(CS224 : Assignment 3
Date of Demonstration 21* February 2023, Lab Timing 2PM-5PM), 14% (8%+ 8%) weight

Part I (Breadboard and IC part)

Design and Implement an 8-bit unsigned multiplier (using ICs and breadboard). Assume both the inputs are unsigned
8 bits integers and produce a 16-bit unsigned integer output.

Some hints:

* Use two 4-bit Adders/ALUs to do addition operations

* Use DIP switches for inputs

* Use a combination of both SIPO and PISO to make full-fledged universal shift register (8-bit)

* For multiplicand (A of AxB), you can use two 4-bit PIPO registers

* For the controller, you can use a mod 8/16 counter

* A combination of D-FFs can be used as a register if necessary

» Display all the outputs in 7 Seg LEDs, except the carry-out. If you are not getting a sufficient
number of Seven Segment LEDs then used LEDs of Breadboard for output. Caution: don’t connect
external 7 Segment LED without resistors.

Refl: “RTL design for Multiplier”, Chapter 8, Section 8.7 of “Digital Design” 4th Edition Book by M. Moris Mano.
Ref2: “Multiplier Design”, Chapter 3, Section 3.3 of “Computer Organization and Design” by L. Henessy and D Paterson.

You can use Booth Encoding if you use ADDer/SUBstractor.
Part II (VHDL and FPGA) : Design of Register Based toy Intruction Processor (without MemQOPs
and BrachOPs)

Design and implement RTL processor operations demonstrator where instruction size is 6-bit and
instruction has a 3-bit operations field and 3-bit for register selection. Assume your design has a register
file (RF) with eight 8-bit registers and an accumulator (ACC) register (8-bit).

Support 3 bit operations:

000 ADD R //ACC =ACC+R

001 SUB R //ACC=ACC-R

010 MRA R //Move RF[R] value of ACC

011 MARR //Move ACC value to RF[R]

100 SCAN //Store the SWITCH value (SW8-SW15) to ACC
101 PRINT //Display Content of ACC to 7 SEG LED

Use input switches SW2-SW7 of FPGA board for Instruction. SW2-SW4 for operation, SW5-SW?7 for
register number. Use input switches SW8-SW15 of FPGA for value of register in SCAN operation. Use
input switches SW0 and SW1 for control. When SWO0 goes from low to high perform the operation.

Hint : for top module
reg RI[8], SEG7[8]; //Connect RI to SW8-SW15 and SEG7 to 7 Seg port/output
reg R[8][8]; // or in bit R[7 downto 0][7 downto 0]
always @ (rising edge of SWO) {

switch (SW2-SW4) {

case 000 : ACC= ACCHR[SW5-SW7]

case 001 : ACC= ACC-R[SW5-SW7]

case 010 : ACC= R[SW5-SW7]

case 011 : R[SW5-SW7]=ACC

case 100 : ACC= RI ; // SW8-SW15

case 101 : SEG7=ACC ; //PRINT VALUE of ACC to 7SEG

1




Finally you need to read five eight bit numbers and Display the sum.

Your program should be like

Instruction

SCAN
MAR 000
SCAN
MAR 001
SCAN
MAR 010
SCAN
MAR 011
SCAN
ADD 000
ADD 001
ADD 010
ADD 011
MRA 100
PRINT

Evaluation Procedure

* All the member of the group need to be present at the time of Demonstration of the assignment. All
the absent members will be awarded 0 marks for the assignment. Please show your ID card at the
time of demonstration (as it is difficult to remember faces of all the 128 students of your batch).

* @Grading will be based on (a) Correctness, (b) Quality of design, (c) Wire optimization, (d) Optimum
number of chip used,(e) Cleanliness in design (Wire and Chips should be organized to look good),
(f) Use of proper Comment/Naming/Labeling of the wires and (g) Questionnaire and explanation.

* For HDL codes the quality will be based on FPGA minimum resource utilization (Synthesis Report:
optimized number of LUTs, register, Minimum Clock), coding style (Use of proper
Comment/Naming/Labeling of the wires ), performance, comments, and questionnaire and

explanation.

InputSwitchMeaning/Description

100XXX
011000
100XXX
011001
100XXX
011010
100XXX
011011
100XXX
000000
000001
000010
000011
010100
101XXX

//ACC=SW8-SW15
//RO=ACC
//ACC=SW8-SW15
//R1=ACC
//ACC=SW8-SW15
//R2=ACC
//ACC=SW8-SW15
//R3=ACC
//ACC=SW8-SW15
//ACC =ACC+RO
//ACC =ACC+R1
//ACC =ACC+R2
//ACC =ACC+R3
//R[4]=ACC
//PRINT=ACC



