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The PHYSICS and ENGINEERING of the problem is MORE IMPORTANT

ANN

 

SVM RF
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RR

AI /ML are Data-Driven TOOLS for Mapping and Prediction
Why to use? Where to integrate? Are we intelligently using it?
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Influence of SSI on Natural Period for RC Structures on Pile Foundations
 Assessment of TSSI for shallow foundations is quite common

 Shallow footing acts as interface between soil and structure

 Impact of DSSI remains relatively lesser – Conventional fixed-base response analysis

 Assessment of TSSI for buildings on pile foundations

 Lumped/equivalent representation of the foundation stiffness

 Require the evaluation of impedance functions - Cumbersome

 SDOF oscillator

 Unsuitable to model non-uniform rocking under vertical members 

 Rigorous analytical solutions (Maravas et al. 2007; Medina et al. 2013)

 Idealized and difficult to use

 Need for data-drivel approach (AI/ML) for TSSI prediction model for 

building on pile foundation

 Incorporate the complex interaction of parameters contributing to SSI

 Develop simple relations between input parameters and outcomes
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Dynamic SSI (DSSI) Analysis of RC Buildings on Pile Foundations 
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Dynamic SSI (DSSI) Analysis of RC Buildings on Pile Foundations 
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Dynamic SSI (DSSI) Analysis of RC Buildings on Pile Foundations 
No. of 

Stories 

Storey 

level 

Shear wall details Boundary element details 

tw 

(mm) 

Vertical 

reinf. 

Horizontal 

reinf. Size 

(mm×mm) 

Main reinf. Shear reinf. 

ϕ 

(mm) 
no. 

ϕ 

(mm) 

sv
 

(mm) 

ϕ 

(mm) 
no. 

ϕ 

(mm) 

sv
 

(mm) 

3 

Upto 1 200 12 10* 12 280 500×500 
25 

20 

4 

4 
8 100 

1 to 3 200 12 10 12 280 300×300 
12 

12 

4 

4 
8 100 

6 

Upto 1 200 12  10* 12  280 500×500 
25 

20 

4 

4 
8 100 

1 to 3 200 12 10 12 280 350×350 
16 

16 

4 

4 
8 100 

3 to 6 150 12 10 12 300 350×350 
16 

12 

4 

4 
8 100 

9 

Upto 1 200 12 10* 12 260 500×500 
25 

20 

4 

4 
8 100 

1 to 3 150 12 10 12 260 450×450 
16 

16 

4 

4 
8 100 

3 to 6 150 12 10 12 300 400×400 
16 

12 

4 

4 
8 100 

6 to 9 150 12 10 12 300 350×350 
16 

12 

4 

4 
8 100 

12 

Upto 1 200 12 10* 12 230 500×500 
25 

20 

4 

4 
8 100 

1 to 3 150 12 10 12 230 500×500 
20 

16 

4 

4 
8 100 

3 to 6 150 12 10 12 300 450×450 
16 

16 

4 

4 
8 100 

6 to 9 150 12 10 12 300 400×400 
16 

16 

4 

4 
8 100 

9 to 12 150 12 10 12 300 400×400 
16 

12 

4 

4 
8 100 

Note: ϕ is rebar diameter, † indicates tensile reinf., ⁎ indicates compressive reinf. and reinf. is the abbreviation for reinforcement 
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Structural Configurations
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Input Excitation and Output Response

 Natural period of SSI system —› Vibration response

White noise

 Frequency band limited to 0-20 Hz

 PGA= 0.0005g

 Transfer functions = Output / Input

Modification Factor MF = TSSI /TF

 TF  Conventional Fixed-base response time period

 TSSI  Time period influenced by SSI
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• Transfer functions (Output / Input)

– Magnitude of response to input motion

– Fourier Amplitude Ratio Spectrum (FAR)

• Fixed base response at roof level

Natural Period of Soil and Structure using Vibrational Analysis
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Effective Natural Period (TSSI)
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• Transfer functions (Output / Input)

– Magnitude of response to input motion

– Fourier Amplitude Ratio Spectrum (FAR)

MF = TSSI / TF
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Frame system under SSI

Wall-frame system under SSI

NITCON 2025



MF for RC Frame Structure

 

1204-02-2025 NITCON 2025



Parametric analysis of MF: Frame System
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Parametric analysis of MF: Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective Stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap

Soft Soil Medium Soil

Medium Dense Soil Dense Soil
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Parametric analysis of MF: Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap
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Parametric analysis of MF: Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap

5
pEI

T




0.00

1.00

2.00

3.00

4.00

50000 75000 100000 125000 150000

S
ti

ff
n

es
s 

F
ac

to
r 

(m
)

GSoil (kN/m2)

3 Storey
6 Storey
9 Storey
12 Storey

0.00

1.00

2.00

3.00

4.00

1 1.05 1.1 1.15 1.2 1.25

S
ti

ff
n

es
s 

F
ac

to
r 

(m
)

TSSI/TF

3 Storey
6 Storey
9 Storey
12 Storey

T
SSI

F

T

TsoilG

NITCON 2025



Parametric analysis of MF: Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap
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Non-Dimensional Relationship of  TSSI and TF : Frame System
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MF for Wall-Frame Structure
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Parametric analysis of MF: Wall-frame System
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Parametric analysis of MF: Wall-Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective Stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap

• Shear wall – Column area ratio
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Parametric analysis of MF: Wall-Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective Stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap

• Shear wall – Column area ratio
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Parametric analysis of MF: Wall-Frame System
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• Height of the structure, H

• Width of the structure, W

• Effective Stiffness of the structure, K*

• Modal mass of the structure, M*

• Relative stiffness of the piles, T

• Soil properties (Gsoil)

• Stiffness of the pile cap

• Shear wall – Column area ratio

1.20

1.30

1.40

1.50

1.60

1.70

1.80

0 0.5 1 1.5 2

T
S

S
I/

T
F

∑Aw/∑Ac

DS
MDS
MS
SS

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 1 2 3 4

T
S

S
I/
T

F

∑Aw/∑Ac

DS
MDS
MS
SS

1.20

1.40

1.60

1.80

2.00

2.20

2.40

0 1 2 3

T
S

S
I/
T

F

∑Aw/∑Ac

DS
MDS
MS
SS

1.10

1.20

1.30

1.40

1.50

1.60

0 0.5 1 1.5

T
S

S
I/
T

F

∑Aw/∑Ac

DS
MDS
MS
SS

3 Storey 6 Storey

9 Storey 12 Storey

w

c

A

A




SSI

F

T

T



Non-Dimensional Relationship of  TSSI and TF : Wall-Frame System
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Poor capability in capturing 

the simultaneous influences 

of parameters on TSSI/TF

R² = 0.9822
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Necessity of Predictive Relationship

25

• Structural, soil and pile foundation parameters influence MF

– Complex Interaction

• For effective prediction of MF

– Need a model capable of capturing complex interaction

• Artificial Neural Network (ANN) approach 

– Gained popularity over the last decade

Ability to capture and predict complex interaction

Mapping of Input and Output data, which in turn is generated from the numerical 

simulation of a physical problem

• Employ ANN for prediction of

– MF —› TSSI = TF × MF
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Artificial Neural Network

 Artificial Neural networks

 Analogous to biological neural network in humans

 Several simple yet highly interrelated processing elements

 Termed as artificial neurons

 Capable of deciphering complex relationships involving

multiple input and output parameters

 Ability to generalize and infer relationships from unseen data

 To train the ANN model, a learning rule is required

 Levenberg-Marquardt

 Feed forward back propagation algorithm
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Modelling ANN Architecture
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• Normalization

– Input and Output

where, Xn is the normalized value, Xmax and Xmin is the maximum and minimum value of the variable X

• Selection of optimum number of hidden neurons based on MSE

where, MSE is the mean of the squared error obtained from the dissimilarities in the simulated and predicted 

output MFsimulated and MFpredicted respectively and n is the number of data points

min

max min

2 ( )
1

( )
n

X X
X

X X


 



2

1

( )
n

simulated predicted

i

MF MF

MSE
n










ANN Architecture for MF: Frame System
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Performance of ANN model for MF: Frame System
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ANN Architecture for MF: Wall-Frame System
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9-6-1 ANN Architecture 

TSSI = TF × MF



Performance of ANN model for MF: Wall-Frame System
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ANN-based Predictive Mathematical Relationship

MFn  Normalized estimate of MF

MFmax Maximum estimate of MF

MFmin Minimum estimate of MF

 fsig  Tan-sigmoid transfer function

 flin  Linear transfer function

 b0  Bias at the output layer

 bhj  Bias at the jth neuron of the hidden layer

 wIH Weight of the input-hidden neuron

 wHO Weight of the hidden-output neuron

 N Total number of input variables (9)

 n Total number of neurons in the hidden layer (6)

04-02-2025 NITCON 2025 32

0

1 1

n N
j j

n lin HO sig hj IH k

j k

MF f b w f b w X
 

    
     

    
 max min min0.5( 1)( )nMF MF MF MF MF   

1 2 3 4 5 60.21nMF B B B B B B      

1 1

1 1
1 0.97

A A

A A

e e
B

e e





 
   

 

2 2

2 2
2 0.41

A A

A A

e e
B

e e





 
   

 

2 2

2 2
3 0.18

A A

A A

e e
B

e e





 
  

 

4 4

4 4
4 0.25

A A

A A

e e
B

e e





 
  

 

5 5

5 5
5 0.04

A A

A A

e e
B

e e





 
  

 

6 6

6 6
6 0.44

A A

A A

e e
B

e e





 
   

 



ANN-based Predictive Mathematical Relationship
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* *
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* *
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Importance Ranking: Garson’s Sensitivity Analysis
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Xm is the mth input variable for which the relative importance is to be obtained, wIH is the input-hidden 

weight, wHO is the hidden-output weight, N is the total number of input variables and n is the total 

number of neurons in the hidden layer

Input Variable
Outcome of Garson’s Sensitivity Analysis

Relative Importance Relative importance (%) Rank

X1 GSoil 1.04 6.50 7

X2 dp 2.80 17.60 1

X3 lp 2.79 17.56 2

X4 np 0.84 5.26 8

X5 K* 1.56 9.76 6

X6 M* 1.90 11.93 5

X7 H 2.53 15.90 3

X8 W 2.47 15.49 4

Input Variable
Outcome of Garson’s sensitivity analysis

Relative Importance Relative importance (%) Rank

X1 GSoil 0.953 3.85 8

X2 dp 2.829 11.41 4

X3 lp 6.192 24.98 1

X4 np 0.860 3.47 9

X5 K* 4.417 17.82 3

X6 M* 2.279 9.19 5

X7 H 1.655 6.68 6

X8 W 4.576 18.46 2

X9 ∑Aw/∑Ac 1.028 4.15 7

RC Wall-frame 

system (W)

RC Frame 

system (F)



Effective Natural Period: Past Studies
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Past Study Expression Remark 

Veletsos and 

Meek [5] 
* * 2

1SSI F

x

K K H
T T

K K

    

Analytical equation developed for surface footings. 

Most widely used and adopted by seismic code e.g. 

ATC 3. 

Gazetas [6] * * * 2

1SSI F

x x

K K H K H
T T

K K K 

     

Semi-empirical relation with additional sway 

rocking component. 

Kumar and 

Prakash [7] 
1.5

* * 260
1SSI F

x

K K H
T T

H K K

 
    

 

 

Semi-empirical relationship proposed specifically 

for structure on pile foundation 

T
SSI

 = Natural period of the structural system under the influence of SSI 

T
F
   = Fixed base natural period of the superstructure 

H    = Effective height of the superstructure  

K
*
   = Effective stiffness of the superstructure under fixed base condition 

K
x
   = Lateral stiffness of the foundation 

K
ϕ
   = Rotational stiffness of the foundation 

K
xϕ

  = Coupled sway rotational stiffness of the foundation 

 



Comparison with Past Literature
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• Estimates of MF using proposed model

– Compared with previously 

proposed relationships

• Relationship proposed in ATC 3 and 

Gazetas (1996) provides lower 

estimates

– Shallow foundation

• Relationship proposed by Kumar and 

Prakash (2004)

– Better, developed for pile 

foundations

– Simplified model, limited 

• Estimates using ANN model

– Close agreement with FE 

simulated values

– Can be used for prediction of 

effective natural period
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Application of ML in Landslide Susceptibility Mapping



Kohima Landslide in Nagaland August, 1993

500 people died, 200 houses 

destroyed; Damage to 5km road 

stretch.

Leh landslide in , J&K 6 August 2010 due to cloud burst 145 killed, > 2,500 people affected 

and became homeless.

Malin landslide in Maharashtra            30th July 2014 due to Heavy rainfall 151 people died, and more than 100 

were missing.

Kuwari landslide in Uttarakhand 10th March 2018 due to Heavy rainfall More than 400 people died, and 106 

houses perished.

Pettimudi landslide in Kerala 6th August 2020 due to Heavy rainfall 80 people died, and many casualties 

occurred.

Tupul landslide in Manipur 30 June 2022 due to Heavy rainfall 30 Indian Army personnel and 31 

civilians were among the deceased

Some Major Landslides In India  
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Landslide Susceptibility Mapping (LSM)

 Likelihood of a landslide occurrence across a given

geographic area.

 Aiding to assess landslide-susceptible areas

 Predict landslides

 Decrease the damage caused by landslides.

 Aim of landslide susceptibility mapping

 Provide a better understanding of the potential

risks associated with landslides in a particular

region

 Support decision-making processes related to

land use planning, engineering design, and

emergency management.

A Typical Landslide Susceptibility mapping 

(Pham et al. 2017)

3904-02-2025 NITCON 2025



Techniques of Landslide Susceptibility Mapping
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Remote Sensing based Rainfall Induced Landslide Assessment Methods
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 Expert Opinion

 Field Mapping 

 Photo interpretation

Involve the visual interpretation and 

expert judgment of the features of the 

terrain to identify areas that are 

susceptible to landslides. 

(Theiry et al., 2014; Das et al., 2011).

Qualitative methods Quantitative methods 

Involve the use of statistical and 

mathematical models to map the 

relationships between landslide occurrence 

and various terrain attributes. 

(Pardeshi et al., 2013; 

Marrapu & Jakka, 2014). 

 Deterministic Approach

 Geological Approach

 Statistical Approach

 Machine Learning Approach

 Hybrid Approach
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Deterministic Approach:

Is a traditional, analytical approach 

that relies on mathematical equations 

to determine the  stability of slopes.                      

(Das et al., 2020; Singh et al., 2016; 

Sarkar et al., 2020).

Geological Approach

Involves assumption that landslides occur in 

areas with specific geological characteristics.  

Approach involves identifying those 

geological factors that control the occurrence 

of landslides, such as the type and structure of 

rocks, geological history, and soil properties. 

(Magliulo et al., 2008; Pavel et al., 2010; 

Gorum et al., 2008).  Infinite slope stability method

 Limit equilibrium method

 Finite element method (FEM) 

 Simplified assumptions

 Scalability 

 Flexibility 

 Limited data availability 

Limitations

 Geomorphological Mapping

 Soil Analysis 

 Geophysical Survey

Limited Spatial Coverage

Limited Data Availability 

Lack of consideration of other 

factors e.g. weather, land use

Limitations

Statistical Approach

Assume that the relationships between the 

landslide occurrence and the terrain 

attributes can be represented by 

mathematical functions.

(Wubalem & Meten, 2020; Hemasinghe et al., 

2018; Batar et al., 2021; Getachew & 

Meten,2021; Arabameri et al., 2019; 

Tahn et al., 2019). 

 Logistic regression (LR)

 Weight of evidence 

 Multiple Regression 

 Frequency ratio method 

 Lack of Causality

 require large datasets

 Assumption of linearity

 Limited ability to incorporate expert knowledge

Limitations
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Machine Learning Approach

Data-driven methods

Various ML algorithms, such as: ANN involve the development of a network 

of artificial neurons that can learn from the data to predict  susceptibility.

Decision trees involve the development of a tree-like structure. SVMs 

involve the development of Hyperplane. 
(Pourghasemi et al., 2013; Huang et al., 2018; Nefeslioglu et al., 2009; Park et al., 2018; 

Selamat et al., 2022; Saha et al., 2022

 Support Vector Machines (SVM)

 Decision Trees 

 Artificial Neural Networks (ANNs) 

 Dependence on quality and 

quantity of input data:

 Less Interpretability: black boxes

 Flexibility: 

 Limited data availability: 

Limitations

Hybrid Approach

Uses multiple susceptibility assessment methods to 

take advantage of their strengths and overcome their 

weaknesses. 

Developed by combining statistical methods with 

ML methods or by geomorphic approach or Expert 

based.

(Shit et al., 2016; Leonardi et al., 2016; Jazouli et al., 2019).

 Weighted overlay analysis

 Fuzzy logic 

 Analytic hierarchy process (AHP)

 Lack of Causality:

 require large datasets

 Assumption of linearity

 Limited ability to incorporate 

expert knowledge:

Limitations
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Landslide Conditioning Factors for LSM Maps
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Landslide Conditioning Factors and Maps
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Preliminary LSM using Frequency-Ratio Approach

 Frequency Ratio (FR)

 A ratio of the probability of presence and absence of

landslide occurrences for each landslide conditioning

factor class

Higher FR value

 Stronger observed spatial relationship between the landslide

occurrence and landslide conditioning factor
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Pi = Percentage of pixels in each landslide conditioning factor class
PLi = Percentage of landslide pixels in each landslide conditioning 

factor class
Ni = Number of pixels in each landslide conditioning factor class
N = Number of all pixels in total the study area. 
NL = number of all landslide pixels in total the study area
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July December

Preliminary LSM using Frequency-Ratio Approach



Landslide Conditioning Factors and Maps
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Machine Learning Techniques (MLTs)
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Advantages over other LS assessment methods

1. Increased accuracy: ML models have shown higher accuracy in predicting landslide

susceptibility compared to traditional methods, such as empirical or statistical models. Because

ML models can handle complex and non-linear relationships between the input variables and

landslide occurrence.

2. Flexibility: ML models are flexible and can accommodate a wide range of input data, including

topography, geology, climate, land use/land cover, and other. This makes them suitable for

analyzing different types of landscapes and regions.

3. Scalability: ML models can be applied to large areas or regions, making them suitable for

regional-scale landslide susceptibility mapping.

4. Automated feature selection: ML models can automatically select the most relevant input

features or variables for predicting landslide susceptibility. This reduces the need for expert

knowledge and subjective selection
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Support Vector Machine (SVM)

Linearly separable data

Limitation

Parameter tuning, computational intensity,

limited binary classification, and difficulty in

interpreting the model for non-linear kernels

(a)

(b)
Non-Linearly separable data

(c) (d)

Converting Non-linear separable dataset into High 

dimension and then solving them
(e) (f)
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Random Forest (RF) : Bagging Ensemble Strategy
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Lesser Hyper-

parameter Tuning

CART-based tree 

learning algorithms 

(Tree of Regression 

and Classification)
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Random Forest (RF) : Bagging Ensemble Strategy

04-02-2025 NITCON 2025

Lesser Hyper-

parameter Tuning

CART-based tree 

learning algorithms 

(Tree of Regression 

and Classification)
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Extreme Gradient Boosting (XGBoost)
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Accuracy Assessment: ROC Curve Analysis with AUC Score of ML models
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Random Forest

• Higher True Positive Rate in 

the Receiver Operating 

Characteristics (ROC) Curve

July December

Random Forest

• Higher magnitude of Area

under Curve (AUC)
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July December

Final Landslide Susceptibility Map: Tawang, AP
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July December

Final Landslide Susceptibility Map: Upper Subansiri, AP
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July December

Final Landslide Susceptibility Map: West Siang, AP



Application of ML in Tunneling and Tunnel Boring



Tunnel Boring

• Tunnel Boring Machine (TBM)

• Sensitive to adverse geotechnical conditions

• Rock bursting, spalling, squeezing, high water inflow

• Rock bursting

• Spontaneous and violent failure of rock due to high stresses

• Squeezing

• Reduction in cross-section of tunnel

• TBM Penetration rate and its prediction

• Essential for time planning, cost control and choice of excavation

• Estimation affected by geological, geomechanical and machine

design factors

• Considering correlation among parameters is critical
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Source: Verman et al. 2018
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Performance Parameters of TBM
 Penetration rate (PR)

 Ratio of excavation distance to the operating time during tunnel construction and generally

expressed in m/h or mm/min

 Advance rate (AR)

 Average speed of advancement of the tunnel and expressed in rings per day or m/day or m/shift

 Utilization Index (UI)

 The percentage of time in boring (Tb) per unit shift time(Tsh) and expressed in percent

 The shift time includes TBM boring time and down time (Td) during operations of excavation
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Factors Affecting Performance of TBM
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Machine design factors

Thrust force

Cutter head 
Torque

Specific energy

Cutter head 
power

Cutter head RPM

Rock properties

Strength

Brittleness

Abrasiveness

Fracture 
frequency

Hardness

Orientation of 
joints and faults

Geotechnical conditions

Spalling

Rock bursting

Squeezing

Swelling

High water inflow
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Application of AI in Tunnel Boring
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SL

NO
REFERENCE OBJECTIVE METHODOLOGY CONCLUSION

1
Neaupane and 

Adhikari (2006)

Predicting the surface 

settlement caused by tunneling

Artificial Neural 

Networks

R2 – 0.881 on testing set with 15% 

sum squared relative error

2
Suwansawat and 

Einstein (2006)

Predicting the surface 

settlement caused by tunneling

Artificial Neural 

Networks

The effect of machine type on the 

ANN model improved performance 

of training and testing sets

3
Santos and Celestino 

(2008)

Predicting the surface 

settlement caused by tunneling

Artificial Neural 

Networks

The importance of dimensionless 

input was highlighted by showing 

the improvement in quality of 

results 

4
Javad and Narges 

(2010)

Predicting the Penetration rate 

of TBM

Artificial Neural 

Networks

The model with dataset from three 

different tunnel projects showed

good agreement with desired ones

5 Eftekhari et al. (2010)
Predicting the Penetration rate 

of TBM

Artificial Neural 

Networks

A two layer feed forward network 

obtained R2 – 0.83 on testing set
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Application of AI in Tunnel Boring
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SL

NO
REFERENCE OBJECTIVE METHODOLOGY CONCLUSION

6
Mahdevari et al.

(2013)

Predicting the cumulative 

convergence due to squeezing

Support Vector 

Regression

R2 improved from 0.936 to 0.97 

compared to ANN

7
Mahdevari et al. 

(2014)

Predicting the Penetration rate 

of TBM

Support Vector 

Regression

R2 - 0.9903 and 0.95 for training 

and testing datasets. Capable of 

avoiding overfitting

8 Kohestani et al. (2017)
Predicting the maximum surface 

settlement caused by tunneling
Random forest

RF outperformed ANN in terms of 

model simplicity, robustness

9 Zhou et al. (2017)
Predicting the surface settlement 

caused by tunneling
Random forest

Smaller dataset resulted in high R2

and low RMSE. Large datasets 

will improve model precision 

10
Armaghani et al. 

(2017)

Predicting the Penetration rate of 

TBM

PSO-(ANN)

ICA-(ANN)

R2 - 0.912 and 0.905 for respective 

hybrid intelligent models. Superior 

in comparison with simple ANN

NITCON 2025



Dataset from Tunnel Projects

 Datasets from three different tunnel projects (Javad

and Narges 2010)

 The Queens Water Tunnel, USA

 The Karaj-Tehran Water Tunnel, Iran

 The Gilgel Gibe II Hydroelectric project, Ethiopia

 Dataset has 185 examples

 3 input variables

 1 output variable

 Geological strength parameters of rock are used as

explanatory variables:

 Unconfined Compressive Strength (UCS)

 Rock Quality Designation (RQD)

 Distance between planes of weakness (DPW)

 Penetration rate of TBM is the response variable

64

Small part of the dataset
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Exploratory Data Analysis 
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• Process of performing initial investigations on the data
• Discover patterns, spot anomalies, summary statistics

• UCS shows more concentration of data points near its

mean value

• RQD is negatively skewed with a tail on the left side of

distribution

• DPW shows a bell shaped curve with two distinct peaks

• PR is positively skewed with a tail on the right side of

distribution
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Exploratory Data Analysis
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Correlation Matrix

Relationship between variables

Box-and-Whisker Plot

Distribution of quantitative data

Whiskers extend to show rest of the 
distribution (max and min values)



Artificial Intelligence (AI) – Machine Learning (ML) – Deep Learning (DL)

• Deep Learning (DL)

• Extracts features or attributes from raw data

• Machine learning (ML)

• Each instance in a dataset is described by a set 

of features or attributes

• Data representations are hard-coded as a set of

features in ML algorithms

• Need feature selection/extraction

• DL methods: algorithm constructs representations

of the data automatically

• DL methods have many nuances and unexplained 

phenomenon than classic ML methods
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Adopted ML Algorithms

ARTIFICIAL NEURAL 
NETWORKS

RANDOM FOREST GRADIENT BOOSTING
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DNN: Multi-layered Perceptron (ANN-MLP)

• ‘MinMaxScaler’ method from sklearn library is used

for data normalization in range (0 to 1)

• The entire dataset is then divided into training,

validation and testing sets

• ‘train_test_split’ method from sklearn library is

utilised to split the dataset

• About 20% of the dataset is set aside as testing set and 

the rest as training set

• About 15% of the training data is kept as validation set

• Within the hidden-layers and in output layer, the

“ReLU” activation function is used

• The “Adam” optimizer is used as learning algorithm

with a user defined learning rate for training

• Mean Squared Error (MSE) is used as loss metric

and correlation coefficient (R2) as evaluation metric
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Training parameters Magnitude and Nomination

Training Function Adam Optimizer

Transfer Function

a. Hidden layer 1

b. Hidden layer 2

c. Output layer

a. Relu (linear)

b. Relu (linear)

c. Relu (linear)

Performance Function ‘mse’ (Mean square error)

Epochs 1000

Number of neurons in input layer 3

Number of hidden layers 3

Number of neurons in hidden layer1 12

Number of neurons in hidden layer2 9

Number of neurons in hidden layer3 5

Number of output layers 1
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Optimal Architecture of MLP

• A trial and error procedure is used to

identify the best network

• Several network topologies are examined

• The target network is

• Minimum error for training set and a

generalized solution which performs well

with the testing set

• The errors suggest that the network with

3-(12-9-5)-1 architecture shows optimum

model performance
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Model MSE 

train

MSE 

validation

MSE test R2 train R2 test

3-5-4-1 0.0027 0.002 0.61 0.51 0.64

3-8-9-1 0.0012 0.0074 0.35 0.71 0.72

3-5-5-4-1 0.003 0.0026 0.80 0.43 0.36

3-7-5-3-1 0.0019 0.018 0.39 0.67 0.69

3-7-7-3-1 0.001 0.01 0.27 0.82 0.83

3-8-7-4-1 0.0025 0.02 0.56 0.56 0.55

3-9-6-4-1 0.0012 0.003 0.27 0.83 0.82

3-9-7-3-1 0.00095 0.007 0.20 0.84 0.79

3-9-8-4-1 0.00088 0.012 0.18 0.83 0.85

3-10-9-4-1 0.0012 0.0116 0.182 0.86 0.81

3-11-11-9-1 0.00084 0.0075 0.19 0.86 0.80

3-13-9-3-1 0.001 0.007 0.195 0.83 0.84

3-12-9-5-1 0.00079 0.0059 0.176 0.86 0.85

3-15-12-7-1 0.00083 0.009 0.21 0.84 0.81

3-18-17-8-1 0.00074 0.0075 0.182 0.85 0.84

3-25-24-8-1 0.00075 0.0085 0.19 0.86 0.84
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R2 < 0.95 ??



ANN-MLP based Prediction of PR of TBM
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Training

Testing



Random Forest (RF) based Prediction of PR of TBM
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Training

Testing



Work Flow of Gradient Boosting 

Regression Tree (GBRT)

73

Create a decision 
tree on known 

response values

Make Predictions

Calculate errors 
(Residuals)

Fit new tree using 
errors as response 

values

Combine new tree 
with tree from 

previous iteration

• Tuning parameters
1. Number of trees

2. Maximum depth of each tree

3. Subsample

4. Learning rate

5. Loss function
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GBRT based Prediction of PR of TBM
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Training

Testing

Choose more than one 

estimator to judge the 

efficacy of one model 

over the other



Application of ML in Filter Dimensioning in Earthen Embankment



Schaffernak Seepage Analysis

04-02-2025 NITCON 2025 76

 Filter dimension and exit discharge as per schaffernak analysis:
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Schematic diagram for Schaffernak’s analysis



Data Generation for Filter Dimensioning
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Parameter range interval Total data point

Upstream slope (   ) 7

Downstream slope (    ) 7

B/Hd 0.1-1.5 0.1 14

H/Hd 0.1-1.0 0.1 10

 5 90 15

 5 90 15

Total dataset = 7 7 14 10 6860   

Parameter range interval Total data point

Upstream slope (   ) 500

Downstream slope (    ) 500

B/Hd 0.36-0.84 500

H/Hd 0.46-0.79 500

 15 75



Test dataset = 20% (6860) = 1372 

Training and Test dataset:

Validation dataset:

15 75

random

random

random

random

Validation dataset = 500

Training dataset = 80% (6860) = 5488  

Training

ML model  , ,HN HN nDF F q, , ,
d d

H B

H H
 
 
 
 

Output feature (3)
Input feature (4)



Multilayer Perceptron (MLP)

 Working principle of MLP model is similar to that of feed-forward backpropagation neural network.

MLP model

Artificial neuron 

The input and output for neurons of hidden layer: 

The input and output for neurons of output layer: 

 

 

0 0 1 1

0

... 3

( ) 4
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input output output output output

k k k pk p jk j

j

output output input output

k a k k

y h s h s h s h s

y f y b



    

 



The cost or loss function for MLP is:  

2
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0

1
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2

p
output output output

a jk j k k

i k j

L f h s b y
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Random Forest (RF)

 RF is an ensemble learning technique that

makes use of a set of decision trees for

predictive analysis.

 Each tree is trained independently with a

subset of the input data called the bootstrap

dataset.

 Bootstrap datasets are prepared from the

original dataset by random selection from an

original dataset with repetition.

 The results are predicted based on the average

predictive value of each tree.
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Support Vector Regression (SVR)

 Support vector machine (SVM) is a statistical learning-based ML tool that uses kernel to map low

dimension function into high-dimension space where it classifies data using an SVM classifier.

 The principle of SVR is similar to SVM.

 SVR confines error within the fit tube and considers error estimation for data lying outside the tube.

 The objective function of SVR:  
2 *

1

1
min

2

n

i

Obj C  


 
   

 

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Ridge Regression (RR)

 Ridge Regression (RR) is a regularization technique that analyses multiple regression when the

data suffers from multicollinearity.

 Multicollinearity leads to overfitting, which is reduced by adding a penalty term in the least square

cost function.

 The model equation for Ridge Regression (RR) is:

 The least square cost function is given as:

0 1 0

1

n
i

k k

i

y x Y X   


    

2 2
L Y X    

Fit line of RR for different alpha
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Xtreme Gradient Boosting (XGBoost)
 XGBoost is a decision tree-based ensemble learning technique that involves sequential addition of 

trees in each iteration to the base learning tree to minimize the objective function.

-10190

-10 < 611.3

+ L.R. 

×

< 611.3

-10190

-10 < 611.3

+ L.R. ×

 The objective function of XGBoost is: 
2

1

1
( , )

2

n

i i value

i

Obj L y p T O 


 
   
 


Training Loss measures how well 

model fits on training data

Regularization, measures 

complexity of trees

Base learning tree

+…..
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Application of DL and ML Techniques

 

Output 

Parameter 

 

R2 

Test Data 

RMSE 

 

 

MAE (%) 

 

R2 

Validation Data 

RMSE 

 

 

MAE 

(%) 

Model 

L*(sin α)/Hd 

1.00 

1.00 

0.86 

0.67 

0.36 

 

1.513×10-05 

2.896×10-05 

2.385×10-03 

6.038×10-03 

9.920×10-03 

 

0.233 

0.225 

3.755 

5.592 

8.425 

 

0.91 

0.92 

0.45 

0.67 

-0.37 

 

2.639×10-04 

2.452×10-04 

1.594×10-03 

9.339×10-04 

   3.904×10-03 

 

1.200 

1.158 

3.551 

2.839 

5.839 

 

XGBoost 

RF 

MLP 

RR 

SVR 

 

L*(cos α)/Bd 

 

1.00 

1.00 

0.76 

0.54 

0.05 

 

2.029×10-05 

2.587×10-05 

2.438×10-03 

5.478×10-03 

9.022×10-03 

 

0.251 

0.199 

3.737 

4.916 

8.487 

 

0.89 

0.90 

0.26 

0.302 

-0.5 

 

1.891×10-04 

1.710×10-04 

7.729×10-04 

1.162×10-03 

 6.165×10-03 

 

0.861 

0.826 

2.170 

3.281 

7.058 

 

XGBoost 

RF 

MLP 

RR 

SVR 

qnD 

1.00 

0.99 

0.62 

0.37 

0.20 

2.471×10-05 

8.206×10-05 

3.091×10-03 

6.394×10-03 

9.553×10-03 

0.273 

0.243 

3.581 

4.824 

7.727 

0.90 

0.91 

0.21 

0.58 

 -0.20 

2.571×10-04 

2.433×10-04 

2.602×10-03 

1.102×10-03 

3.114×10-03 

1.174 

1.194 

4.387 

2.214 

4.954 

XGBoost 

RF 

MLP 

RR 

SVR 

 XGBoost shows best fitting for test

data, Random Forest shows best fitting

for training data, and SVR shows the

poorest fit.

 Root Mean Square Error (RMSE) for

all three-output parameters is

minimum for XGBoost for test data,

and for synthetic data, it is minimum

for Random Forest.

 Mean Absolute Error (MAE %) for all

three-output parameters is minimum

for Random Forest for both test data

and synthetic data, while it is

maximum for SVR.
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Results and Discussion

XGBoost Random Forest

Comparison between actual and predicted output for test data

Comparison between actual and predicted output for validation data

Comparison between actual and predicted output for test data

Comparison between actual and predicted output for validation data
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Bearing Capacity of Foundation on Slopes 



Bearing Capacity of Foundation on Slopes

04-02-2025 NITCON 2025 86



Bearing Capacity of Foundation on Slopes
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Single Square Footing on Crest of a Marginal Soil Slope



Bearing Capacity of Foundation on Slopes
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Single Strip Footing on Crest of a Marginal Soil Slope
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Bearing Capacity of Foundation on Slopes
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Interfering Strip Footings on Crest of a Marginal Soil Slope
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Bearing Capacity of Foundation on Slopes: Application of ANN
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• Normalization of data

 Input

Output 

 (Rukhaiyar et al. 2017)

 and            are before and after normalization magnitude

 and            are the maximum and minimum magnitude

min

max min

2( )
1

( )

a

n i i

i

i i

P P
P

P P


 



a

iP n

iP

max

iP
min

iP
• ANN

Architecture 

• Network

Feed-forward cum back-propagation 

• Training function

Levenberg-Marquardt's

• Number of neurons in hidden layer

Varied to achieve minimum MSE

2

1

1
( )

N

Simulation ANN

id

MSE O O
N 

 

Nd = Number of data

OSimulation = Numerically simulated values

OANN = Predicted values of the same entity

7-10-1



Bearing Capacity of Foundation on Slopes: Application of ANN
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• ANN architecture
Training

Testing

Validation 
80% of the total data 

 used for training

20% of the total data 

 Validation of the ANN architecture

Training dataset 

 Further divided, where 

70% of the data 

Used for actual training 

Remaining 30% of the data 

Used as the testing

Das and Basudhar 2006



Bearing Capacity of Foundation on Slopes: Application of ANN
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• Table
Weight

Biases

N

X

Hidden 

N1

Hidden 

N2

Hidden 

N3

Hidden 

N4

Hidden N5 Hidden 

N6

Hidden N7 Hidden N8 Hidden 

N9

Hidden 

N10

c (X1) 0.55 -0.67 -0.26 0.84 -0.54 0.95 0.58 -3.58 0.004 -0.12

φ (X2) -0.56 -0.33 8.43 1.30 -0.64 -7.25 1.27 -5.25 -0.29 -0.91

γ (X3) 0.32 0.03 0.02 0.16 -0.09 0.03 0.09 -0.75 -0.01 0.04

B (X4) 0.24 0.11 0.15 0.46 -0.52 -0.06 0.46 4.79 -0.13 -0.13

b/B (X5) 1.45 0.0008 2.05 0.14 0.07 -1.74 -0.51 2.64 0.02 2.01

β (X6) -0.38 -0.01 -0.47 -0.04 -0.01 0.51 0.11 -0.67 0.004 -0.46

Df/B(X7) 1.30 0.57 -0.66 0.72 -0.35 0.66 0.42 6.50 -0.09 -0.05

N

Y

Hidden 

N1

Hidden 

N2

Hidden 

N3

Hidden 

N4

Hidden 

N5

Hidden 

N6

Hidden 

N7

Hidden N8 Hidden N9 Hidden N10

Output 0.06 -2.16 0.52 1.91 2.01 0.53 0.83 2.32 -3.58 0.97

Hidden layer biases  (bhN) Output layer biases (bO)

1.16

-0.61

-0.48

-0.66

-2.16

1.34

0.03

-1.79

-5.15

-0.03

3.03

Biases

Hidden-Output weights

Input-Hidden weights



Bearing Capacity of Foundation on Slopes: Application of ANN
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10

7
1

1

XN

X

N

ZN

Z

Hidden
Input

Hidden






(Garson’s sensitivity algorithm)

N

Z

Hidden 

N1

Hidden 

N2

Hidden 

N3

Hidden 

N4

Hidden 

N5

Hidden 

N6

Hidden 

N7

Hidden 

N8

Hidden 

N9

Hidden 

N10

c (X1) 0.04 1.45 -0.13 1.61 -1.09 0.50 0.48 -8.31 0.02 -0.12

φ (X2) -0.04 0.71 4.40 2.49 -1.29 -3.83 1.06 -12.18 1.03 -0.88

γ (X3) 0.02 -0.07 0.01 0.31 -0.19 0.02 0.08 -1.73 0.02 0.04

B (X4) 0.02 -0.24 0.08 0.87 -1.04 -0.03 0.38 11.10 0.48 -0.12

b/B (X5) 0.09 0.0018 1.07 0.26 0.14 -0.92 -0.43 6.13 -0.07 1.94

β (X6) -0.02 0.03 -0.24 -0.08 -0.01 0.27 0.09 -1.55 0.01 -0.45

Df/B (X7) 0.08 -1.23 -0.34 1.37 -0.69 0.35 0.35 15.09 0.32 -0.05

Product of the input-hidden and hidden-output connection weights

19%

35%16%

11%

7%
12%

c

φ

B

b/B

β

Df/B

Square footing

Strip footing

12%
8%

7%

25%
25%

23%

c

φ

B

b/B

S/B

β

Interfering strip footing



Bearing Capacity of Foundation on Slopes: Application of ANN

04-02-2025 NITCON 2025 94

Predicting Expression for Square footing on slope
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Bearing Capacity of Foundation on Slopes: Application of MGGP

 Genetic programming (GP)

 Based on the Darwinian principle of natural selection

 Symbolic optimization method that generates programs to execute a problem

 Outcomes are revealed in terms of tree structures

 A hierarchical tree structure

 Comprises functions and terminals

 A function set consists

 Typical programming operations

 Typical mathematical functions

 Simple arithmetic operations

 Domain-specific operators

 Logical functions

 Any other necessary mathematical operators
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Typical tree structure of a GP model representing 

  1 2(3/ )f x x x 



Bearing Capacity of Foundation on Slopes: Application of MGGP

 Multi-Gene Genetic programming (MGGP)

 Every symbolic model (i.e. every tree of GP) in MGGP is a weighted linear arrangement of the

outputs from a huge quantity of trees

Model comprises nonlinear algebraic and trigonometric operators

 Linear with regard to the individual operators associated with the coefficients w0, w1 and w2

 Assessed with aid of least squares method

 Large number of population and generations 

are realized along with other algorithm parameters

 Build method

 Maximum depth of individual gene

 Maximum number of genes

 Mutations, crossover and the direct crossover 

(M-C-D) probabilities

 Direct and Elite fractions
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Typical tree structure of a MGGP model representing 

   0 1 1 2 2 2 3  8 sin 3 5 / cosy w w x x w x x       
 



Bearing Capacity of Foundation on Slopes

04-02-2025 NITCON 2025 98

Single Strip Footing on Crest of a Marginal Soil Slope
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Bearing Capacity of Foundation on Slopes: Application of MGGP
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Single Strip Footing on Crest of a Marginal Soil Slope

Ranges of input parameters used in the study

Optimal algorithm parameters used in MGGP
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Bearing Capacity of Foundation on Slopes:

Performance of MGGP model
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Single Strip Footing on Crest of a Marginal Soil Slope

Multiple 

Statistical 

Evaluators

Sensitivity Analysis: Local Perturbation
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Interfering Strip Footing on Crest of a Marginal Soil Slope
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Bearing Capacity of Foundation on Slopes: Performance of MGGP Model
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Interfering Strip Footing on Crest of a Marginal Soil Slope
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X1 = Cohesion (c), X2 = Angle of internal friction (φ), X3 = Width of footing (B), 

X4 = Setback distance ratio (b/B), X5 = Spacing ratio (S/B) and X6 = Slope angle (β)

GIGO

Be 

Cautious
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Artificial Intelligence is Required for Advancement

BUT IN THE PROCESS

Are we Ourselves Demeaning our Natural Intelligence???

Why to use AI/ML in Engineering Problems? 

Where to integrate AI/ML in Engineering Problems? 

Are we intelligently using AI/ML or blindly following a black-box?

AI/ML Techniques are finally 

Mathematical Representations of Physical Problems
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