain text
	A primer on cURL
	Accessing Gmail e-mails from the command line
	Parsing data from a website
	Image crawler and downloader
	Web photo album generator
	Twitter command-line client
	Creating a "define" utility by using the Web backend
	Finding broken links in a website
	Tracking changes to a website
	Posting to a web page and reading the response

	Chapter 6:
The Backup Plan
	Introduction
	Archiving with tar
	Archiving with cpio
	Compressing data with gzip
	Archiving and compressing with zip
	Faster archiving with pbzip2
	Creating filesystems with compression
	Backup snapshots with rsync
	Version control based backup with Git
	Creating entire disk images with fsarchiver

	Chapter 7:
The Old-boy Network
	Introduction
	Setting up the network
	Let us ping!
	Listing all the machines alive on a network
	Running commands on a remote host with SSH
	Transferring files through the network
	Connecting to a wireless network
	Password-less auto-login with SSH
	Port forwarding using SSH
	Mounting a remote drive at a local mount point
	Network traffic and port analysis
	Creating arbitrary sockets
	Sharing an Internet connection
	Basic firewall using iptables

	Chapter 8:
Put on the Monitor's Cap
	Introduction
	Monitoring disk usage
	Calculating the execution time for a command
	Collecting information about logged in users, boot logs, and boot failures
	Listing the top 10 CPU consuming processes in an hour
	Monitoring command outputs with watch
	Logging access to files and directories
	Logfile management with logrotate
	Logging with syslog
	Monitoring user logins to find intruders
	Remote disk usage health monitor
	Finding out active user hours on a system
	Measuring and optimizing power usage
	Monitoring disk activity
	Checking disks and filesystems for errors

	Chapter 9:
Administration Calls
	Introduction
	Gathering information about processes
	Killing processes and send or respond to signals
	Sending messages to user terminals
	Gathering system information
	Using /proc for gathering information
	Scheduling with cron
	Writing and reading the MySQL database
from Bash
	User administration script
	Bulk image resizing and format conversion
	Taking screenshots from the terminal
	Managing multiple terminals from one

	Index

