
1

Synthesis of Digital Systems
CS 411N / CSL 719

Part 3: Hardware Description
Languages - VHDL

Instructor: Preeti Ranjan Panda
Department of Computer Science and Engineering

Indian Institute of Technology, Delhi

(C) P. R. Panda, I.I.T Delhi, 2003 2

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

2

(C) P. R. Panda, I.I.T Delhi, 2003 3

Hardware Description Languages

• VHDL - VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language
– originally intended as standard
– simulation and documentation language

• Verilog
– originally proprietary

• SystemC
– based on C++
– system level language

(C) P. R. Panda, I.I.T Delhi, 2003 4

Which HDL to use? (1)
• Both VHDL and Verilog popular

– VHDL popular in Europe/Japan
– Verilog popular in U.S.

• VHDL “cleaner” language
– richer data types
– but more verbose

• Verilog
– lower level language: bit level, fewer data types
– more concise

3

(C) P. R. Panda, I.I.T Delhi, 2003 5

Which HDL to use? (2)

• Coverage of Hardware concepts
– equally good in both

• Learning one language eases learning
of the other

• Status of tool support
– equally good for both VHDL/Verilog

(C) P. R. Panda, I.I.T Delhi, 2003 6

Fundamental VHDL Objects:
entity/architecture pairs

VHDL model
consists of
two parts

Entity

Architecture

entity represents
external interface

architecture
represents
functionality/contents

4

(C) P. R. Panda, I.I.T Delhi, 2003 7

ENTITY and_gate IS
PORT (a: IN BIT;

b: IN BIT;
y: OUT BIT);

END and_gate;

Specifying interfaces:
entities and ports

Port Name
Port direction

Port type

Entity has
interface only.
No functionality.

Model Name

a

b
y

(C) P. R. Panda, I.I.T Delhi, 2003 8

ARCHITECTURE data_flow OF and_gate IS
BEGIN

y <= a AND b;
END data_flow;

Specifying Functionality:
architectures

May have multiple architectures for given entity
• different views
• different levels of detail

5

(C) P. R. Panda, I.I.T Delhi, 2003 9

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

(C) P. R. Panda, I.I.T Delhi, 2003 10

ARCHITECTURE data_flow
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci)

OR (ai AND ci);
END data_flow;

Specifying Concurrency:
Concurrent Signal Assignment

si+ai
bi

ci

co
Concurrent Signal Assignments

6

(C) P. R. Panda, I.I.T Delhi, 2003 11

ARCHITECTURE data_flow
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci)

OR (ai AND ci);
END data_flow;

When is Signal Assignment
Executed?

Executed when
ai, bi, or ci changes

Assignment executed when any signal on RHS changes

Executed when
ai, bi, or ci changes

(C) P. R. Panda, I.I.T Delhi, 2003 12

Order of Execution

• Execution independent of specification
order

ARCHITECTURE data_flow
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci)

OR (ai AND ci);
END data_flow;

ARCHITECTURE data_flow
OF full_adder IS
BEGIN

co <= (ai AND bi) OR (bi AND ci)
OR (ai AND ci);

si <= ai XOR bi XOR ci;
END data_flow;

These two are equivalent

7

(C) P. R. Panda, I.I.T Delhi, 2003 13

Modelling Combinational Logic

• One concurrent assignment for each
output

Comb
Logic

o1
o2
o3
o4

i1
i2
i3
i4

ARCHITECTURE data_flow
OF comb_logic IS
BEGIN

o1 <= i1 and i2;
o2 <= (i2 or i3) xor (i1 and i4);
o3 <= ...;
o4 <= ...;

END data_flow;

(C) P. R. Panda, I.I.T Delhi, 2003 14

When Logic Complexity Increases

• Temporary SIGNALS needed
• Avoid redundant evaluations

f
g

h
x

y = g (f (x))

z = h (f (x))
f

g

h
x

y = g (t)

z = h (t)

t = f (x)

Ports: x, y, z Signal: t

8

(C) P. R. Panda, I.I.T Delhi, 2003 15

SIGNALS
• Represent intermediate wires/storage
• Internal - not visible outside entity

ENTITY comb_logic IS
PORT (i1, i2, i3, i4: IN BIT;

o1, o2: OUT BIT);
END comb_logic;

ARCHITECTURE data_flow
OF comb_logic IS
BEGIN

o1 <= (i1 and i2 and i3) xor i2;
o2 <= (i1 and i2 and i3) or i4;

END data_flow;

ENTITY comb_logic IS
PORT (i1, i2, i3, i4: IN BIT;

o1, o2: OUT BIT);
END comb_logic;

ARCHITECTURE data_flow1
OF comb_logic IS
SIGNAL temp: BIT;
BEGIN

temp <= (i1 and i2 and i3);
o1 <= temp xor i2;
o2 <= temp or i4;

END data_flow;

(C) P. R. Panda, I.I.T Delhi, 2003 16

SIGNALS

• executed when i1, i2,
or i3 changes

• executed when temp or
i2 changes

• SIGNALS are
associated with
time/waveforms

• PORT is a special type
of SIGNAL

ARCHITECTURE data_flow
OF comb_logic IS
SIGNAL temp: BIT;
BEGIN

temp <= (i1 and i2 and i3);
o1 <= temp xor i2;
o2 <= temp or i4;

END data_flow;

9

(C) P. R. Panda, I.I.T Delhi, 2003 17

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

(C) P. R. Panda, I.I.T Delhi, 2003 18

Modelling Delays: inertial delay
• Models actual hardware
• Spikes suppressed

y <= INERTIAL NOT a AFTER 10 ns;
y <= NOT a AFTER 10 ns; -- inertial delay is default

a

y

0 10 12 22 30 35

10

(C) P. R. Panda, I.I.T Delhi, 2003 19

Modelling Delays: transport delay

• Models wires/transmission lines
– used in more abstract modelling

• Spikes propagated
y <= TRANSPORT NOT a AFTER 10 ns;

a

y

0 10 12 22 30 35 40 45

(C) P. R. Panda, I.I.T Delhi, 2003 20

Events and Transactions

• Event
– Signal assignment that causes change in

value
• Transaction

– Value scheduled for signal assignment
• may or may not cause change in value

11

(C) P. R. Panda, I.I.T Delhi, 2003 21

Events and Transactions: Example

ARCHITECTURE demo OF example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

Source: Z. Navabi, VHDL - analysis and modeling of digital systems

(C) P. R. Panda, I.I.T Delhi, 2003 22

Events and Transactions: Example
ARCHITECTURE demo OF
example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

a

b

c

0 5 10 15 20 25

0

0

0

c (0, 10)
b (1,5)

a (1, 15)
Events
and
Transactions

Transactions
Scheduled

b (1,5)

Transaction
Expires

Event Created

c (0, 10)

Transaction
Expires

No Event

12

(C) P. R. Panda, I.I.T Delhi, 2003 23

Events and Transactions: Example
ARCHITECTURE demo OF
example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

a

b

c

0 5 10 15 20 25

0

0

0

c (1, 10)
b (0,5)Events

and
Transactions New

Transactions

b (0,5)

Transaction
Expires

Event Created

c (1, 10)

Transaction
Expires

Event Created

a (1, 15)

Transaction
Expires

Event Created

(C) P. R. Panda, I.I.T Delhi, 2003 24

Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0

0

0

b (1,8)

Transactions
Scheduled

a (0, 15)
a (1, 10)

8

b (1,8)

Transaction
Expires

Event Created

13

(C) P. R. Panda, I.I.T Delhi, 2003 25

Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0 10

0

0

15

b (0,8)

New
Transaction
Scheduled

a (1, 10)
Transaction

Expires
Event Created

a (0, 15)

Transaction
Expires

Event Created

b (1,8)

New Transaction
Scheduled -
Cancels Old
Transaction

(C) P. R. Panda, I.I.T Delhi, 2003 26

Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0 10

0

0

15

b (1,8)

8

Transaction
Expires

No Event

23

14

(C) P. R. Panda, I.I.T Delhi, 2003 27

Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS;
b <= TRANSPORT NOT a

AFTER 8 NS;

Events
and
Transactions

a

b
0

0

0

b (1,8)

Transactions
Scheduled

a (0, 15)
a (1, 10)

8

b (1,8)

Transaction
Expires

Event Created

(C) P. R. Panda, I.I.T Delhi, 2003 28

Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS;
b <= NOT a AFTER 8 NS;

Events
and
Transactions

b (0,8)

New
Transaction
Scheduled

a (1, 10)
Transaction

Expires
Event Created

a (0, 15)

Transaction
Expires

Event Created

b (1,8)

New Transaction
Scheduled - Old

Transaction
Retained

a

b
0 10

0

0

15

15

(C) P. R. Panda, I.I.T Delhi, 2003 29

Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= TRANSPORT

NOT a AFTER 8 NS;

Events
and
Transactions

a

b
0 10

0

0

158 18 23

b (0,8)

Transaction
Expires

Event Created

b (1,8)

Transaction
Expires

Event Created

(C) P. R. Panda, I.I.T Delhi, 2003 30

Generating clocks

a
0 10

a <= NOT a AFTER 10 ns;

20 30 40 50

16

(C) P. R. Panda, I.I.T Delhi, 2003 31

Delta Delays
ARCHITECTURE x of y IS
SIGNAL b, c: bit;
BEGIN

b <= NOT a;
c <= clock NAND b;
d <= c AND b;

END x;

a <= 0
(clock = 1) b <= 1 c <= 0

d <= 1 d <= 0

Delta 1 Delta 2 Delta 3 Delta 4

zero-delay
signal assignments

Simulation time does not advance

(C) P. R. Panda, I.I.T Delhi, 2003 32

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

17

(C) P. R. Panda, I.I.T Delhi, 2003 33

Describing Behaviour: Processes

• Signal assignment statements OK for
simple behaviour

• Complex behaviour requires more
constructs
– conditionals (IF, CASE)
– loops (FOR, WHILE)

• Use VHDL PROCESS

(C) P. R. Panda, I.I.T Delhi, 2003 34

VHDL PROCESS
• Execution within a

PROCESS is sequential
• Processes are concurrent

w.r.t each other
• Signal assignment is a

simple special case
• Architecture consists of a

set of Processes (and
signal assignments) at
top level

• Processes communicate
using signals

p1: PROCESS
BEGIN

IF (x) THEN ...
ELSE ...;...

END PROCESS;

p2: PROCESS
BEGIN

FOR i in 1 TO 5 LOOP
a (i) <= 0;

ENDL LOOP;...
END PROCESS;

f <= g+ 1;

ARCHITECTURE x of a IS BEGIN

END x;

18

(C) P. R. Panda, I.I.T Delhi, 2003 35

PROCESS Execution Semantics

• Need to define when Process is
executed
– suspending/resuming execution
– more complex than signal assignment

(“evaluate when any signal on RHS
changes”)

• No notion of “completion” of execution
– needs to emulate hardware

(C) P. R. Panda, I.I.T Delhi, 2003 36

Process Sensitivity List

• Process is sensitive to
signals on Sensitivity List

• All processes executed
once at time=0

• Suspended at end of
process

• Reactivated when event
occurs on any signal in
sensitivity list

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

Sensitivity List

19

(C) P. R. Panda, I.I.T Delhi, 2003 37

Process and Signal Assignment

ARCHITECTURE x of y IS
BEGIN

END x;

Identical
ARCHITECTURE x of y IS
BEGIN

END x;

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

c <= a AND b;

Need not use PROCESS for modelling simple
combinational behaviour

(C) P. R. Panda, I.I.T Delhi, 2003 38

Process Synchronisation

• Sensitivity list is optional
• wait is general

synchronisation
mechanism

• Implicit infinite loop in
process

• Execution continues until
suspended by wait
statement

PROCESS
BEGIN
wait on a,b;
c <= a and b;
END PROCESS;

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

Identical

20

(C) P. R. Panda, I.I.T Delhi, 2003 39

Synchronisation with WAITs

• Synchronisation with wait more flexible
• Both sensitivity list and wait not allowed

in same process
– process can have any number of waits

• For combinational logic, place ALL input
signals in sensitivity list

• For sequential logic, use waits
appropriately

(C) P. R. Panda, I.I.T Delhi, 2003 40

WAIT Examples
PROCESS
BEGIN
wait for 10 ns;
outp <= inp;
END PROCESS

Sample input every 10 ns

PROCESS
BEGIN
wait until clk’event and clk=‘1’;
d <= q;
END PROCESS

Edge triggered flip flop

PROCESS (clk, reset)
BEGIN
IF reset THEN

q <= ‘0’;
ELSIF clk’event and clk=‘1’

d <= q;
END IF;
END PROCESS

Flip flop with Reset

PROCESS
BEGIN

outp <= inp;
END PROCESS

Error! (no waits)
(Compare signal
assignment at

architecture level)

21

(C) P. R. Panda, I.I.T Delhi, 2003 41

Process Variables

• Variables used for local
computations
– within processes

• Not associated with
events/transactions
– unlike signals

• Assignment of value is
immediate
– unlike signals

PROCESS
VARIABLE result : BIT;
BEGIN
wait until clk’event and clk=‘1’;
result := ‘0’;
for i in 0 to 6 loop

result := result XOR inp (i);
end loop;
outp <= result;
END PROCESS;

(C) P. R. Panda, I.I.T Delhi, 2003 42

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

22

(C) P. R. Panda, I.I.T Delhi, 2003 43

Structural Description

• Instantiation
• Interconnection

(C) P. R. Panda, I.I.T Delhi, 2003 44

Hierarchy
ENTITY x IS

PORT (a, b: IN BIT,
c: OUT BIT);

END x;
ARCHITECTURE xa OF x IS
BEGIN
c <= a AND b;

END xa;

ENTITY y IS
PORT (a : IN BIT,

b: OUT BIT);
END y;
ARCHITECTURE ya OF y IS
BEGIN
b <= NOT a;

END xa;

x

y

a

b

c

a b

x1
p

q
y1

r
z

z contains
instances of
x and y

23

(C) P. R. Panda, I.I.T Delhi, 2003 45

Instantiation and Interconnection - 1
ENTITY z IS

PORT (p, q: IN BIT,
r: OUT BIT);

END x;
ARCHITECTURE structural OF z IS
COMPONENT xc

PORT (a, b: IN BIT; c: OUT BIT);
END COMPONENT;
COMPONENT yc

PORT (a, b: IN BIT; c: OUT BIT);
END COMPONENT;
FOR ALL: xc USE WORK.x (xa);
FOR ALL: yc USE WORK.y (ya);
SIGNAL t: BIT;
BEGIN

x1: xc PORT MAP (p, q, t);
y1: yc PORT MAP (t, r);

END structural;

x1
p

q
y1

r
z

Component declaration

Configuration specification
(which architecture?)

t

Temporary signal

Instantiation

(C) P. R. Panda, I.I.T Delhi, 2003 46

Instantiation and Interconnection - 2

x1: xc PORT MAP (p, q, t);
y1: yc PORT MAP (t, r);

x1
p

q
y1

r
z

t

Instance name

Component name

Port association list:
order of names
determines connectivity:

a - p
b - q
c - t

Same name
implies connection

24

(C) P. R. Panda, I.I.T Delhi, 2003 47

Port Mapping

x1: xc PORT MAP (p, q, t);

COMPONENT xc

PORT (a, b: IN BIT; c: OUT BIT);

END COMPONENT;

x1: xc PORT MAP (b => q, a => p, c => t);

Mapping by position: preferred for short port lists

Mapping by name: preferred for long port lists

In both cases, complete port mapping should be specified

(C) P. R. Panda, I.I.T Delhi, 2003 48

Test Benches

• Purpose - test correctness of Design
Under Test (DUT)
– provide input stimulus
– observe outputs
– compare against expected outputs

• Test Bench is also a VHDL model

25

(C) P. R. Panda, I.I.T Delhi, 2003 49

Test Bench Modelling - 1

• Test bench a
separate VHDL
entity

• Ports are connected
to DUT’s ports
– i/p port

corresponding to
DUT’s o/p port

– o/p port
corresponding to
DUT’s i/p port

Test
Bench DUT

(C) P. R. Panda, I.I.T Delhi, 2003 50

Test Bench Modelling - 2

• Test bench
instantiates the DUT

• Stimulus generation
and output
monitoring in
separate VHDL
process

• Signals are
connected to DUT’s
ports

DUT

Test Bench

Test
Bench

Process

Signals

26

(C) P. R. Panda, I.I.T Delhi, 2003 51

Libraries and Packages

• PACKAGE - collection of
– components
– data types
– functions/procedures

• LIBRARY - collection of PACKAGEs

(C) P. R. Panda, I.I.T Delhi, 2003 52

Packages
PACKAGE util IS

COMPONENT c IS
PORT (a: IN BIT, b: OUT BIT);

END COMPONENT
TYPE my_int IS INTEGER RANGE -7 TO 7;
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR;
END util;

PACKAGE BODY util IS
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR IS
BEGIN

RETURN NOT a;
END comp;
END util;

Package declaration

Package body

27

(C) P. R. Panda, I.I.T Delhi, 2003 53

Using a Package

PACKAGE util IS
COMPONENT c IS

PORT (a: IN BIT, b: OUT BIT);
END COMPONENT
TYPE my_int IS INTEGER RANGE -7 TO 7;
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR;
END util;
...

USE WORK.UTIL.ALL;
...
SIGNAL x: my_int;
a = comp (b);

Library
Name

Package
Name All

Contents

(C) P. R. Panda, I.I.T Delhi, 2003 54

Libraries

• STD
– STANDARD

• types/utilities (BIT, TIME, INTEGER,...)
– TEXTIO

• interface to text files

• WORK
– default library for storing user designs

• STD_LOGIC_1164
– multi-valued logic

28

(C) P. R. Panda, I.I.T Delhi, 2003 55

TEXTIO Package

• Data types and functions for
– reading from text files
– writing out text files

FILE f: TEXT IS “file_name”;
VARIABLE one_line: line;
VARIABLE str: STRING;
...
READLINE (f, one_line); -- read one line from file
READ (str, one_line); -- read a word from line
WRITELINE (g, one_line); -- write one line to file
WRITE (str, one_line); -- write a word into line

(C) P. R. Panda, I.I.T Delhi, 2003 56

Design Parameterisation:
GENERICs

ENTITY e IS
GENERIC (delay: TIME := 2 NS; width: INTEGER := 4);
PORT (a: IN BIT_VECTOR (0 TO width);

b: OUT BIT_VECTOR (0 TO width));
END e;

ARCHITECTURE a OF e IS
BEGIN

b <= NOT a AFTER delay;
END a;

Generic
Parameters

Default
Value

29

(C) P. R. Panda, I.I.T Delhi, 2003 57

Passing GENERIC Parameters

ARCHITECTURE a OF e IS
COMPONENT c

GENERIC (t: TIME:= 4 NS);
PORT (a: IN BIT, b: OUT BIT);

END COMPONENT;
SIGNAL x, y: BIT;
FOR ALL: c USE work.c (arc);
BEGIN
c1: c GENERIC MAP (3 ns)

PORT MAP (x, y);
END a;

ARCHITECTURE def OF e IS
COMPONENT c

GENERIC (t: TIME:= 4 NS);
PORT (a: IN BIT, b: OUT BIT);

END COMPONENT;
SIGNAL x, y: BIT;
FOR ALL: c USE work.c (arc);
BEGIN
c1: c PORT MAP (x, y);

END def;

ENTITY c IS
GENERIC (delay: TIME := 4 ns); PORT (a: IN BIT; b: OUT BIT);

END c;

Default Delay = 4 ns
Delay parameter = 3 ns

(C) P. R. Panda, I.I.T Delhi, 2003 58

Conditional and Looped
Instantiation

DFF_0 DFF_1 DFF_2 DFF_n

Clk

Inp Outp

Number of instances of DFF determined by Generic Parameter n

30

(C) P. R. Panda, I.I.T Delhi, 2003 59

Conditional and Looped
Instantiation: GENERATE

Need intermediate
signal t (0 to n-1)

DFF_0 DFF_1 DFF_n

Clk

Inp Outp

DFF_2

t (0) t (1) t (2) t (n-1)

GENERIC (n: INTEGER)...
...
SIGNAL t: BIT_VECTOR (0 TO n-1);

(C) P. R. Panda, I.I.T Delhi, 2003 60

GENERATE Statement

DFF_0 DFF_1 DFF_n

Clk

Inp Outp

DFF_2

t(0) t(1) t(2) t(n-1)

SIGNAL t: BIT_VECTOR (0 TO n-1);
...
dff_0: DFF PORT MAP (Inp, Clk, t (0));
dff_n: DFF PORT MAP (t (n-1), Clk, Outp);
FOR i IN 1 TO n-1 GENERATE

dff_i: DFF PORT MAP (t (i-1), Clk, t (i));
END GENERATE;

31

(C) P. R. Panda, I.I.T Delhi, 2003 61

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries,

parameterisation
• Standards

(C) P. R. Panda, I.I.T Delhi, 2003 62

VHDL Standards

• Std_LOGIC 1164 Package
– IEEE Standard
– Supported by all VHDL

simulation/synthesis tools
• VITAL

– Modelling timing in VHDL

32

(C) P. R. Panda, I.I.T Delhi, 2003 63

9-valued Logic Type: std_ulogic

• Modelling CMOS
– Current strengths
– Tristating

• Modelling Don’t Care
• Simulation Values

– Unknown
– Uninitialised

TYPE std_ulogic IS (
‘U’, -- uninitialised
‘X’, -- unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1
‘Z’, -- High impedance
‘W’, -- Weak Unknown
‘L’, -- Weak 0
‘H’, -- Weak 1
‘-’, -- Don’t care

);

(C) P. R. Panda, I.I.T Delhi, 2003 64

Signal Drivers
ARCHITECTURE x...
SIGNAL a: BIT;
begin

PROCESS
begin
...
a <= ‘1’;
...
end;
PROCESS
begin
...
a <= ‘0’;
...
end;
a <= ‘0’;

end x;

Driver for a

Driver for a

Driver for a

Multiple drivers
not allowed for
same signal!
- leads to conflicts

33

(C) P. R. Panda, I.I.T Delhi, 2003 65

Resolution Functions

• Multiple drivers allowed only when signal is
declared to be RESOLVED
– using RESOLUTION FUNCTION

FUNCTION res (values: BIT_VECTOR) RETURN BIT IS
VARIABLE accum : BIT := ‘1’;
BEGIN

FOR i IN values’RANGE LOOP
accum := accum AND values(i);

END LOOP;
RETURN accum;

END;

Multiple driving
values treated
as vector

Modelling
Wired AND

(C) P. R. Panda, I.I.T Delhi, 2003 66

Resolving std_ulogic Signals
• Models the effect of shorting two wires in CMOS

TYPE stdlogic_table is array(std_ulogic, std_ulogic)
of std_ulogic;

CONSTANT resolution_table : stdlogic_table := (
-- U X 0 1 Z W L H D
('U','U','U','U','U','U','U','U','U'), -- | U |
('U','X','X','X','X','X','X','X','X'), -- | X |
('U','X','0','X','0','0','0','0','0'), -- | 0 |
('U','X','X','1','1','1','1','1','1'), -- | 1 |
('U','X','0','1','Z','W','L','H','Z'), -- | Z |
('U','X','0',’1','W','W','W','W','W'), -- | W |
('U','X','0','1','L','W','L','W','L'), -- | L |
('U','X','0','1','H','W','W','H','H'), -- | H |
('U','X','0','1','Z','W','L','H','D') -- | D |);

34

(C) P. R. Panda, I.I.T Delhi, 2003 67

Resolution Function for std_ulogic

FUNCTION resolved (s : std_ulogic_vector)
RETURN std_ulogic IS

VARIABLE result : std_ulogic := 'D';-- weakest state default
BEGIN
IF (s'LENGTH = 1) THEN RETURN s(s'LOW);
ELSE -- Iterate through all inputs

FOR i IN s'RANGE LOOP
result := resolution_table(result, s(i));

END LOOP; -- Return the resultant value
RETURN result;

END IF;
END resolved;

(C) P. R. Panda, I.I.T Delhi, 2003 68

Resolved Type: std_logic

• Multiple std_ulogic types resolved into
std_logic type

SUBTYPE std_logic IS resolved std_ulogic;
...
SIGNAL x: std_logic;
...
x <= ‘Z’;
x <= ‘1’;
-- value of x resolves to ‘1’

35

(C) P. R. Panda, I.I.T Delhi, 2003 69

Overloading

• Standard operators can be overloaded
for std_ulogic type

FUNCTION “and” (l, r: std_ulogic) RETURN UX01 IS
BEGIN
RETURN (and_table (l, r)); -- 2-d constant array

END “and”;

(C) P. R. Panda, I.I.T Delhi, 2003 70

Utilities

• Type conversions
– to_Bit
– to_BitVector
– to_StdUlogic
– to_StdLogicVector

• Detecting Edges
– rising_edge
– falling_edge

36

(C) P. R. Panda, I.I.T Delhi, 2003 71

Modelling Timing Checks

• Modelling a Flip Flop
– Propagation delays
– Setup times
– Hold times
– Minimum pulse width

• Many different implementations possible

(C) P. R. Panda, I.I.T Delhi, 2003 72

VHDL Standard - VITAL

• VHDL Initiative Towards ASIC Libraries
• Standardise common functions

– propagation delays
– timing checks

37

(C) P. R. Panda, I.I.T Delhi, 2003 73

VITAL Model

Input Delay
(Models wire delays) Functionality Output Path Delay

(Models internal delays)

a at

b bt
ct c

(C) P. R. Panda, I.I.T Delhi, 2003 74

Input Delays
ENTITY and2 IS

generic (tipd_a: VitalDelayType01;
tipd_b: VitalDelayType01; ...);

port (a, b: STD_LOGIC;
c: out STD_LOGIC);

END and2;

ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN

WireDelay: block
begin

VitalWireDelay (at, a, tipd_a);
VitalWireDelay (bt, b, tipd_b);

end block; ...
END VitTrue;

a at

b bt
ct c

38

(C) P. R. Panda, I.I.T Delhi, 2003 75

Functionality
ENTITY and2 IS

generic (...); port (...);
END and2;

ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN
...
VITALBehavior: process (at, bt)
VARIABLE Results: STD_LOGIC_VECTOR

(1 to 1) := (others => ‘X’);
ALIAS ct: STD_ULOGIC IS Results (1);
begin

ct := at AND bt;
...

end
END VitTrue;

a at

b bt
ct c

(C) P. R. Panda, I.I.T Delhi, 2003 76

Path Delay
ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN
...
VITALBehavior: process (at, bt)
VARIABLE Results: STD_LOGIC_VECTOR

(1 to 1) := (others => ‘X’);
ALIAS ct: STD_ULOGIC IS Results (1);
begin

ct := at AND bt;
VitalPathDelay01 (

OutSignal => c,
Paths => (0 => (a’last_event, tpd_a_c, TRUE),

1 => (b’last_event, tpd_b_c, TRUE));
...);

end
END VitTrue;

a at

b bt
ct c

ENTITY and2 IS
generic (
tpd_a_c: VitalDelayType01;
tpd_b_c: VitalDelayType01;
...);

port (a, b: STD_LOGIC;
c: out STD_LOGIC);

END and2;

39

(C) P. R. Panda, I.I.T Delhi, 2003 77

Back-annotation of Delays

• Actual delays known
after place and route
– SDF (Standard Delay

File) generated
– Contains delay

information
• VHDL simulator reads

SDF and passes
values into generic
parameters

(DELAYFILE
...
(CELL

(CELLTYPE “and2”)
(INSTANCE and2_53)
(DELAY

(ABSOLUTE
(IOPATH (posedge a) c
(10:10:10)))

)
)
...

)

SDF

