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Hardware Description Languages

• VHDL - VHSIC (Very High Speed Integrated 
Circuit) Hardware Description Language
– originally intended as standard
– simulation and documentation language

• Verilog 
– originally proprietary

• SystemC
– based on C++
– system level language
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Which HDL to use? (1)
• Both VHDL and Verilog popular

– VHDL popular in Europe/Japan
– Verilog popular in U.S.

• VHDL “cleaner” language
– richer data types
– but more verbose

• Verilog
– lower level language: bit level, fewer data types
– more concise
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Which HDL to use? (2)

• Coverage of Hardware concepts
– equally good in both

• Learning one language eases learning 
of the other

• Status of tool support
– equally good for both VHDL/Verilog
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Fundamental VHDL Objects: 
entity/architecture pairs

VHDL model
consists of 
two parts

Entity

Architecture

entity represents 
external interface

architecture
represents 
functionality/contents
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ENTITY and_gate IS
PORT (a: IN BIT;

b: IN BIT;
y: OUT BIT);

END and_gate;

Specifying interfaces: 
entities and ports

Port Name
Port direction

Port type

Entity has
interface only.
No functionality.

Model Name

a

b
y
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ARCHITECTURE data_flow OF and_gate IS
BEGIN

y <= a AND b;
END data_flow;

Specifying Functionality: 
architectures

May have multiple architectures for given entity
• different views
• different levels of detail
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ARCHITECTURE data_flow 
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci) 

OR (ai AND ci);
END data_flow;

Specifying Concurrency: 
Concurrent Signal Assignment

si+ai
bi

ci

co
Concurrent Signal Assignments
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ARCHITECTURE data_flow 
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci) 

OR (ai AND ci);
END data_flow;

When is Signal Assignment 
Executed?

Executed when
ai, bi, or ci changes

Assignment executed when any signal on RHS changes

Executed when
ai, bi, or ci changes
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Order of Execution

• Execution independent of specification 
order

ARCHITECTURE data_flow 
OF full_adder IS
BEGIN

si <= ai XOR bi XOR ci;
co <= (ai AND bi) OR (bi AND ci) 

OR (ai AND ci);
END data_flow;

ARCHITECTURE data_flow 
OF full_adder IS
BEGIN

co <= (ai AND bi) OR (bi AND ci)
OR (ai AND ci);

si <= ai XOR bi XOR ci;
END data_flow;

These two are equivalent
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Modelling Combinational Logic

• One concurrent assignment for each 
output

Comb
Logic

o1
o2
o3
o4

i1
i2
i3
i4

ARCHITECTURE data_flow 
OF comb_logic IS
BEGIN

o1 <= i1 and i2;
o2 <= (i2 or i3) xor (i1 and i4);
o3 <= ...;
o4 <= ...;

END data_flow;
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When Logic Complexity Increases

• Temporary SIGNALS needed
• Avoid redundant evaluations

f
g

h
x

y = g (f (x))

z = h (f (x))
f

g

h
x

y = g (t)

z = h (t)

t = f (x)

Ports: x, y, z Signal: t
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SIGNALS
• Represent intermediate wires/storage
• Internal - not visible outside entity

ENTITY comb_logic IS
PORT (i1, i2, i3, i4: IN BIT; 

o1, o2: OUT BIT);
END comb_logic;

ARCHITECTURE data_flow 
OF comb_logic IS
BEGIN

o1 <= (i1 and i2 and i3) xor i2;
o2 <= (i1 and i2 and i3) or i4;

END data_flow;

ENTITY comb_logic IS
PORT (i1, i2, i3, i4: IN BIT; 

o1, o2: OUT BIT);
END comb_logic;

ARCHITECTURE data_flow1 
OF comb_logic IS
SIGNAL temp: BIT;
BEGIN

temp <= (i1 and i2 and i3);
o1 <= temp xor i2;
o2 <= temp or i4;

END data_flow;
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SIGNALS

• executed when i1, i2, 
or i3 changes

• executed when temp or 
i2 changes

• SIGNALS are 
associated with 
time/waveforms

• PORT is a special type 
of SIGNAL

ARCHITECTURE data_flow 
OF comb_logic IS
SIGNAL temp: BIT;
BEGIN

temp <= (i1 and i2 and i3);
o1 <= temp xor i2;
o2 <= temp or i4;

END data_flow;



9

(C) P. R. Panda, I.I.T Delhi, 2003 17

Contents

• Introduction
• Signal assignment
• Modelling delays
• Describing behaviour
• Structure, test benches, libraries, 

parameterisation
• Standards

(C) P. R. Panda, I.I.T Delhi, 2003 18

Modelling Delays: inertial delay
• Models actual hardware
• Spikes suppressed

y <= INERTIAL NOT a AFTER 10 ns;
y <= NOT a AFTER 10 ns; -- inertial  delay is default

a

y

0 10 12 22 30 35
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Modelling Delays: transport delay

• Models wires/transmission lines
– used in more abstract modelling

• Spikes propagated
y <= TRANSPORT NOT a AFTER 10 ns;

a

y

0 10 12 22 30 35 40 45
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Events and Transactions

• Event
– Signal assignment that causes change in 

value
• Transaction

– Value scheduled for signal assignment
• may or may not cause change in value
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Events and Transactions: Example

ARCHITECTURE demo OF example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

Source: Z. Navabi, VHDL - analysis and modeling of digital systems
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Events and Transactions: Example
ARCHITECTURE demo OF 
example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

a

b

c

0 5 10 15 20 25

0

0

0

c (0, 10)
b (1,5)

a (1, 15)
Events
and
Transactions

Transactions
Scheduled

b (1,5)

Transaction
Expires

Event Created

c (0, 10)

Transaction
Expires

No Event 
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Events and Transactions: Example
ARCHITECTURE demo OF 
example IS
SIGNAL a, b, c: BIT := ‘0’;
BEGIN

a <= ‘1’ AFTER 15 NS;
b <= NOT a AFTER 5 NS;
c <= a AFTER 10 NS;

END demo;

a

b

c

0 5 10 15 20 25

0

0

0

c (1, 10)
b (0,5)Events

and
Transactions New

Transactions

b (0,5)

Transaction
Expires

Event Created

c (1, 10)

Transaction
Expires

Event Created

a (1, 15)

Transaction
Expires

Event Created
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Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0

0

0

b (1,8)

Transactions
Scheduled

a (0, 15)
a (1, 10)

8

b (1,8)

Transaction
Expires

Event Created
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Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0 10

0

0

15

b (0,8)

New
Transaction
Scheduled

a (1, 10)
Transaction

Expires
Event Created

a (0, 15)

Transaction
Expires

Event Created

b (1,8)

New Transaction
Scheduled -
Cancels Old 
Transaction
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Inertial Delay: Suppressing a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= NOT a AFTER 8 NS; -- inertial

Events
and
Transactions

a

b
0 10

0

0

15

b (1,8)

8

Transaction
Expires

No Event 

23
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Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; 
b <= TRANSPORT NOT a

AFTER 8 NS; 

Events
and
Transactions

a

b
0

0

0

b (1,8)

Transactions
Scheduled

a (0, 15)
a (1, 10)

8

b (1,8)

Transaction
Expires

Event Created
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Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; 
b <= NOT a AFTER 8 NS; 

Events
and
Transactions

b (0,8)

New
Transaction
Scheduled

a (1, 10)
Transaction

Expires
Event Created

a (0, 15)

Transaction
Expires

Event Created

b (1,8)

New Transaction
Scheduled - Old 

Transaction 
Retained

a

b
0 10

0

0

15
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Transport Delay: Propagating a pulse

SIGNAL a, b: BIT := ‘0’;
...
a <= ‘1’ AFTER 10 NS,

‘0’ AFTER 15 NS; -- transport
b <= TRANSPORT 

NOT a AFTER 8 NS; 

Events
and
Transactions

a

b
0 10

0

0

158 18 23

b (0,8)

Transaction
Expires

Event Created

b (1,8)

Transaction
Expires

Event Created
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Generating clocks

a
0 10

a <= NOT a AFTER 10 ns;

20 30 40 50
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Delta Delays
ARCHITECTURE x of y IS
SIGNAL b, c: bit;
BEGIN

b <= NOT a;
c <= clock NAND b;
d <= c AND b;

END x;

a <= 0
(clock = 1) b <= 1 c <= 0

d <= 1 d <= 0

Delta 1 Delta 2 Delta 3 Delta 4

zero-delay
signal assignments

Simulation time does not advance
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Describing Behaviour: Processes

• Signal assignment statements OK for 
simple behaviour

• Complex behaviour requires more 
constructs
– conditionals (IF, CASE)
– loops (FOR, WHILE)

• Use VHDL PROCESS
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VHDL PROCESS
• Execution within a 

PROCESS is sequential
• Processes are concurrent 

w.r.t each other
• Signal assignment is a 

simple special case
• Architecture consists of a 

set of Processes (and 
signal assignments) at 
top level

• Processes communicate 
using signals

p1: PROCESS 
BEGIN

IF (x) THEN ...
ELSE ...;...

END PROCESS;

p2: PROCESS 
BEGIN

FOR i in 1 TO 5 LOOP
a (i) <= 0;

ENDL LOOP;...
END PROCESS;

f <= g+ 1;

ARCHITECTURE x of a IS BEGIN

END x;
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PROCESS Execution Semantics

• Need to define when Process is 
executed
– suspending/resuming execution
– more complex than signal assignment 

(“evaluate when any signal on RHS 
changes”)

• No notion of “completion” of execution
– needs to emulate hardware
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Process Sensitivity List

• Process is sensitive to 
signals on Sensitivity List

• All processes executed 
once at time=0

• Suspended at end of 
process

• Reactivated when event 
occurs on any signal in 
sensitivity list

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

Sensitivity List
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Process and Signal Assignment

ARCHITECTURE x of y IS
BEGIN

END x;

Identical 
ARCHITECTURE x of y IS
BEGIN

END x;

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

c <= a AND b;

Need not use PROCESS for modelling simple
combinational behaviour
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Process Synchronisation

• Sensitivity list is optional
• wait is general 

synchronisation 
mechanism

• Implicit infinite loop in 
process

• Execution continues until 
suspended by wait
statement

PROCESS
BEGIN
wait on a,b;
c <= a and b;
END PROCESS;

PROCESS (a, b)
BEGIN

c <= a AND b;
END PROCESS;

Identical 
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Synchronisation with WAITs

• Synchronisation with wait more flexible
• Both sensitivity list and wait not allowed 

in same process
– process can have any number of waits

• For combinational logic, place ALL input 
signals in sensitivity list

• For sequential logic, use waits
appropriately
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WAIT Examples
PROCESS
BEGIN
wait for 10 ns;
outp <= inp;
END PROCESS

Sample input every 10 ns

PROCESS
BEGIN
wait until clk’event and clk=‘1’;
d <= q;
END PROCESS

Edge triggered flip flop

PROCESS (clk, reset)
BEGIN
IF reset THEN 

q <= ‘0’;
ELSIF clk’event and clk=‘1’

d <= q;
END IF;
END PROCESS

Flip flop with Reset

PROCESS
BEGIN

outp <= inp;
END PROCESS

Error! (no waits)
(Compare signal
assignment at 

architecture level)
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Process Variables

• Variables used for local 
computations
– within processes

• Not associated with 
events/transactions
– unlike signals

• Assignment of value is 
immediate
– unlike signals

PROCESS
VARIABLE result : BIT;
BEGIN
wait until clk’event and clk=‘1’;
result := ‘0’;
for i in 0 to 6 loop

result := result XOR inp (i);
end loop;
outp <= result;
END PROCESS;
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Structural Description

• Instantiation
• Interconnection
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Hierarchy
ENTITY x IS

PORT (a, b: IN BIT,
c: OUT BIT);

END x;
ARCHITECTURE xa OF x IS
BEGIN
c <= a AND b;

END xa;

ENTITY y IS
PORT (a : IN BIT,

b: OUT BIT);
END y;
ARCHITECTURE ya OF y IS
BEGIN
b <= NOT a;

END xa;

x

y

a

b

c

a b

x1
p

q
y1

r
z

z contains
instances of
x and y
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Instantiation and Interconnection - 1
ENTITY z IS

PORT (p, q: IN BIT,
r: OUT BIT);

END x;
ARCHITECTURE structural OF z IS
COMPONENT xc

PORT (a, b: IN BIT; c: OUT BIT);
END COMPONENT;
COMPONENT yc

PORT (a, b: IN BIT; c: OUT BIT);
END COMPONENT;
FOR ALL: xc USE WORK.x (xa);
FOR ALL: yc USE WORK.y (ya);
SIGNAL t: BIT;
BEGIN

x1: xc PORT MAP (p, q, t);
y1: yc PORT MAP (t, r);   

END structural;

x1
p

q
y1

r
z

Component declaration

Configuration specification
(which architecture?)

t

Temporary signal

Instantiation
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Instantiation and Interconnection - 2

x1: xc PORT MAP (p, q, t);
y1: yc PORT MAP (t, r);   

x1
p

q
y1

r
z

t

Instance name

Component name

Port association list:
order of names 
determines connectivity:

a - p 
b - q
c - t

Same name 
implies connection
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Port Mapping

x1: xc PORT MAP (p, q, t);

COMPONENT xc

PORT (a, b: IN BIT; c: OUT BIT);

END COMPONENT;

x1: xc PORT MAP (b => q, a => p, c => t);

Mapping by position: preferred for short port lists

Mapping by name: preferred for long port lists

In both cases, complete port mapping should be specified
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Test Benches

• Purpose - test correctness of Design 
Under Test (DUT)
– provide input stimulus
– observe outputs
– compare against expected outputs

• Test Bench is also a VHDL model
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Test Bench Modelling - 1

• Test bench a 
separate VHDL 
entity

• Ports are connected 
to DUT’s ports
– i/p port 

corresponding to 
DUT’s o/p port

– o/p port 
corresponding to 
DUT’s i/p port

Test
Bench DUT
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Test Bench Modelling - 2

• Test bench 
instantiates the DUT

• Stimulus generation 
and output 
monitoring in 
separate VHDL 
process

• Signals are 
connected to DUT’s 
ports

DUT

Test Bench

Test
Bench

Process

Signals
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Libraries and Packages

• PACKAGE - collection of
– components
– data types
– functions/procedures

• LIBRARY - collection of PACKAGEs
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Packages
PACKAGE util IS

COMPONENT c IS 
PORT (a: IN BIT, b: OUT BIT); 

END COMPONENT
TYPE my_int IS INTEGER RANGE -7 TO 7;
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR;
END util;

PACKAGE BODY util IS
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR IS
BEGIN

RETURN NOT a;
END comp;
END util;

Package declaration

Package body
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Using a Package

PACKAGE util IS
COMPONENT c IS 

PORT (a: IN BIT, b: OUT BIT); 
END COMPONENT
TYPE my_int IS INTEGER RANGE -7 TO 7;
FUNCTION comp (a: BIT_VECTOR)

RETURN BIT_VECTOR;
END util;
...

USE WORK.UTIL.ALL;
...
SIGNAL x: my_int;
a = comp (b);

Library
Name

Package
Name All

Contents
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Libraries

• STD
– STANDARD

• types/utilities (BIT, TIME, INTEGER,...)
– TEXTIO

• interface to text files

• WORK
– default library for storing user designs

• STD_LOGIC_1164
– multi-valued logic
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TEXTIO Package

• Data types and functions for 
– reading from text files
– writing out text files

FILE f: TEXT IS “file_name”;
VARIABLE one_line: line;
VARIABLE str: STRING;
...
READLINE (f, one_line); -- read one line from file
READ (str, one_line); -- read a word from line
WRITELINE (g, one_line); -- write one line to file
WRITE (str, one_line); -- write a word into line
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Design Parameterisation: 
GENERICs

ENTITY e IS
GENERIC (delay: TIME := 2 NS; width: INTEGER := 4);
PORT (a: IN BIT_VECTOR (0 TO width);

b: OUT BIT_VECTOR (0 TO width));
END e;

ARCHITECTURE a OF e IS
BEGIN

b <= NOT a AFTER delay;
END a;

Generic
Parameters

Default
Value
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Passing GENERIC Parameters

ARCHITECTURE a OF e IS
COMPONENT c

GENERIC (t: TIME:= 4 NS);
PORT (a: IN BIT, b: OUT BIT);

END COMPONENT;
SIGNAL x, y: BIT;
FOR ALL: c USE work.c (arc);
BEGIN
c1: c GENERIC MAP (3 ns)

PORT MAP (x, y);
END a;

ARCHITECTURE def OF e IS
COMPONENT c

GENERIC (t: TIME:= 4 NS);
PORT (a: IN BIT, b: OUT BIT);

END COMPONENT;
SIGNAL x, y: BIT;
FOR ALL: c USE work.c (arc);
BEGIN
c1: c PORT MAP (x, y);

END def;

ENTITY c IS
GENERIC (delay: TIME := 4 ns); PORT (a: IN BIT; b: OUT BIT);

END c;

Default Delay = 4 ns
Delay parameter = 3 ns
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Conditional and Looped 
Instantiation

DFF_0 DFF_1 DFF_2 DFF_n

Clk

Inp Outp

Number of instances of DFF determined by Generic Parameter n
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Conditional and Looped 
Instantiation: GENERATE

Need intermediate 
signal  t (0 to n-1)

DFF_0 DFF_1 DFF_n

Clk

Inp Outp

DFF_2

t (0) t (1) t (2) t (n-1)

GENERIC (n: INTEGER)...
...
SIGNAL t: BIT_VECTOR (0 TO n-1); 
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GENERATE Statement

DFF_0 DFF_1 DFF_n

Clk

Inp Outp

DFF_2

t(0) t(1) t(2) t(n-1)

SIGNAL t: BIT_VECTOR (0 TO n-1);
...
dff_0: DFF PORT MAP (Inp, Clk, t (0)); 
dff_n: DFF PORT MAP (t (n-1), Clk, Outp);
FOR i IN 1 TO n-1 GENERATE

dff_i: DFF PORT MAP ( t (i-1), Clk, t (i) );
END GENERATE;
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VHDL Standards

• Std_LOGIC 1164 Package
– IEEE Standard
– Supported by all VHDL 

simulation/synthesis tools
• VITAL

– Modelling timing in VHDL
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9-valued Logic Type: std_ulogic

• Modelling CMOS
– Current strengths
– Tristating

• Modelling Don’t Care
• Simulation Values

– Unknown 
– Uninitialised

TYPE std_ulogic IS (
‘U’,  -- uninitialised
‘X’,  -- unknown
‘0’,  -- Forcing 0
‘1’,  -- Forcing 1
‘Z’,  -- High impedance
‘W’, -- Weak Unknown
‘L’,  -- Weak 0
‘H’,  -- Weak 1
‘-’,   -- Don’t care

);
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Signal Drivers
ARCHITECTURE x...
SIGNAL a: BIT;
begin

PROCESS
begin
...
a <= ‘1’;
...
end; 
PROCESS
begin
...
a <= ‘0’;
...
end;
a <= ‘0’;

end x;

Driver for a

Driver for a

Driver for a

Multiple drivers
not allowed for
same signal!
- leads to conflicts
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Resolution Functions

• Multiple drivers allowed only when signal is 
declared to be RESOLVED
– using RESOLUTION FUNCTION

FUNCTION res (values: BIT_VECTOR) RETURN BIT IS
VARIABLE accum : BIT := ‘1’;
BEGIN

FOR i IN values’RANGE LOOP
accum := accum AND values(i);

END LOOP;
RETURN accum;

END;

Multiple driving
values treated 
as vector

Modelling
Wired AND
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Resolving std_ulogic Signals
• Models the effect of shorting two wires in CMOS

TYPE stdlogic_table is array(std_ulogic, std_ulogic) 
of std_ulogic;

CONSTANT resolution_table : stdlogic_table := ( 
-- U   X   0   1   Z   W   L   H   D 
('U','U','U','U','U','U','U','U','U' ), -- | U | 
('U','X','X','X','X','X','X','X','X' ), -- | X | 
('U','X','0','X','0','0','0','0','0' ), -- | 0 | 
('U','X','X','1','1','1','1','1','1' ), -- | 1 | 
('U','X','0','1','Z','W','L','H','Z' ), -- | Z | 
('U','X','0',’1','W','W','W','W','W' ), -- | W | 
('U','X','0','1','L','W','L','W','L' ), -- | L | 
('U','X','0','1','H','W','W','H','H' ), -- | H | 
('U','X','0','1','Z','W','L','H','D' ) -- | D | ); 
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Resolution Function for std_ulogic

FUNCTION resolved ( s : std_ulogic_vector ) 
RETURN std_ulogic IS 

VARIABLE result : std_ulogic := 'D';-- weakest state default
BEGIN 
IF (s'LENGTH = 1) THEN RETURN s(s'LOW); 
ELSE -- Iterate through all inputs 

FOR i IN s'RANGE LOOP 
result := resolution_table(result, s(i)); 

END LOOP; -- Return the resultant value 
RETURN result;

END IF; 
END resolved; 
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Resolved Type: std_logic

• Multiple std_ulogic types resolved into 
std_logic type

SUBTYPE std_logic IS resolved std_ulogic;
...
SIGNAL x: std_logic;
...
x <= ‘Z’;
x <= ‘1’;
-- value of x resolves to ‘1’
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Overloading

• Standard operators can be overloaded 
for std_ulogic type

FUNCTION “and” (l, r: std_ulogic) RETURN UX01 IS
BEGIN
RETURN (and_table (l, r)); -- 2-d constant array

END “and”;
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Utilities

• Type conversions
– to_Bit
– to_BitVector
– to_StdUlogic
– to_StdLogicVector

• Detecting Edges
– rising_edge
– falling_edge
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Modelling Timing Checks

• Modelling a Flip Flop
– Propagation delays
– Setup times
– Hold times
– Minimum pulse width

• Many different implementations possible
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VHDL Standard - VITAL

• VHDL Initiative Towards ASIC Libraries
• Standardise common functions 

– propagation delays
– timing checks
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VITAL Model

Input Delay
(Models wire delays) Functionality Output  Path Delay

(Models internal delays)

a at

b bt
ct c
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Input Delays
ENTITY and2 IS

generic (tipd_a: VitalDelayType01; 
tipd_b: VitalDelayType01; ...);

port (a, b: STD_LOGIC;
c: out STD_LOGIC);

END and2;

ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN

WireDelay: block
begin

VitalWireDelay (at, a, tipd_a);
VitalWireDelay (bt, b, tipd_b);

end block; ...
END VitTrue;

a at

b bt
ct c
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Functionality
ENTITY and2 IS

generic (...); port (...);
END and2;

ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN
...
VITALBehavior: process (at, bt)
VARIABLE Results: STD_LOGIC_VECTOR

(1 to 1) := (others => ‘X’);
ALIAS ct: STD_ULOGIC IS Results (1);
begin

ct := at AND bt;
...

end
END VitTrue;

a at

b bt
ct c
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Path Delay
ARCHITECTURE VitTrue of and2 is
SIGNAL at, bt: STD_ULOGIC;
BEGIN
...
VITALBehavior: process (at, bt)
VARIABLE Results: STD_LOGIC_VECTOR

(1 to 1) := (others => ‘X’);
ALIAS ct: STD_ULOGIC IS Results (1);
begin

ct := at AND bt;
VitalPathDelay01 (

OutSignal => c,
Paths => (0 => (a’last_event, tpd_a_c, TRUE),

1 => (b’last_event, tpd_b_c, TRUE));
...);

end
END VitTrue;

a at

b bt
ct c

ENTITY and2 IS
generic (
tpd_a_c: VitalDelayType01; 
tpd_b_c: VitalDelayType01;
...);

port (a, b: STD_LOGIC;
c: out STD_LOGIC);

END and2;
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Back-annotation of Delays

• Actual delays known 
after place and route
– SDF (Standard Delay 

File) generated
– Contains delay 

information
• VHDL simulator reads 

SDF and passes 
values into generic 
parameters

(DELAYFILE
...
(CELL

(CELLTYPE “and2”)
(INSTANCE and2_53)
(DELAY

(ABSOLUTE
(IOPATH (posedge a) c
(10:10:10)))

)
)
...

)

SDF


